Tuning of PID Controllers Based on Sensitivity Margin Specification

Similar documents
Linear Control Systems Lecture #3 - Frequency Domain Analysis. Guillaume Drion Academic year

Model-based PID tuning for high-order processes: when to approximate

Robust Loop Shaping Controller Design for Spectral Models by Quadratic Programming

Iterative Controller Tuning Using Bode s Integrals

A NEW APPROACH TO MIXED H 2 /H OPTIMAL PI/PID CONTROLLER DESIGN

Chapter 9 Robust Stability in SISO Systems 9. Introduction There are many reasons to use feedback control. As we have seen earlier, with the help of a

Design and Tuning of Fractional-order PID Controllers for Time-delayed Processes

Analysis of SISO Control Loops

FEL3210 Multivariable Feedback Control

Systems Analysis and Control

(Continued on next page)

QFT VERSUS CLASSICAL GAIN SCHEDULING: STUDY FOR A FAST FERRY

PID control of FOPDT plants with dominant dead time based on the modulus optimum criterion

Control Systems. Frequency Method Nyquist Analysis.

ADAPTIVE PID CONTROLLER WITH ON LINE IDENTIFICATION

Robust fixed-order H Controller Design for Spectral Models by Convex Optimization

Classify a transfer function to see which order or ramp it can follow and with which expected error.

Module 3F2: Systems and Control EXAMPLES PAPER 2 ROOT-LOCUS. Solutions

Analysis and Synthesis of Single-Input Single-Output Control Systems

Uncertainty and Robustness for SISO Systems

CDS 101/110a: Lecture 10-1 Robust Performance

Digital Control Systems

Design of Measurement Noise Filters for PID Control

Systems Analysis and Control

Chapter Stability Robustness Introduction Last chapter showed how the Nyquist stability criterion provides conditions for the stability robustness of

Control System Design

Additional Closed-Loop Frequency Response Material (Second edition, Chapter 14)

A sub-optimal second order sliding mode controller for systems with saturating actuators

Controls Problems for Qualifying Exam - Spring 2014

I. D. Landau, A. Karimi: A Course on Adaptive Control Adaptive Control. Part 9: Adaptive Control with Multiple Models and Switching

r + - FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic

IMC based automatic tuning method for PID controllers in a Smith predictor configuration

Comparative analysis of decoupling control methodologies and multivariable robust control for VS-VP wind turbines

Frequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability

Should we forget the Smith Predictor?

On Stabilization of First-Order Plus Dead-Time Unstable Processes Using PID Controllers

Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI FASCICLE III, 2000 ISSN X ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS

Unit 11 - Week 7: Quantitative feedback theory (Part 1/2)

Robust discrete time control

MAT1035 Analytic Geometry

A Simple PID Control Design for Systems with Time Delay

MRAGPC Control of MIMO Processes with Input Constraints and Disturbance

Robust and Gain-Scheduled PID Controller Design for Condensing Boilers by Linear Programming

Robust QFT-based PI controller for a feedforward control scheme

CHAPTER ONE FUNCTIONS AND GRAPHS. In everyday life, many quantities depend on one or more changing variables eg:

Topic # Feedback Control Systems

Decentralised control of a quadruple tank plant with a decoupled event-based strategy

Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities.

CHAPTER 5 ROBUSTNESS ANALYSIS OF THE CONTROLLER

Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Find the rectangular coordinates for each of the following polar coordinates:

DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD

Lecture 10: Proportional, Integral and Derivative Actions

STABILITY OF CLOSED-LOOP CONTOL SYSTEMS

Definition (Polar Coordinates) Figure: The polar coordinates (r, )ofapointp

Tuning and robustness analysis of event-based PID controllers under different event generation strategies

Robust Performance Example #1

Topic 1: Fractional and Negative Exponents x x Topic 2: Domain. 2x 9 2x y x 2 5x y logg 2x 12

CHAPTER # 9 ROOT LOCUS ANALYSES

Control Systems I. Lecture 2: Modeling. Suggested Readings: Åström & Murray Ch. 2-3, Guzzella Ch Emilio Frazzoli

The loop shaping paradigm. Lecture 7. Loop analysis of feedback systems (2) Essential specifications (2)

Control Systems I. Lecture 9: The Nyquist condition

CHAPTER 3 TUNING METHODS OF CONTROLLER

Introduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31

Variable-gain output feedback control

Today (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10

Control Systems I. Lecture 9: The Nyquist condition

QFT Framework for Robust Tuning of Power System Stabilizers

A unified double-loop multi-scale control strategy for NMP integrating-unstable systems

CDS 101/110a: Lecture 8-1 Frequency Domain Design

Inertia Identification and Auto-Tuning. of Induction Motor Using MRAS

MULTILOOP PI CONTROLLER FOR ACHIEVING SIMULTANEOUS TIME AND FREQUENCY DOMAIN SPECIFICATIONS

CONTROL OF DIGITAL SYSTEMS

Chapter 2: Circle. Mr. Migo M. Mendoza. SSMth1: Precalculus. Science and Technology, Engineering and Mathematics (STEM)

Remember that : Definition :

ADAPTIVE TEMPERATURE CONTROL IN CONTINUOUS STIRRED TANK REACTOR

PARETO OPTIMAL SENSITIVITY BOUNDS

Control of Electromechanical Systems

ECE317 : Feedback and Control

8.3 GRAPH AND WRITE EQUATIONS OF CIRCLES

Intro to Frequency Domain Design

COMS 4771 Introduction to Machine Learning. Nakul Verma

Lecture 6. Chapter 8: Robust Stability and Performance Analysis for MIMO Systems. Eugenio Schuster.

Feedback Control of Linear SISO systems. Process Dynamics and Control

STABILITY ANALYSIS. Asystemmaybe stable, neutrallyormarginallystable, or unstable. This can be illustrated using cones: Stable Neutral Unstable

CHAPTER 10: STABILITY &TUNING

Learn2Control Laboratory

Systems Analysis and Control

Lecture 1: Feedback Control Loop

6.241 Dynamic Systems and Control

Systems Analysis and Control

Control Systems. EC / EE / IN. For

Fall 2003 BMI 226 / CS 426 AUTOMATIC SYNTHESIS OF IMPROVED TUNING RULES FOR PID CONTROLLERS

EECE Adaptive Control

Quantitative Feedback Theory based Controller Design of an Unstable System

PARAMETRIC SYNTHESIS OF QUALITATIVE ROBUST CONTROL SYSTEMS USING ROOT LOCUS FIELDS. A.A. Nesenchuk

Internal Model Control of A Class of Continuous Linear Underactuated Systems

Chapter 11 Parametric Equations, Polar Curves, and Conic Sections

IDENTIFICATION FOR CONTROL

Transcription:

Tuning of D Controllers ased on Sensitivity Margin Specification S. Dormido and F. Morilla Dpto. de nformática y Automática-UNED c/ Juan del Rosal 6, 84 Madrid, Spain e-mail: {sdormido,fmorilla}@dia.uned.es Abstract This paper presents an alternative method to the one proposed by Åström and Hägglund (995) for the tuning of D controllers with specification of sensitivity margin M s. The method is based on the following steps: º) to delimit the range of frequencies in which it is possible to contact with a specific point of a circle of radius M s - centered at -, º) to explore the frequencies where this contact takes place tangentially, because these frequencies will only be possible solutions, and 3º) to choose one of the possible solutions. Some examples have been selected in order to show the main features of the proposed method. ntroduction n D control design, one often needs to go beyond the issue of closed loop stability. n particular, it is common to specify some quantitative measures of how far from instability the nominal loop is. This is attained by introducing measures that describe the distance from the nominal open-loop frequency response to the critical stability point (-;). Two indicators of relative stability for the case in which the open loop has no poles in the open RH are the gain margin, A m, and the phase margin, m. Figure shows an alternative measure for relative stability. The radius of the circle tangent to the polar plot of L(j) = G p (j)g c (j) is the reciprocal of the nominal sensitivity peak M s. The larger the sensitivity peak is, the closer the loop will be to instability. The sensitivity peak is a more reliable indicator of relative stability than the gain and phase margin. t is possible to find situations where the gain and phase margin are good, yet a very large sensitivity peak informs us of a very subtle stability condition. The reverse is not true: sensitivity performance gives always minimal value for the gain and phase margins. Minimum bounds on both the gain margin and the phase margin of a system characterized by a minimum phase L(j) can be expressed directly as function of M - s, as shown in Figure. Note that any loop gain point will lie outside the circle of radius M - s so that L(j cg ) = A - m d. Therefore, the distance d = -M s - shown in Figure represents a lower bound on the gain margin of the system in the sense that - m L(j) Am M s M s d M s () s cp cg d A m mag Figure : Open loop gain and M s - circle Furthermore, the angle depicted in Figure represents a lower bound on the phase margin of the system in the sense that - m sin () M s To ensure, for example, an acceptable nominal design that attains A m and m 3º we may now require that j.5 - Ms 6 d or that Ms min L (3) so that A m and m 9º 3º, in view of () and (), respectively. However, such a requirement may be

conservative, since larger values of M - s can imply both A m > and m > 3º. Note that the single sensitivity function requirement defined by (3) can be used to replace both the A m and the m requirements not only in the minimum phase cases but also in the unstable and non minimum phase cases as well. n particular, (3) will ensure that L(j) remains an acceptable, marginal distance away from the critical - point, irrespective of the number and the direction of encirclements required for closed loop stability; that is, (3) will ensure robust stability with respect to plant parameter variations once nominal closed-loop stability has been obtained. The paper is organized as follows. Section is devoted to introduce basic concepts of tuning of D controllers in the frequency domain. n section 3 the tuning of D controller when the design criterion is to obtain a specified sensitivity M s is explained in a detailed way. Some illustrative examples are described in section 4. Finally section 5 presents some conclusions. Tuning of D in the frequency domain Some frequency domain tuning methods of D controllers (Åström and Hägglund (995), Morilla and Dormido ()) can be interpreted in terms of moving one point A in the frequency response of the process G p (j) to an arbitrary point. This point is the specification or is determined by the specification (phase margin, gain margin). Therefore, once point has been fixed there is a range of frequencies in the Nyquist plot of G p (j) where it is possible to find a solution. This range can be determined from the following angular condition: c min ( - ()) c max where and () are the phase of point and G p (j), with respect to the negative real axis, and c min and c max are the minimum and maximum angular contributions of the controller. The range of frequencies depends therefore on the type of controller to be tuned. Figure shows an example, where the controller is a D controller. oint belongs to the bisector of the third quadrant, and the possible points A are represented in continuous trace ( min and max delimitate the corresponding range of frequencies). The example includes as a particular case a specification of phase margin equal to 45º (point is located on the unit circle). Another important consideration in Morilla and Dormido () was the convenience of using an auxiliary criterion (the maximum integral gain) together with the specification of phase or gain margin to choose the design frequency among all the possible solutions. However this constraint is not necessary when the tuning is made by combining both specifications. (4) - 7º - 8º ossible points mag max G p (j) ossible points A min - 9º Figure : Range for the design frequency Figure 3 shows the interpretation of the tuning by combined phase-gain margin. The tuning procedure can be seen as the change, in the complex plane, of two points (A and D) on G p (j) into points ( and E) on L(j). Figure 4 shows the interpretation of this tuning procedure in the parametric plane K (proportional gain) - K (integral gain), (Shafiei and Shenton, 997). m E D L(j) mag A m A G p (j) Figure 3: D tuning by combined phase-gain margin K d min a max d max a min Figure 4: D tuning in the parametric plane a d K

3 Tuning of D with specification of M s. n (Aström and Hägglund (995)) the design criterion is to obtain a specified sensitivity M s (see Figure 5) with good rejection of load disturbances. From the numerical point of view the procedure is reduced to the resolution of a system of three non-linear equations with five unknowns: the three D controller parameters K, K and K D, the frequency in which the specified sensitivity will take place and the angle where the contact with the circle M s will happen. For the resolution of these equations they propose to use an optimization procedure, combined either with the maximum integral gain criterion or the maximum frequency; the value of is bounded to the interval [ /]. r s r L(j) mag G p (j) Figure 5: Nyquist plot of G p (j) and L(j) The system of equations, with certain changes with respect to the formulation of Aström and Hägglund (995), is the following: - K - cos K cos D - (5) Ms K sin r K K sin cos r K sin D - (6) M a, K b, K c, K (7) (5) and (6) equations impose the contact of L(j) with the circle M s, with an angle, while (7) imposes the tangency condition. r() and () are the magnitude and the phase of G p (j), a(,), b(,) and c(,) are three functions used to abbreviate equation (7) that depend on the derivatives r (), () of the magnitude and phase of G p (j) as shown in the following expressions: D s r', ' r r', r r', r a b c ' ' cotan cotan cotan 3. New tuning procedure of D controllers The method for tuning consists of the following steps: a) To specify exactly the point where the contact with the circle M s will take place. b) To determine the family of controllers able to make L(j) pass through the specified point. c) To use the tangency condition (the proposal given by Aström and Hägglund (995) or a simpler one given in this paper), to determine those controllers that guarantee the tangential contact with the specified point on circle M s. d) To choose one of the possible controllers. Next it is described how the contact point can be specified, how the family of controllers can be determined and represented, and how the tangency condition can be formulated. Other aspects, related with practical application of the tuning method and the choice of the controllers, are discussed in the next section together with the different steps of the proposed algorithm. oint can be specified completely if specification M s is accompanied by angle in which the contact will take place (see Figure 5). oint is perfectly located in the complex plane by means of its real and imaginary part (X, Y ) or its magnitude and phase (r, ) whose dependence with respect to r s = M - s and is given in the following expressions X = - + r s cos = - r cos Y = - r s sen = - r sen rs sen tg (9) r cos - s rs sen r () sen The parameters of the D controllers that are able to make L(j) pass through point can be obtained by applying the following expressions (Morilla and Dormido, ): T K tg r r cos () + 4 +tg ()

TD = T (3) in the range of frequencies that verify the angular condition (4). Equation (9) admits this other equivalent expression: r sen tg (4) - r cos The tangent to circle M s in a point (X s, Y s ) is a function of the angle that can be obtained as follows: d - rs sen d Ys d - rs cos d X d - r cos s s - rs sen tg d The tangent to L(j) is a function of the frequency that can be obtained as follows: d rl d L - sen - r cos d mag L j L L L d d d Lj d rl d L - cos L rl senl d d The equality of both tangents in the point give us the following expression for : tg r cos - r sen (5) r sen r cos where r () and () represent the value of the derivative of the magnitude and phase of L(j) in the point respectively. Equaling equations (4) and (5) gives the following condition that must fulfill the magnitude and phase of point and the respective derivatives of L(j) in point. r r cos - r r sen (6) 3. Tuning algorithm of D controllers Given the plant G p (j), the D parameters can be tuned to meet a specified M s in the following way: Step : nitialization. The user specifies the value of M s and the angle in order to locate point and chooses the controller's type, or D. n the last case specifies ( = T D /T ). Step : Calculate and r by using (9) and (). Step 3: Calculate the range of frequencies, using the expression (4), where L(j) may pass through point. Step 4: Sweep the whole range of frequencies in order to determine in which frequencies the tangency condition is fulfilled. This sweeping makes the following calculations for all and each one of the frequencies: Calculate the control parameters by means of (), () and (3). Calculate the magnitude r L () and phase L () of L(j) in the vicinity of the design frequency, in particular in the five points -, -,, + y +, due to the following approximation for the calculation of the derivative r L () and L () in point (Savitzky and Golay, 964) f -8 f 8 f - f d f (7) d it is also convenient to make sure that r L () and L () coincide with values r and determined in Step. Calculate the derivatives r () and (), using the generic approximation (7) Evaluate the tangency condition, using the following quadratic function: FCT r r r cos r (8) sen Step 5: Choose the frequency and the corresponding parameters assigned to the controller. This selection is not trivial, because, as it will be seen in the examples, the tuning for a specified sensitivity can have a unique or a multiple solution. n the case of a unique solution, the condition of minimum of function FCT is sufficient in order to determine it. However in the case of a multiple solution the search inside a tolerance is the only way to find several zones that contain the different solutions. t is also necessary to use an auxiliary criterion (i.e. the absolute minimum FCT, the maximum integral gain, or the relative minimum FCT in the high frequencies zone) to select the frequency solution. f the tangency condition of Aström and Hägglund (995) is used it is only necessary to modify step 4 lightly calculating the magnitude r() and the phase () of G p (j) and their derivatives in the vicinity of the design frequency, by applying the following quadratic function: FCT a, K b, K c, K (9) where a(,), b(,) and c(,) are evaluated using the expressions (8). 4 Examples Let be the third order process evaluated by ersson (99): G (s) p.3 s.3s.6s The problem consists in tuning a controller with the following specifications: M s = and = 3º. Figure 6 shows how the tangency condition FCT varies in the whole range of frequencies where there is contact with point. With a logarithmic sweeping of points, only in the range of.53 to.57 rd/s does the tangency condition remain below the chosen tolerance (.). The minimum of FCT is presented at the frequency c =.553 rd/s and the controller parameters K =.36, T =.69 and T D = are obtained. D

FCT.45.4.35.3.5..5..5.3.4.5.6.7.8.9 Figure 6: Tangency condition with the controller Figure 7 shows a graph in the parametric plane (K,K ) with all the couples that allow contact with the circle M s = at the point = 3º. Those couples that also allow tangential contact with a tolerance less than. are marked with circles. n the crossing point of the horizontal and vertical lines we find the couple of parameters that is able to minimize the tangency condition..7 K.6.5.4.3....4.6.8..4 K Figure 7: Tuning for maximum sensitivity Figure 8 shows the Nyquist diagram of the process and the result of the tuning. The circle corresponds to the specification of sensitivity and the radius is associated to point in which the contact and the tangency with this circle take place. A more accurate numeric analysis allows to check that the desired sensitivity specification has been obtained. Figure 9 shows the process output and the control signal responses to steps in the set point and load disturbances. Figures and show the results for a D controller with ratio = T D /T =.. Due to the form of the FCT tangency condition, it is observed that now it is possible to contact with point in a logically bigger range of frequencies, and that two sub ranges exist where the tangency condition remains below the tolerance chosen (.); these sub ranges are [.54.58] and [.8.]. The circles marked in the c parametric plane (K, K ) allow to observe where the two families of controllers meet the specifications. maginary axis.5.5.5.5 -.5 - -.5 Nyquist Diagram - - -.5 - -.5.5.5 axis Figure 8: Tuning for maximum sensitivity Setpoint and output process 3 4 5 6.5.5 Control signal -.5 3 4 5 6 FCT Figure 9: rocess output and control signal response.35.3.5..5..5.5.5.5 Figure : Tangency condition for the D controller c

.7 K.6.5.4.3....4.6.8..4.6.8 K D Figure : Tangency condition for the D controller Figure shows a comparative graph between two possible D tuning; the first one corresponds to the absolute minimum of FCT at c =.56 rd/s, and the second to the relative minimum of the other subrange at c =. rd/s. maginary axis.5.5 -.5 - -.5 c =.56 Nyquist Diagram c=. - - -.5 - -.5.5.5 axis Figure : Tangency condition for the D controller With the controller parameters of the first tuning, K =.37, T =.7 and T D =.7, almost identical to the one obtained with the controller, the specified sensitivity is obtained. With the controller parameters of the second tuning, K =.6, T = 8. and T D =.8 the specified sensitivity is also obtained. ut by observing the comparative graph of the time response in Figure 3 it can be concluded that the first tuning is preferable to the second, because it allows to reach the reference and to reject the load disturbance in a shorter time and with a smaller control effort. 5. Conclusions The objective of this paper is to present an alternative method to the one proposed by Åström and Hägglund (995) for the tuning of D controllers with specification of sensitivity margin M s. The method is based on the following steps: º) to delimit the range of frequencies in which it is possible to contact with a specific point of a - circle of radius M s centered at -, º) to explore the frequencies where this contact takes place tangentially, because these frequencies will only be possible solutions and 3º) to choose one of the possible solutions. Some examples have been selected in order to show the main features of the proposed method..8.6.4..8.6.4. c =.56 c=. Setpoint and output process 3 4 5 6 Figure 3: Set point and load disturbances responses Acknowledgements This work has been supported by the Spanish CCYT under grant D -. References [] Aström, K.J. and T. Hägglund (995). D Controllers: Theory, Design, and Tuning (nd Edition). Research Triangle ark, NC: nstrument Society of America. [] Dormido, S. (). Control Learning: resent and Future. lenary lecture. reprints of b 5 th World Congress of FAC, arcelona -6 july. [3] Morilla, F. and S. Dormido (). Methodologies for the tuning of D controllers in the frequency domain. D' FAC Workshop on Digital Control: ast, present and future of D Control, 55-6, Terrassa. [4] Morilla, F., A. Fernández and S. Dormido Canto (). Control systems analysis & design server. CE' FAC Workshop on nternet ased Control Education, 5-56, Madrid. [5] ersson,. (99). Towards Autonomous D Control. Doctoral Dissertation. Department of Automatic Control, Lund nstitute of Technology. [6] Savitzky and Golay (964). Smoothing and differentiation of dates by simplified least squares procedures. Analytical Chemistry, vol. 36, nº8, july 964. [7] Shafiei, Z. and A.T. Shenton (997). Frequencydomain Design of D Controllers for Stable and Unstable Systems with Time Delay. Automatic, 3-3.