Numerical modelling of photoemission for the PITZ photoinjector

Similar documents
Beam dynamics studies for PITZ using a 3D full-wave Lienard-Wiechert PP code

Electron Emission Studies Using Enhanced QE Models

Motivation of emission studies at PITZ

Current Status of Bunch Emission Simulation for the PITZ Gun

DESY/TEMF Meeting - Status 2011

Selected Beam Studies at PITZ in 2017

Modeling of the secondary electron emission in rf photocathode guns

DESY/TEMF Meeting Status 2012

Emission-related Activities at PITZ Proposals for the DFG-Networking "Hi 2 PE"

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR)

Lab Report TEMF - TU Darmstadt

Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF-electron source for the European X-FEL

Dark current at the Euro-XFEL

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Studies on charge production from Cs 2 Te photocathodes in the PITZ L-band normal conducting radio frequency photo injector

1. Beam based alignment Laser alignment Solenoid alignment 2. Dark current 3. Thermal emittance

RF Gun Photo-Emission Model for Metal Cathodes Including Time Dependent Emission

Simulations of the IR/THz source at PITZ (SASE FEL and CTR)

Dark Current at Injector. Jang-Hui Han 27 November 2006 XFEL Beam Dynamics Meeting

Photo Injector Test facility at DESY, Zeuthen site

Introduction to the benchmark problem

Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ

RF-Gun Experience at PITZ - Longitudinal Phase Space

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ

Tomography module for transverse phase-space measurements at PITZ.

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ

Reduction of thermal emittance of rf guns *

Phase space measurements with tomographic reconstruction at PITZ.

Photo Injector Test facility at DESY, Zeuthen site. PITZ: facility overview

Fast Simulation of FEL Linacs with Collective Effects. M. Dohlus FLS 2018

SwissFEL INJECTOR DESIGN: AN AUTOMATIC PROCEDURE

Lab Report TEMF, TU Darmstadt

Needle cathodes for high-brightness beams. Chase Boulware Jonathan Jarvis Heather Andrews Charlie Brau

Commissioning of the new Injector Laser System for the Short Pulse Project at FLASH

Juliane Rönsch Hamburg University. Investigations of the longitudinal phase space at a photo injector for the X-FEL

Emittance and Quantum Efficiency Measurements from a 1.6 cell S- Band Photocathode RF Gun with Mg Cathode *

The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun

THERMAL EMITTANCE MEASUREMENTS AT THE SwissFEL INJECTOR TEST FACILITY

Tomographic transverse phase space measurements at PITZ.

START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ

Projected and slice emittance measurements using multi-quadrupole scan and streak readout at PITZ

Modeling Electron Emission From Diamond-Amplified Cathodes

Ellipsoidal Laser Status & Results Introduction Laser system & on-table data Results Redesign Outlook

Photo Injector Test facility at DESY, Zeuthen site.

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE*

VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab.

LCLS Injector Prototyping at the GTF

Low energy high brilliance beam characterization

Coupling Impedance of Ferrite Devices Description of Simulation Approach

Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem

Start-to-End Simulations

Advanced laser technology for 3D-shaping ~ toward to the highest brightness of electron beam source ~

Simulations for a bunch compressor at PITZ Study of high transformer ratios

Accelerator Activities at PITZ

X-band Photoinjector Beam Dynamics

Simulations for photoinjectors C.Limborg

Geometry Optimization of DC and SRF Guns to Maximize Beam Brightness

Introduction. Thermoionic gun vs RF photo gun Magnetic compression vs Velocity bunching. Probe beam design options

Photocathode Theory. John Smedley. Thanks to Kevin Jensen (NRL),

Normal-conducting RF Photo Injectors for Free Electron Lasers

The VELA and CLARA Test Facilities at Daresbury Laboratory Peter McIntosh, STFC on behalf of the VELA and CLARA Development Teams

Optimum beam creation in photoinjectors using spacecharge expansion II: experiment

Cornell Injector Performance

EXPERIMENTAL STUDIES WITH SPATIAL GAUSSIAN-CUT LASER FOR THE LCLS PHOTOCATHODE GUN*

Superconducting RF Photoinjectors

6 Injector TECHNICAL SYNOPSIS

Alignment requirement for the SRF cavities of the LCLS-II injector LCLSII-TN /16/2014

Status of linear collider designs:

Emittance and photocathodes

Design of Electron Gun

Initial measurements of the UCLA rf photoinjector

Photo Injector Test facility at DESY, Zeuthen site.

Novel, Hybrid RF Injector as a High-average. Dinh Nguyen. Lloyd Young

A Polarized Electron PWT Photoinjector for the ILC

Development of Cs 2 Te photocathode RF gun system for compact THz SASE-FEL

Injector Experimental Progress

Laser acceleration of electrons at Femilab/Nicadd photoinjector

AREAL Test Facility for Advanced Accelerator and Radiation Sources Concepts

Photoneutron reactions studies at ELI-NP using a direct neutron multiplicity sorting method Dan Filipescu

Design of an RF Photo-Gun (PHIN)

ICFA ERL Workshop Jefferson Laboratory March 19-23, 2005 Working Group 1 summary Ilan Ben-Zvi & Ivan Bazarov

Multivariate Optimization of High Brightness High Current DC Photoinjector. Ivan Bazarov Cornell University

Using IMPACT T to perform an optimization of a DC gun system Including merger

Undulator radiation from electrons randomly distributed in a bunch

Photoinjector design for the LCLS

Analysis of Slice Transverse Emittance Evolution in a Photocathode RF Gun. Abstract

Short Wavelength SASE FELs: Experiments vs. Theory. Jörg Rossbach University of Hamburg & DESY

What have we learned from the LCLS injector?*

X-band Experience at FEL

11 th International Computational Accelerator Physics Conference (ICAP) 2012

High gradient, high average power structure development at UCLA and Univ. Rome in X-X. band

Beam Shaping and Permanent Magnet Quadrupole Focusing with Applications to the Plasma Wakefield Accelerator

Multi-quadrupole scan for emittance determination at PITZ

Generation and characterization of ultra-short electron and x-ray x pulses

Expected properties of the radiation from VUV-FEL / femtosecond mode of operation / E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov

Fast Space Charge Calculations with a Multigrid Poisson Solver & Applications

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration

Angular momentum dominated electron beam and flat beam generation. FNPL video conference Feb. 28, 2005 Yin-e Sun 1

High average current photo injector (PHIN) for the CLIC Test Facility at CERN

Progress towards slice emittance measurements at PITZ. Raffael Niemczyk for the PITZ team, Würzburg, March 20 th 2018

Transcription:

Numerical modelling of photoemission for the PITZ photoinjector Ye Chen, Erion Gjonaj, Wolfgang Müller, Herbert De Gersem, Thomas Weiland TEMF, TU Darmstadt DESY-TEMF Collaboration Meeting DESY, Hamburg, June 15 th 2015 15-06-2015 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 1/27

Introduction Charge vs Laser Pulse Energy* identified emission regimes for OLD and NEW cathodes 1200 Motivation Q [pc] at Low Faraday Cup 1000 800 600 400 200 0 3. SC Limited Emission Fresh Cathode (QE=8.5%) Worn Cathode (QE=0.6%) 0 50 100 150 200 250 300 Laser Pulse Energy [nj] at the cathode 1. Identify source of discrepancies between measurement and simulation in terms of photoemission parameters. 2. Develop a numerical model of photoemission. *Measurement data sets provided by PITZ, 17.03.2015 15-06-2015 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 2/27

Contents Introduction Self-consistent QE limited bunch emission (QEL) Characterization of different photocathodes Influences of Schottky effect on bunch temporal profile Numerical modelling of space charge limitation (SCL) Methods and comparisons Numerical issues Summary & Perspective Discussions 15-06-2015 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 3/27

Self-consistent QE limited bunch emission (QEL) QEL emission modelling Q tot i. Total bunch charge produced by the Q 0 SCL laser pulse at cathode ii. Input bunch charge for simulation E tot QE i. Influences of Schottky effect on bunch temporal profile Laser Energy Simulation assumption 15-06-2015 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 4/27

QEL bunch emission: key factors Two related but independent processes: 1. Charge production: the laser pulse illuminates the photocathode and produces electrons at the cathode for extraction. 2. Charge (electrons) emission: decisions of emission are made by the local total field at the cathode at the moment of extraction. Key factors 1. Laser pulse: temporal shape and energy 2. Local fields at cathode: RF+SC, perpendicular to the PEC surface 3. Quantum efficiency (QE) of photocathode 15-06-2015 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 5/27

QEL bunch emission: relation between E cath, QE and Q tot With no applied fields QQ = η hν Φ cccc0 2 η: ccccccc ffffff that depends on material properties such as the absorption coefficient, density of states, transition probability, and the angle of incidence of the laser light. hh: photon energy, 4.81 ev Φ cccc0 : work function with no applied field, 3.5 ev Q ttt = e E lllll hν QQ (1) (2) ΔΦ x, y, z = 0, t = E cccc x, y, z = 0, t work function correction due to field effects e 3 4πε 0 E cccc x, y, z = 0, t Φ cccc = Φ cccc0 ΔΦ(x, y, z = 0, t) QQ η; x, y, z = 0, t = η hν Φ cccc 2 * QE: incident photon to converted electron (IPCE) ratio. 15-06-2015 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 6/27 ** characterizes the work function variation when the total field changes sign. t Q ttt = t 0 xy e P lllll τ hν QQ η; x, y, z = 0, τ (3) (4) (5) dxxxdd(6) Local fields at cathode introduce space- and time- dependences to QE, while the latter corrects distributions of the emitted electron bunch accordingly.

QEL bunch emission: modelling steps Total bunch charge produced at the cathode by the laser pulse: t Q ttt = η t 0 xy e P lllll τ hν hν Φ cccc0 e 3 4πε 0 E cccc x, y, z = 0, t 2 dddddd (7) Modelling of Q tot (η; x, y, z = 0, t) 1 st step: photocathode characterization Determination of η Verification of η for different operation parameters (i.e. E laser, E cath, temporal profiles) Use determined η for Schottky effect investigations 2 nd step: use determined η and full information of the local total fields at cathode to emit particles dynamically from the cathode Dynamic corrections of transverse and longitudinal distributions of the emitted electron bunch within each time step 15-06-2015 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 7/27

Numerical approach Integrate equation (8) in a simulation loop, by correcting the temporal profile (TP) of the emitted electron bunch iteratively according to the local fields at cathode, such that Q tot is normalized to Q meas from measurements. Q ttt = η e P lllll τ hν Ecath is the total field (RF + SC) at the cathode, perpendicular to the surface. The transverse dependence of Ecath is not yet considered. Settings of initial particle distributions t t 0 hν Φ cccc0 e 3 4πε 0 E cccc z = 0, t i. Initial kinetic energy: 0.55 ev; ii. Transverse distribution (x, y, p x, p y ): uniform; iii. Temporal profile: laser pulse profile; iv. Momentum (angle) distribution (p z ): isotropic; 2 dd (8) 15-06-2015 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 8/27

Numerical approach i: iteration times 15-06-2015 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 9/27

Cathode (2013) characterization (1): determination of η using different E cath *Total bunch charge vs. gun gradient at E laser = 37 nj 2 1 3 4 1 E laser (nj) Results (1) E cath (MV/m) RF η TP Power ~46 0.0383 4 MW FT 2 ~36.7 0.0372 4 MW FT 37 3 ~46 0.0349 7 MW FT 4 ~63 0.0351 7 MW FT * M. Krasilnikov, PITZ: Simulations versus Experiment, Darmstadt, 19.12.2013 (measurement data sets taken from 02.2013) Determined η is very close for the measurements using different cathode fields Ecath. 15-06-2015 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 10/27

Cathode (2013) characterization (2): determination of η using combinations of E laser / FT / GS / P rf * Total bunch charge vs. laser pulse energy at MMMG phase Results (2) E laser (nj) η 5 20 FT + 4 MW 0.0357 6 5 7 8 * M. Krasilnikov, PITZ: Simulations versus Experiment, Darmstadt, 19.12.2013 (measurement data sets taken from 02.2013) 6 20 FT + 7.75 MW 0.0361 7 15 Gaussian + 4 MW 0.0362 8 20 Gaussian + 4 MW 0.0340 Determined η is also very close for the measurements using multiple combinations of machine parameters. 15-06-2015 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 11/27

Q [pc] at Low Faraday Cup Cathode (2015) characterization (3): determination of η using different cathodes New measurements* in 2015 Bunch charge vs Laser Pulse Energy Pgun=1.5 MW at X0-90 phase and BSA=1.8mm. With fresh cathode (QE=8.5%) and worn cathode (QE=0.6%) 1200 1000 800 600 400 200 0 A1 B1 C1 A2 D1 B2 Fresh Cathode (QE=8.5%) C2 Worn Cathode (QE=0.6%) 15-06-2015 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 12/27 *Measurement data sets provided by PITZ, 17.03.2015 D2 0 50 100 150 200 250 300 E2 Laser Pulse Energy [nj] at the cathode F2 Results (3) Fresh Cathode E laser (nj) A1 8.22 B1 16.32 C1 24.79 D1 32.23 E laser (nj) A2 34.96 B2 63.35 C2 113.34 D2 163.08 E2 205.81 F2 252.65 η 0.0477 0.0456 0.0448 0.0432 Worn Cathode η 0.002710 0.002608 0.002548 0.002451 0.002332 0.002371

Cathode characterization: verification of η No. Laser Profile RF Power E laser η 1 Flat-Top (FT) 4 MW 37 nj 0.0383 2 FT 4 MW 37 nj 0.0372 3 FT 7.75 MW 37 nj 0.0349 4 FT 7.75 MW 37 nj 0.0351 5 FT 4 MW 20 nj 0.0357 6 FT 7.75 MW 20 nj 0.0361 7 Gaussian (GS) 4 MW 15 nj 0.0362 8 GS 4 MW 20 nj 0.0340 9 8.22 nj 0.0477 10 16.32 nj 0.0456 GS 1.5 MW 11 24.79 nj 0.0448 12 32.23 nj 0.0432 13 34.96 nj 0.002710 14 63.35 nj 0.002608 15 113.34 nj 0.002548 GS 1.5 MW 16 163.08 nj 0.002451 17 205.81 nj 0.002332 18 252.65 nj 0.002371 15-06-2015 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 13/27 Cathode 1, 02. 2013 η 0.0359 η i η η i η 0. 0000 η i η η i 111 < 66 Cathode 2, 02. 2015 111 < 55 Cathode 3, 02. 2015 η 0.002503 η i η η i 111 < 77

Influence of Schottky effect due to η (1) Current 1 Total bunch charge vs. gun gradient at E laser = 37 nj 2 1 3 4 Ecath time (ps) Schottky effect brings asymmetry to bunch temporal profile. It modifies the work function and thus corrects QE of cathode. 2 3 4 15-06-2015 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 14/27

Influence of Schottky effect due to η (2) 7 Total bunch charge vs. laser pulse energy at MMMG phase 8 6 5 7 8 Temporal profile "peak" shifts to earlier times. Effect not prominent. 5 6 15-06-2015 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 15/27

Intermediate summary 1. QEL emission model proposed and fits well the measurement data. 2. Cathode characterizations done for 3 cathodes, cathode factor η determined using different machine operation parameters. 3. Predicted QE is comparable with the measurement data. i. "Worn cathode" : 0.54%~0.62% ; Measurement: ~0.6% ii. "Fresh cathode" : 9.91%~10.98%; Measurement: ~8.5% QE of cathode at PITZ * * F. Stephan et al., PRST-AB 13, 020704 (2010) 4. Influences of Schottky effect on emission using determined η i. Correcting bunch temporal profile: symmetry to asymmetry ii. Emission peak shifts to earlier times; Effect not prominent. 15-06-2015 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 16/27

Numerical modelling of space charge limitation (SCL) 1200 Q [pc] at Low Faraday Cup 1000 800 600 400 200 3. SC Limited Emission 0 0 50 100 150 200 250 300 Laser Pulse Energy [nj] at the cathode 15-06-2015 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 17/27

Numerical modelling of SCL Space charge limitation modelling method "Brute-force" (standard approach): very slow convergence, very expensive "Bunch charge iteration"* (speed-up technique): good convergence Modelling status Both methods converge to the same SCL for FT-shaped bunches (FT). Both methods agree with measurements for different machine parameters (FT). Not applicable for GS-shaped bunches (GS). Numerical modelling issues Convergence of the emitted bunch charge at / above SCL* Deviation in bunch charge prediction between different solvers** * Y. Chen et al., Photoemission Studies for PITZ, DESY-Zeuthen site, 28.05.2014 ** E. Gjonaj, Emission Modeling for PITZ, DESY-Zeuthen site,19.12.2013 15-06-2015 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 18/27

"Brute-force" method Definitions Q b : input bunch charge Q 0 : output bunch charge "Brute-force" technique Inject particles at the cathode, and estimate from the local fields whether they can be emitted or not. Convergence check needed. Convergence of Q 0 w.r.t. mesh resolution ( x, y, z) w.r.t. number of particles (Np) w.r.t. time step ( t) w.r.t. Q b 15-06-2015 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 19/27

"Brute-force" method: Q 0 w.r.t. mesh: flat-top-shaped bunch (0) Space charge limit close to 1 nc for the nominal bunch (measurement). (1) When Q b >> Q 0, numerical convergence w.r.t. mesh is rather slow (simulation). 15-06-2015 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 20/27

"Brute-force" method: Q 0 w.r.t. mesh: flat-top-shaped bunch (2) As Q b is approaching Q 0, the convergence w.r.t. mesh is getting better. The "brute-force" method can predict the space charge limit using a very fine mesh resolution, however, slow and expensive. 15-06-2015 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 21/27

"Brute-force" method: Q 0 w.r.t. mesh: flat-top-shaped bunch (3) When Q b Q 0, the convergence w.r.t. mesh is good. 15-06-2015 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 22/27

"Brute-force" method: Q 0 w.r.t. approximation order: flat-top-shaped bunch (4) When Q b Q 0, the convergence w.r.t. approximation order is good. E. Gjonaj, Emission Modeling for PITZ, DESY-Zeuthen site,19.12.2013 15-06-2015 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 23/27

Deviation of SCL between different solvers Same input bunch charge Qb = 1 nc XY_rms = 0.3 mm Nominal FT bunch Same input Q b = 1nC for both algorithm. Calculations of SCL with standard approach (No Iteration) Different output Q 0 15-06-2015 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 24/27

Motivation of "charge iteration method" Ecath (V/m) Ecath (V/m) Ecath (V/m) Ecath (V/m) 2 x 107 0-2 -4 0 10 20 30 40 50 60 70 time (ps) 2 x 107 0-2 -4 0 10 20 30 40 50 60 70 time (ps) 2 x 107 0-2 -4 0 10 20 30 40 50 60 70 time (ps) 2 x 107 0-2 t -4 0 10 20 30 40 50 60 70 time (ps) 1. Space charge limit (SCL) occurs when the total field at the cathode changes sign. 2. Above SCL, this happens soon as the emission begins, meaning t << t. 3. During the beginning time of t, the steady state assumption is not valid, however, this method can still estimate from most of time in the emission process. 15-06-2015 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 25/27 Qb = 1.2 nc Qb = 1.5 nc Qb = 1.8 nc Qb = 3.6 nc

Comparisons with measurements Using the charge iteration method, the simulated total bunch charges can well fit the measurement data under different experimental conditions in the case of FT-shaped bunches. XY_rms = 0.3 mm, Prf 6 MW FT-shaped, 21.5 ps (FWHM) XY_rms = 0.3 mm, Prf 7 MW and 4 MW FT-shaped, 17 ps (FWHM) SCL SCL SCL 15-06-2015 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 26/27

Summary and Perspective 1. QE limited emission Model proposed Numerical approach used for three photocathode characterizations Determination of η verified under different experimental conditions Influences of Schottky effect investigated in terms of bunch temporal profiles 2. SCL modelling Numerical issues discussed w.r.t. convergence problem "Brute-force" agrees with "charge iteration" on SCL predictions Good agreements with measurements for FT-shaped bunches Method not valid for GS-shaped bunches 3. Perspective Implementation within each time step of corrections of the temporal and / or transverse distribution of the emitted bunch by using the full information of the local total fields at cathode New simulation tool preferable Thank you for your attention! 15-06-2015 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Ye Chen 27/27 非常感谢您的关注!