C A0 0.8 mol/dm 3. C T0 1.0 mol/dm 3. r A. v 0 C A0 vc A + r A V V dc A. 4. Stoichiometry (gas phase, P P 0, T T 0 ). From Equation (3-41) we have

Size: px
Start display at page:

Download "C A0 0.8 mol/dm 3. C T0 1.0 mol/dm 3. r A. v 0 C A0 vc A + r A V V dc A. 4. Stoichiometry (gas phase, P P 0, T T 0 ). From Equation (3-41) we have"

Transcription

1 Chapter 10 Catalsis and Cataltic Reactors W10-1 Web Example W10 Catalst Deca in a Fluidized Bed Modeled as a CSTR The gas-phase cracking reaction Gas oil (g) Products (g) B C is carried out in a fluidized CSTR reactor. The feed stream contains 80% gas oil () and 20% inert I. The gas oil contains sulfur compounds, which poison the catalst. s a first approximation we will assume that the cracking reaction is first order in the gas oil concentration. The rate of catalst deca is first order in the present actiit, and first order in the reactant concentration. ssuming that the bed can be modeled as a well-mixed CSTR, determine the reactant concentration, actiit, and conersion as a function of time. The olumetric feed rate to the reactor is 5000 m 3 /h. There are 50,000 kg of catalst in the reactor and the bulk densit is 500 kg/m 3. dditional information: C mol/dm 3 C T0 1.0 mol/dm 3 k B k 45 h 1 k d 9 dm 3 /mol h Solution 1. Mole Balance on reactant: dn C 0 C + r W = (WE10-.1) Recalling N C V and r V r W, then for constant olume we hae C 0 C + r V V dc = (WE10-.2) 2. Rate Law: r = kac (WE10-.3) 3. Deca Law: da = k d ac (WE10-.4) 4. Stoichiometr (gas phase, P P 0, T T 0 ). From Equation (3-41) we hae --- = =( 1+ εx) F T F T0 (WE10-.5) For simplicit, gas oil is used to represent the reactie portion of the feed. In actualit, gas oil, distilled from crude, is made up of complex hdrocarbons, which can be cracked, and simple hdrocarbons, which will not crack and are therefore inert in this application.

2 W10-2 Catalsis and Cataltic Reactors Chapter 10 X 1 F C = = F 0 C ε ε C = C 0 C ε = 0 δ = ( ) 0 = 0 0 = C T0 C --- = C T0 (WE10-.6) Soling for ields 1+ = C C T0 (WE10-.7) 5. Combining gies us C 0 ( 1+ 0 ) C C C kac V V dc = T0 (WE10-.8) Diiding both sides of Equation (WE10-.8) b the olume and writing the equation in terms of τ V/, we obtain (WE10-.9) dc dτ C 0 ( ) ( 1+ C C T0 ) + aτk = C τ τ s an approximation we assume the conersion to be F X 0 F C C = = = F 0 C 0 1+ C C T0 C 0 (WE10-.10) Calculation of reactor olume and space time ields V W ,000 = = = 100 m ρ 3 b 500 kg m 3

3 Chapter 10 Catalsis and Cataltic Reactors W a C X t (h) Figure WE10-.1 Variation of C (mol/dm 3 ), a, and X with time in a CSTR. V 100 m t = --- = = 0.02 h 5000 m 3 h C, X, and a time trajectories in a CSTR not at stead state Equations (WE10-.4), (WE10-.9), and (WE10-.10) are soled using Polmath as the ODE soler. The Polmath program is shown in Table WE The solution is shown in Figure WE TBLE WE POLYMTH PROGRM The conersion ariable X does not hae much meaning in flow sstems not at stead state, owing to the accumulation of reactant. Howeer, here the space time is relatiel short ( τ 0.02 h) in comparison with the time of deca t 0.5 h. Consequentl, we can assume a quasi-stead state and consider the conersion as defined b Equation (WE10-.10) alid. Because the catalst decas in less than an hour, a fluidized bed would not be a good choice to carr out this reaction.

4 W10-4 Catalsis and Cataltic Reactors Chapter 10 Web Heat Effects in Moing Beds. We shall consider two cases for modeling the temperature profile in the moing-bed reactor. In one case the temperature of the solid catalst and the temperature of the gas are different and in the other case the are the same. Case 1 (T T s ). The rate of heat transfer between the gas at temperature T and the solid catalst particles at temperature T S is Q P = hã P ( T T S ) (W10-129) where h heat transfer coefficient, kj/m 2 s K ã solid catalst surface area per mass of catalst in the bed, m 2 P /kg cat T S temperature of the solid, K. lso, T a = temperature of heat exchange fluid, K The energ balance on the gas phase is Energ balance dt dw Uã W ( T a T ) + hã P ( T S T ) = Σ F i C Pi (W10-130) If D P is the pipe diameter (m), B is the bulk catalst densit (kg/m 3 ), and is the wall surface area per mass of catalst (m 2 /kg) 4 ã w = D P ρ B The energ balance on the solid catalst is ã w (W10-131) Heat exchange between catalst particle and gas dt S dw hã P ( T S T ) + ( r )( ΔH Rx ) = U S C PS (W10-132) where C PS (J/kg K) is the heat capacit of the solids, U s (kg/s) the catalst loading, and ã P is the external surface area of the catalst pellet per unit mass of catalst bed: where d P is the pellet diameter. 6 ã P = d P ρ b (W10-133) Case 2 (T s T). If the product of the heat transfer coefficient, h, and the surface area, ã P, is er large, we can assume that the solid and gas temperatures are identical. Under these circumstances the energ balance becomes dt Uã W ( T a T ) + ( r )( ΔH Rx ) = dw U S C PS + Σ F i C Pi (W10-134)

5 Chapter 10 Catalsis and Cataltic Reactors W10-5 WP10-21 B The elementar irreersible gas-phase cataltic reaction k 1 B is carried out isothermall in a batch reactor. The catalst deactiation follows a first-order deca law and is independent of the concentrations of both and B. (a) Determine a general expression for catalst actiit as a function of time. (b) Make a qualitatie sketch of catalst actiit as a function of time. Does a(t) eer equal zero for a first-order deca law? (c) Write out the general algorithm and derie an expression for conersion as a function of time, the reactor parameters, and the catalst parameters. Fill in the following algorithm Mole balance Rate law Deca law Stoichiometr Combine Sole 1. Separate 2. Integrate k ns.: X 1 exp 1 W = ( 1 exp( k k d V d t) ) 0 (d) Calculate the conersion and catalst actiit in the reactor after 10 minutes at 300 K. (e) How would ou expect our results in parts (b) and (d) to change if the reaction were run at 400 K? Briefl describe the trends qualitatiel. (f) Calculate the conersion and catalst actiit in the reactor after 10 minutes if the reaction were run at 400 K instead of 300 K. Do our results match the predictions in part (e)? dditional information: C 0 = 1 mol/dm 3 V 0 = 1 dm 3 W = 1 kg k d = 0.1 min 1 at 300 K k 1 = 0.2 dm 3 /(kg cat min) at 300 K E d /R = 2000 K E /R = 500 K

Chemical Reaction Engineering

Chemical Reaction Engineering Chemical Reaction Engineering Dr. Yahia Alhamed Chemical and Materials Engineering Department College of Engineering King Abdulaziz University General Mole Balance Batch Reactor Mole Balance Constantly

More information

ChE 344 Winter 2011 Mid Term Exam I + Solution. Closed Book, Web, and Notes

ChE 344 Winter 2011 Mid Term Exam I + Solution. Closed Book, Web, and Notes ChE 344 Winter 011 Mid Term Exam I + Thursday, February 17, 011 Closed Book, Web, and Notes Name Honor Code (sign at the end of exam) 1) / 5 pts ) / 5 pts 3) / 5 pts 4) / 15 pts 5) / 5 pts 6) / 5 pts 7)

More information

ChE 344 Winter 2011 Final Exam + Solution. Open Book, Notes, and Web

ChE 344 Winter 2011 Final Exam + Solution. Open Book, Notes, and Web ChE 344 Winter 011 Final Exam + Solution Monday, April 5, 011 Open Book, Notes, and Web Name Honor Code (Please sign in the space provided below) I have neither given nor received unauthorized aid on this

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 21 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. Web Lecture 21 Class Lecture

More information

ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, Closed Book, Web, and Notes. Honor Code

ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, Closed Book, Web, and Notes. Honor Code ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, 2013 Closed Book, Web, and Notes Name Honor Code (Sign at the end of exam period) 1) / 5 pts 2) / 5 pts 3) / 5 pts 4) / 5 pts 5) / 5 pts 6) / 5

More information

Lecture 4. Mole balance: calculation of membrane reactors and unsteady state in tank reactors. Analysis of rate data

Lecture 4. Mole balance: calculation of membrane reactors and unsteady state in tank reactors. Analysis of rate data Lecture 4 Mole balance: calculation of membrane reactors and unsteady state in tank reactors. nalysis of rate data Mole alance in terms of Concentration and Molar Flow Rates Working in terms of number

More information

ChE 344 Chemical Reaction Engineering Winter 1999 Final Exam. Open Book, Notes, CD ROM, Disk, and Web

ChE 344 Chemical Reaction Engineering Winter 1999 Final Exam. Open Book, Notes, CD ROM, Disk, and Web ChE 344 Chemical Reaction Engineering Winter 1999 Final Exam Open Book, Notes, CD ROM, Disk, and Web Name Honor Code 1) /25 pts 2) /15 pts 3) /10 pts 4) / 3 pts 5) / 6 pts 6) / 8 pts 7) / 8 pts 8) / 5

More information

ChE 344 Winter 2013 Final Exam + Solution. Open Course Textbook Only Closed everything else (i.e., Notes, In-Class Problems and Home Problems

ChE 344 Winter 2013 Final Exam + Solution. Open Course Textbook Only Closed everything else (i.e., Notes, In-Class Problems and Home Problems ChE 344 Winter 03 Final Exam + Solution Thursday, May, 03 Open Course Textbook Only Closed everything else (i.e., Notes, In-Class Problems and Home Problems Name Honor Code (Please sign in the space provided

More information

ChE 344 Winter 2013 Mid Term Exam II Tuesday, April 9, 2013

ChE 344 Winter 2013 Mid Term Exam II Tuesday, April 9, 2013 ChE 344 Winter 2013 Mid Term Exam II Tuesday, April 9, 2013 Open Course Textbook Only Closed everything else (i.e., Notes, In-Class Problems and Home Problems Name Honor Code (Please sign in the space

More information

Mass balance in a fixed bed reactor is similar to that of a plugflow reactor (eq. 1.1): dx dv. r F (1.1) Recalling dw = B dv, then. r F. dx dw (2.

Mass balance in a fixed bed reactor is similar to that of a plugflow reactor (eq. 1.1): dx dv. r F (1.1) Recalling dw = B dv, then. r F. dx dw (2. Mass balance in a fixed bed reactor is similar to that of a plugflow reactor (eq..): d dv r (.) Recalling dw = B dv, then d dw r B (.) or a reaction: + bb c + dd Species eed Rate hange within Reactor Effluent

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 19 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. oday s lecture Gas Phase

More information

Name. Honor Code: I have neither given nor received unauthorized aid on this examination, nor have I concealed any violations of the Honor Code.

Name. Honor Code: I have neither given nor received unauthorized aid on this examination, nor have I concealed any violations of the Honor Code. ChE 344 Fall 014 Mid Term Exam II Wednesday, November 19, 014 Open Book Closed Notes (but one 3x5 note card), Closed Computer, Web, Home Problems and In-class Problems Name Honor Code: I have neither given

More information

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Lecture 8 Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Mole alance in terms of oncentration and Molar low Rates Working in terms of number of moles

More information

PHEN 612 SPRING 2008 WEEK 1 LAURENT SIMON

PHEN 612 SPRING 2008 WEEK 1 LAURENT SIMON PHEN 612 SPRING 2008 WEEK 1 LAURENT SIMON Chapter 1 * 1.1 Rate of reactions r A A+B->C Species A, B, and C We are interested in the rate of disappearance of A The rate of reaction, ra, is the number of

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 8 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. oday s lecture Block 1: Mole

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 2 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. 1 Lecture 2 Review of Lecture

More information

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Lecture 8 Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Mole alance in terms of Concentration and Molar Flow Rates Working in terms of number of moles

More information

A First Course on Kinetics and Reaction Engineering. Class 20 on Unit 19

A First Course on Kinetics and Reaction Engineering. Class 20 on Unit 19 A First Course on Kinetics and Reaction Engineering Class 20 on Unit 19 Part I - Chemical Reactions Part II - Chemical Reaction Kinetics Where We re Going Part III - Chemical Reaction Engineering A. Ideal

More information

4 th Edition Chapter 9

4 th Edition Chapter 9 Insert Page 547A 4 th Edition Chapter 9 In summary, if any one of the following three things had not occurred the explosion would not have happened. 1. Tripled production 2. Heat exchanger failure for

More information

ChE 344 Winter 2011 Final Exam. Open Book, Notes, and Web

ChE 344 Winter 2011 Final Exam. Open Book, Notes, and Web ChE 344 Winter 2011 Final Exam Monday, April 25, 2011 Open Book, Notes, and Web Name Honor Code (Please sign in the space provided below) I have neither given nor received unauthorized aid on this examination,

More information

Chemical Reaction Engineering. Dr. Yahia Alhamed

Chemical Reaction Engineering. Dr. Yahia Alhamed Chemical Reaction Engineering Dr. Yahia Alhamed 1 Kinetics and Reaction Rate What is reaction rate? It is the rate at which a species looses its chemical identity per unit volume. The rate of a reaction

More information

CHEMICAL REACTION ENGINEERING

CHEMICAL REACTION ENGINEERING CHEMICL RECTION ENGINEERING Unit 5 nalysis of reactor DT Collection and analysis of rate data Batch reactor for homogenous and heterogeneous reactions measurement during the unsteady-state operation Differential

More information

Web Solved Problems Web Example SP-8.1 Hydrodealkylation of Mesitylene in a PFR CH 3 H 2. m-xylene can also undergo hydrodealkylation to form toluene:

Web Solved Problems Web Example SP-8.1 Hydrodealkylation of Mesitylene in a PFR CH 3 H 2. m-xylene can also undergo hydrodealkylation to form toluene: Chapter 8 Multiple Reactions W8-1 Web Solved Problems Web Example SP-8.1 Hydrodealkylation of Mesitylene in a PFR The production of m-xylene by the hydrodealkylation of mesitylene over a Houdry Detrol

More information

Chapter 1. Lecture 1

Chapter 1. Lecture 1 Chapter 1 Lecture 1 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. 1 Lecture 1 Introduction

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. Web Lecture 22 Class Lecture

More information

To increase the concentration of product formed in a PFR, what should we do?

To increase the concentration of product formed in a PFR, what should we do? To produce more moles of product per time in a flow reactor system, what can we do? a) Use less catalyst b) Make the reactor bigger c) Make the flow rate through the reactor smaller To increase the concentration

More information

Module 1: Mole Balances, Conversion & Reactor Sizing (Chapters 1 and 2, Fogler)

Module 1: Mole Balances, Conversion & Reactor Sizing (Chapters 1 and 2, Fogler) CHE 309: Chemical Reaction Engineering Lecture-2 Module 1: Mole Balances, Conversion & Reactor Sizing (Chapters 1 and 2, Fogler) Module 1: Mole Balances, Conversion & Reactor Sizing Topics to be covered

More information

6. Multiple Reactions

6. Multiple Reactions 6. Multiple Reactions o Selectivity and Yield o Reactions in Series - To give maximum selectivity o Algorithm for Multiple Reactions o Applications of Algorithm o Multiple Reactions-Gas Phase 0. Types

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 4 hemical Reaction Engineering (RE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. hapter 4 Lecture 4 Block 1

More information

5. Collection and Analysis of. Rate Data

5. Collection and Analysis of. Rate Data 5. Collection and nalysis of o Objectives Rate Data - Determine the reaction order and specific reaction rate from experimental data obtained from either batch or flow reactors - Describe how to analyze

More information

Review: Nonideal Flow in a CSTR

Review: Nonideal Flow in a CSTR L3- Review: Nonideal Flow in a CSTR Ideal CSTR: uniform reactant concentration throughout the vessel Real stirred tank Relatively high reactant concentration at the feed entrance Relatively low concentration

More information

Thermodynamics revisited

Thermodynamics revisited Thermodynamics revisited How can I do an energy balance for a reactor system? 1 st law of thermodynamics (differential form): de de = = dq dq--dw dw Energy: de = du + de kin + de pot + de other du = Work:

More information

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like)

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like) Chemical reactors - chemical transformation of reactants into products Classification: a) according to the type of equipment o batch stirred tanks small-scale production, mostly liquids o continuous stirred

More information

Application of Mathematical Software Packages in Chemical Engineering Education DEMONSTRATION PROBLEMS

Application of Mathematical Software Packages in Chemical Engineering Education DEMONSTRATION PROBLEMS Application of Mathematical Software Packages in Chemical Engineering Education DEMONSTRATION PROBLEMS Sessions 16 and 116 ASEE Chemical Engineering Division Summer School University of Colorado - Boulder

More information

1. Introductory Material

1. Introductory Material CHEE 321: Chemical Reaction Engineering 1. Introductory Material 1b. The General Mole Balance Equation (GMBE) and Ideal Reactors (Fogler Chapter 1) Recap: Module 1a System with Rxn: use mole balances Input

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 24 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. Web Lecture 24 Class Lecture

More information

Midterm II. ChE 142 April 11, (Closed Book and notes, two 8.5 x11 sheet of notes is allowed) Printed Name

Midterm II. ChE 142 April 11, (Closed Book and notes, two 8.5 x11 sheet of notes is allowed) Printed Name ChE 142 pril 11, 25 Midterm II (Closed Book and notes, two 8.5 x11 sheet of notes is allowed) Printed Name KEY By signing this sheet, you agree to adhere to the U.C. Berkeley Honor Code Signed Name_ KEY

More information

1/r plots: a brief reminder

1/r plots: a brief reminder L10-1 1/r plots: a brief reminder 1/r X target X L10-2 1/r plots: a brief reminder 1/r X target X L10-3 1/r plots: a brief reminder 1/r X target X Special Case: utocatalytic Reactions Let s assume a reaction

More information

Chemical Reaction Engineering. Lecture 7

Chemical Reaction Engineering. Lecture 7 hemical Reaction Engineering Lecture 7 Home problem: nitroaniline synthesis the disappearance rate of orthonitrochlorobenzene [ ] d ONB ra k ONB NH dt Stoichiometric table: [ ][ ] 3 hange Remaining* oncentration**

More information

Chemical Kinetics and Reaction Engineering

Chemical Kinetics and Reaction Engineering Chemical Kinetics and Reaction Engineering MIDTERM EXAMINATION II Friday, April 9, 2010 The exam is 100 points total and 20% of the course grade. Please read through the questions carefully before giving

More information

Fluid Physics 8.292J/12.330J

Fluid Physics 8.292J/12.330J Fluid Phsics 8.292J/12.0J Problem Set 4 Solutions 1. Consider the problem of a two-dimensional (infinitel long) airplane wing traeling in the negatie x direction at a speed c through an Euler fluid. In

More information

Chemical Reaction Engineering Lecture 5

Chemical Reaction Engineering Lecture 5 Chemical Reaction Engineering g Lecture 5 The Scope The im of the Course: To learn how to describe a system where a (bio)chemical reaction takes place (further called reactor) Reactors Pharmacokinetics

More information

Exam 1 Chemical Reaction Engineering 26 February 2001 Closed Book and Notes

Exam 1 Chemical Reaction Engineering 26 February 2001 Closed Book and Notes Exam 1 Chemical Reaction Engineering 26 February 21 Closed Book and Notes (2%) 1. Derive the unsteady-state mole balance for a chemical species A for a packed bed reactor using the following steps: a)

More information

CHEMICAL ENGINEERING KINETICS/REACTOR DESIGN. Tony Feric, Kathir Nalluswami, Manesha Ramanathan, Sejal Vispute, Varun Wadhwa

CHEMICAL ENGINEERING KINETICS/REACTOR DESIGN. Tony Feric, Kathir Nalluswami, Manesha Ramanathan, Sejal Vispute, Varun Wadhwa CHEMICAL ENGINEERING KINETICS/REACTOR DESIGN Tony Feric, Kathir Nalluswami, Manesha Ramanathan, Sejal Vispute, Varun Wadhwa Presentation Overview Kinetics Reactor Design Non- Isothermal Design BASICS OF

More information

The Material Balance for Chemical Reactors

The Material Balance for Chemical Reactors The Material Balance for Chemical Reactors Copyright c 2015 by Nob Hill Publishing, LLC 1 General Mole Balance V R j Q 0 c j0 Q 1 c j1 Conservation of mass rate of accumulation of component j = + { rate

More information

The Material Balance for Chemical Reactors. Copyright c 2015 by Nob Hill Publishing, LLC

The Material Balance for Chemical Reactors. Copyright c 2015 by Nob Hill Publishing, LLC The Material Balance for Chemical Reactors Copyright c 2015 by Nob Hill Publishing, LLC 1 General Mole Balance V R j Q 0 c j0 Q 1 c j1 Conservation of mass rate of accumulation of component j = + { rate

More information

FLUID MECHANICS. 1. Division of Fluid Mechanics. Hydrostatics Aerostatics Hydrodynamics Gasdynamics. v velocity p pressure ρ density

FLUID MECHANICS. 1. Division of Fluid Mechanics. Hydrostatics Aerostatics Hydrodynamics Gasdynamics. v velocity p pressure ρ density FLUID MECHANICS. Diision of Fluid Mechanics elocit p pressure densit Hdrostatics Aerostatics Hdrodnamics asdnamics. Properties of fluids Comparison of solid substances and fluids solid fluid τ F A [Pa]

More information

CHE 404 Chemical Reaction Engineering. Chapter 8 Steady-State Nonisothermal Reactor Design

CHE 404 Chemical Reaction Engineering. Chapter 8 Steady-State Nonisothermal Reactor Design Textbook: Elements of Chemical Reaction Engineering, 4 th Edition 1 CHE 404 Chemical Reaction Engineering Chapter 8 Steady-State Nonisothermal Reactor Design Contents 2 PART 1. Steady-State Energy Balance

More information

Lecture no. 11 MATERIAL BALANCES

Lecture no. 11 MATERIAL BALANCES MATERIAL BALANCES Lecture no. 11 Conservation laws occupy a special place in science and engineering. Common statements of se laws take form of "mass (energy) is neir created nor destroyed," " mass (energy)

More information

Chemical Engineering

Chemical Engineering Chemical Engineering Basic Principles: Energy and material balances Transport Processes Momentum Transfer: Fluid Flow Energy Transfer: Heat Mass Transfer: mixing and separation processes Physical and Chemical

More information

A First Course on Kinetics and Reaction Engineering Unit 19. Analysis of Batch Reactors

A First Course on Kinetics and Reaction Engineering Unit 19. Analysis of Batch Reactors Unit 19. Analysis of Batch Reactors Overview As noted in Unit 18, batch reactor processing often follows an operational protocol that involves sequential steps much like a cooking recipe. In general, each

More information

Problems Points (Max.) Points Received

Problems Points (Max.) Points Received Chemical Engineering 142 Chemical Kinetics and Reaction Engineering Midterm 1 Tuesday, October 8, 2013 8:10 am-9:30 am The exam is 100 points total. Please read through the questions very carefully before

More information

Lecture Series. Modern Methods in Heterogeneous Catalysis. Measurement and Analysis of Kinetic Data

Lecture Series. Modern Methods in Heterogeneous Catalysis. Measurement and Analysis of Kinetic Data Lecture Series Modern Methods in Heterogeneous Catalysis Measurement and Analysis of Kinetic Data Raimund Horn Fritz-Haber-Institute of the MPG Department of Inorganic Chemistry Faradayweg 4-6 14195 Berlin

More information

Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz,

Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz, Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz, rherz@ucsd.edu, www.reactorlab.net More reactors So far we have learned about the three basic types of reactors: Batch, PFR, CSTR.

More information

CE 329, Fall 2015 Assignment 16, Practice Exam

CE 329, Fall 2015 Assignment 16, Practice Exam CE 39, Fall 15 Assignment 16, Practice Exam You may only use pencils, pens and erasers while taking this exam. You may NO use a calculator. You may not leave the room for any reason if you do, you must

More information

Investigation of adiabatic batch reactor

Investigation of adiabatic batch reactor Investigation of adiabatic batch reactor Introduction The theory of chemical reactors is summarized in instructions to Investigation of chemical reactors. If a reactor operates adiabatically then no heat

More information

Chemical Reaction Engineering. Lecture 2

Chemical Reaction Engineering. Lecture 2 hemical Reaction Engineering Lecture 2 General algorithm of hemical Reaction Engineering Mole balance Rate laws Stoichiometry Energy balance ombine and Solve lassification of reactions Phases involved:

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 13 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. Today s lecture Complex

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 6 hemical Reaction Engineering (RE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. Lecture 6 Tuesday 1/9/13 Block

More information

HW Help. How do you want to run the separation? Safety Issues? Ease of Processing

HW Help. How do you want to run the separation? Safety Issues? Ease of Processing HW Help Perform Gross Profitability Analysis on NaOH + CH4 --> Na+CO+H NaOH+C-->Na+CO+1/H NaOH+1/ H-->Na+HO NaOH + CO Na+CO+1/H How do you want to run the reaction? NaOH - Solid, Liquid or Gas T for ΔGrxn

More information

CE 329, Fall 2015 Second Mid-Term Exam

CE 329, Fall 2015 Second Mid-Term Exam CE 39, Fall 15 Second Mid-erm Exam You may only use pencils, pens and erasers while taking this exam. You may NO use a calculator. You may not leave the room for any reason if you do, you must first turn

More information

(S1.3) dt Taking into account equation (S1.1) and the fact that the reaction volume is constant, equation (S1.3) can be rewritten as:

(S1.3) dt Taking into account equation (S1.1) and the fact that the reaction volume is constant, equation (S1.3) can be rewritten as: roblem 1 Overall Material alance: dn d( ρv) dv dρ = =ρifi ρf ρ + V =ρifi ρ F (S1.1) ssuming constant density and reactor volume, equation (S1.1) yields: ( ) ρ F F = 0 F F = 0 (S1.2) i i Therefore, the

More information

Solutions for Tutorial 4 Modelling of Non-Linear Systems

Solutions for Tutorial 4 Modelling of Non-Linear Systems Solutions for Tutorial 4 Modelling of Non-Linear Systems 4.1 Isothermal CSTR: The chemical reactor shown in textbook igure 3.1 and repeated in the following is considered in this question. The reaction

More information

Module 1 : The equation of continuity. Lecture 4: Fourier s Law of Heat Conduction

Module 1 : The equation of continuity. Lecture 4: Fourier s Law of Heat Conduction 1 Module 1 : The equation of continuit Lecture 4: Fourier s Law of Heat Conduction NPTEL, IIT Kharagpur, Prof. Saikat Chakrabort, Department of Chemical Engineering Fourier s Law of Heat Conduction According

More information

The Material Balance for Chemical Reactors. General Mole Balance. R j. Q 1 c j1. c j0. Conservation of mass. { rate of inflow

The Material Balance for Chemical Reactors. General Mole Balance. R j. Q 1 c j1. c j0. Conservation of mass. { rate of inflow 2 / 153 The Material Balance for Chemical Reactors Copyright c 2018 by Nob Hill Publishing, LLC 1 / 153 General Mole Balance R j V Q 0 c j0 Q 1 c j1 Conservation of mass rate of accumulation of component

More information

A COLLECTION OF TEN NUMERICAL PROBLEMS IN CHEMICAL ENGINEERING SOLVED BY VARIOUS MATHEMATICAL SOFTWARE PACKAGES

A COLLECTION OF TEN NUMERICAL PROBLEMS IN CHEMICAL ENGINEERING SOLVED BY VARIOUS MATHEMATICAL SOFTWARE PACKAGES IN CHEMICAL ENGINEERING SOLVED BY VARIOUS MATHEMATICAL SOFTWARE PACKAGES Michael B. Cutlip, Department of Chemical Engineering, Box U-222, University of Connecticut, Storrs, CT 06269-3222 (mcutlip@uconnvm.uconn.edu)

More information

A First Course on Kinetics and Reaction Engineering Unit 22. Analysis of Steady State CSTRs

A First Course on Kinetics and Reaction Engineering Unit 22. Analysis of Steady State CSTRs Unit 22. Analysis of Steady State CSRs Overview Reaction engineering involves constructing an accurate mathematical model of a real world reactor and then using that model to perform an engineering task

More information

Multiple Reactions. ChE Reactive Process Engineering

Multiple Reactions. ChE Reactive Process Engineering Multiple Reactions We have largely considered single reactions so far in this class How many industrially important processes involve a single reaction? The job of a chemical engineer is therefore to design

More information

CBE 142: Chemical Kinetics & Reaction Engineering

CBE 142: Chemical Kinetics & Reaction Engineering CBE 142: Chemical Kinetics & Reaction Engineering Midterm #2 November 6 th 2014 This exam is worth 100 points and 20% of your course grade. Please read through the questions carefully before giving your

More information

Chemical Reaction Engineering. Multiple Reactions. Dr.-Eng. Zayed Al-Hamamre

Chemical Reaction Engineering. Multiple Reactions. Dr.-Eng. Zayed Al-Hamamre Chemical Reaction Engineering Multiple Reactions Dr.-Eng. Zayed Al-Hamamre 1 Content Types of Reactions Selectivity Reaction Yield Parallel Reactions Series Reactions Net Rates of Reaction Complex Reactions

More information

Design of Ideal Batch Reactors operated under Isothermal Conditions (It is important to have this note set with you during all lecture classes.

Design of Ideal Batch Reactors operated under Isothermal Conditions (It is important to have this note set with you during all lecture classes. CP33 Set # July-October 3 Design of Ideal Batch Reactors operated under Isothermal Conditions It is important to have this note set with you during all lecture classes. A batch reactor is such that a batch

More information

A population balance approach for continuous fluidized bed dryers

A population balance approach for continuous fluidized bed dryers A population balance approach for continuous fluidized bed dryers M. Peglow, U. Cunäus, C. Kettner, T. Metzger, E. Tsotsas, Thermal Process Engineering, University Magdeburg, 396 Magdeburg, ermany Abstract

More information

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65 TABLE OF CONTENT Chapter 1 Introduction 1 Chemical Reaction 2 Classification of Chemical Reaction 2 Chemical Equation 4 Rate of Chemical Reaction 5 Kinetic Models For Non Elementary Reaction 6 Molecularity

More information

Zeroth Law of Thermodynamics: Concepts CHAPTER 4.1 INTRODUCTION 4.2 THERMODYNAMIC SYSTEM AND SURROUNDINGS

Zeroth Law of Thermodynamics: Concepts CHAPTER 4.1 INTRODUCTION 4.2 THERMODYNAMIC SYSTEM AND SURROUNDINGS 4 CHAPER Zeroth Law of hermodnamics: Preliminar Concepts 4.1 INRODUCION hermodnamics is a branch of phsics that deals with the inter-relations between heat and other forms of energ. It is based on principles,

More information

CHAPTER FIVE REACTION ENGINEERING

CHAPTER FIVE REACTION ENGINEERING 1 CHAPTER FIVE REACTION ENGINEERING 5.1. Determination of Kinetic Parameters of the Saponification Reaction in a PFR 5.3. Experimental and Numerical Determination of Kinetic Parameters of the Saponification

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lectue 3 hemical Reaction Engineeing (RE) is the field that studies the ates and mechanisms of chemical eactions and the design of the eactos in which they take place. Web Lectue 3 lass Lectue 9-Thusday

More information

CHE 611 Advanced Chemical Reaction Engineering

CHE 611 Advanced Chemical Reaction Engineering CHE 611 Advanced Chemical Reaction Engineering Dr. Muhammad Rashid Usman Institute of Chemical Engineering and Technology University of the Punjab, Lahore 54590 mrusman.icet@pu.edu.pk 1 Course contents

More information

ENTHALPY BALANCES WITH CHEMICAL REACTION

ENTHALPY BALANCES WITH CHEMICAL REACTION ENTHALPY BALANCES WITH CHEMICAL REACTION Calculation of the amount and temperature of combustion products Methane is burnt in 50 % excess of air. Considering that the process is adiabatic and all methane

More information

Physics 2135 Exam 1 September 20, 2016

Physics 2135 Exam 1 September 20, 2016 Eam Total / 200 Phsics 2135 Eam 1 September 20, 2016 Printed Name: Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearl correct answer. 1. Two positive charges

More information

CE 329, Fall 2015 First Mid-Term Exam

CE 329, Fall 2015 First Mid-Term Exam CE 39, Fall 15 First Mid-erm Exam You may only use pencils, pens and erasers while taking this exam. You may NO use a calculator. You may not leave the room for any reason if you do, you must first turn

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture # Chemical Reaction Engineering Youn-Woo Lee School of Chemical and Biological Engineering Seoul National University 155-741, 599 Gwanangro, Gwanak-gu, Seoul, Korea ywlee@snu.ac.kr http://sfpl.snu.ac.kr

More information

Chemical Reaction Engineering - Part 12 - multiple reactions Richard K. Herz,

Chemical Reaction Engineering - Part 12 - multiple reactions Richard K. Herz, Chemical Reaction Engineering - Part 12 - multiple reactions Richard K. Herz, rherz@ucsd.edu, www.reactorlab.net Multiple reactions are usually present So far we have considered reactors in which only

More information

Time-Dependent Conduction :

Time-Dependent Conduction : Time-Dependent Conduction : The Lumped Capacitance Method Chapter Five Sections 5.1 thru 5.3 Transient Conduction A heat transfer process for which the temperature varies with time, as well as location

More information

University of Rome Tor Vergata

University of Rome Tor Vergata University of Rome Tor Vergata Faculty of Engineering Department of Industrial Engineering THERMODYNAMIC AND HEAT TRANSFER HEAT TRANSFER dr. G. Bovesecchi gianluigi.bovesecchi@gmail.com 06-7259-727 (7249)

More information

Steady-State Molecular Diffusion

Steady-State Molecular Diffusion Steady-State Molecular Diffusion This part is an application to the general differential equation of mass transfer. The objective is to solve the differential equation of mass transfer under steady state

More information

[Bashiri, 4(6): June, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Bashiri, 4(6): June, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 [Bashiri, 4(6): June, 015] ISSN: 77-9655 (IOR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY THE MODELING OF COBALT CATALYST DEACTIVATION

More information

QUESTION ANSWER. . e. Fourier number:

QUESTION ANSWER. . e. Fourier number: QUESTION 1. (0 pts) The Lumped Capacitance Method (a) List and describe the implications of the two major assumptions of the lumped capacitance method. (6 pts) (b) Define the Biot number by equations and

More information

COMPARISON OF ANALYTICAL SOLUTIONS FOR CMSMPR CRYSTALLIZER WITH QMOM POPULATION BALANCE MODELING IN FLUENT

COMPARISON OF ANALYTICAL SOLUTIONS FOR CMSMPR CRYSTALLIZER WITH QMOM POPULATION BALANCE MODELING IN FLUENT CHINA PARTICUOLOGY Vol. 3, No. 4, 13-18, 5 COMPARISON OF ANALYTICAL SOLUTIONS FOR CMSMPR CRYSTALLIZER WITH QMOM POPULATION BALANCE MODELING IN FLUENT Bin Wan 1, Terry A. Ring 1, *, Kumar M. Dhanasekharan

More information

Example 8: CSTR with Multiple Solutions

Example 8: CSTR with Multiple Solutions Example 8: CSTR with Multiple Solutions This model studies the multiple steady-states of exothermic reactions. The example is from Parulekar (27) which in turn was modified from one by Fogler (1999). The

More information

Lecture 11 Kjemisk reaksjonsteknikk Chemical Reaction Engineering

Lecture 11 Kjemisk reaksjonsteknikk Chemical Reaction Engineering Lecture Kjemisk reaksjonsteknikk Chemical Reaction Engineering Review of previous lectures Kinetic data analysis of heterogeneous reactions. Characterization of t catalysts. Kinetic study, find a kinetic

More information

Chapter 2 Basic Conservation Equations for Laminar Convection

Chapter 2 Basic Conservation Equations for Laminar Convection Chapter Basic Conservation Equations for Laminar Convection Abstract In this chapter, the basic conservation equations related to laminar fluid flow conservation equations are introduced. On this basis,

More information

Adsorption (Ch 12) - mass transfer to an interface

Adsorption (Ch 12) - mass transfer to an interface Adsorption (Ch 12) - mass transfer to an interface (Absorption - mass transfer to another phase) Gas or liquid adsorption (molecular) onto solid surface Porous solids provide high surface area per weight

More information

ERT 208 REACTION ENGINEERING

ERT 208 REACTION ENGINEERING ERT 208 REACTION ENGINEERING MOLE BALANCE MISMISURAYA MEOR AHMAD School of bioprocess engineering Unimap Course Outcome No.1: Ability to solve the rate of reaction and their kinetics. objectives DESCRIBE

More information

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Lecture No. #40 Problem solving: Reactor Design Friends, this is our last session

More information

Introduction to the course ``Theory and Development of Reactive Systems'' (Chemical Reaction Engineering - I)

Introduction to the course ``Theory and Development of Reactive Systems'' (Chemical Reaction Engineering - I) Introduction to the course ``Theory and Development of Reactive Systems'' (Chemical Reaction Engineering - I) Prof. Gabriele Pannocchia Department of Civil and Industrial Engineering (DICI) University

More information

Mathematical Modeling Of Chemical Reactors

Mathematical Modeling Of Chemical Reactors 37 Mathematical Modeling Of Chemical Reactors Keywords: Reactors, lug flow, CSTR, Conversion, Selectivity Chemical reactor calculations are based on the elementary conservation laws of matter and energy.

More information

H 0 r = -18,000 K cal/k mole Assume specific heats of all solutions are equal to that of water. [10]

H 0 r = -18,000 K cal/k mole Assume specific heats of all solutions are equal to that of water. [10] Code No: RR320802 Set No. 1 III B.Tech II Semester Supplementary Examinations, November/December 2005 CHEMICAL REACTION ENGINEERING-I (Chemical Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 32! Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.!! 1! Lecture 32 Thursday

More information

Fundamentals of Combustion

Fundamentals of Combustion Fundamentals of Combustion Lec 3: Chemical Thermodynamics Dr. Zayed Al-Hamamre Content Process Heat Transfer 1-3 Process Heat Transfer 1-4 Process Heat Transfer 1-5 Theoretical and Excess Air Combustion

More information

CSTR - PFR - PBR

CSTR - PFR - PBR 1. Mole Balances o The Rate of Reaction, - o The Geneal Mole Balance Equation o Continuous low Reactos - CSTR (Continuous-Stied Tank Reacto) - PR (Tubula Reacto) - PBR (Packed-Bed Reacto) o Industial Reactos

More information