Z subarray. (d,0) (Nd-d,0) (Nd,0) X subarray Y subarray

Similar documents
FAST AND ACCURATE DIRECTION-OF-ARRIVAL ESTIMATION FOR A SINGLE SOURCE

Improved Unitary Root-MUSIC for DOA Estimation Based on Pseudo-Noise Resampling

ADAPTIVE ANTENNAS. SPATIAL BF

A New High-Resolution and Stable MV-SVD Algorithm for Coherent Signals Detection

Generalization Propagator Method for DOA Estimation

PASSIVE NEAR-FIELD SOURCE LOCALIZATION BASED ON SPATIAL-TEMPORAL STRUCTURE

DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Uniform Linear Array with Fewer Sensors than Sources

Real-Valued Khatri-Rao Subspace Approaches on the ULA and a New Nested Array

Robust Subspace DOA Estimation for Wireless Communications

computation of the algorithms it is useful to introduce some sort of mapping that reduces the dimension of the data set before applying signal process

IMPROVED BLIND 2D-DIRECTION OF ARRIVAL ESTI- MATION WITH L-SHAPED ARRAY USING SHIFT IN- VARIANCE PROPERTY

This is a repository copy of Direction finding and mutual coupling estimation for uniform rectangular arrays.

Adaptive beamforming for uniform linear arrays with unknown mutual coupling. IEEE Antennas and Wireless Propagation Letters.

Decoupled Nominal 2-D Direction-of -Arrival Estimation Algorithm for Coherently Distributed Source

DOA Estimation of Uncorrelated and Coherent Signals in Multipath Environment Using ULA Antennas

JOINT AZIMUTH-ELEVATION/(-RANGE) ESTIMATION OF MIXED NEAR-FIELD AND FAR-FIELD SOURCES USING TWO-STAGE SEPARATED STEERING VECTOR- BASED ALGORITHM

A Gain-Phase Error Calibration Method for the Vibration of Wing Conformal Array

Two-Dimensional Sparse Arrays with Hole-Free Coarray and Reduced Mutual Coupling

A Fast Algorithm for. Nonstationary Delay Estimation. H. C. So. Department of Electronic Engineering, City University of Hong Kong

DIRECTION OF ARRIVAL ESTIMATION BASED ON FOURTH-ORDER CUMULANT USING PROPAGATOR METHOD

A New Algorithm for Joint Range-DOA-Frequency Estimation of Near-Field Sources

arxiv: v1 [cs.ce] 3 Apr 2016

Multi-Source DOA Estimation Using an Acoustic Vector Sensor Array Under a Spatial Sparse Representation Framework

Generalized Design Approach for Fourth-order Difference Co-array

A HIGH RESOLUTION DOA ESTIMATING METHOD WITHOUT ESTIMATING THE NUMBER OF SOURCES

Multidimensional Sinusoidal Frequency Estimation Using Subspace and Projection Separation Approaches

Comparison of DDE and ETDGE for. Time-Varying Delay Estimation. H. C. So. Department of Electronic Engineering, City University of Hong Kong

LOW COMPLEXITY COVARIANCE-BASED DOA ESTIMATION ALGORITHM

Adaptive beamforming. Slide 2: Chapter 7: Adaptive array processing. Slide 3: Delay-and-sum. Slide 4: Delay-and-sum, continued

HIGH RESOLUTION DOA ESTIMATION IN FULLY COHERENT ENVIRONMENTS. S. N. Shahi, M. Emadi, and K. Sadeghi Sharif University of Technology Iran

DOA Estimation using MUSIC and Root MUSIC Methods

linearly indepedent eigenvectors as the multiplicity of the root, but in general there may be no more than one. For further discussion, assume matrice

Double-Directional Estimation for MIMO Channels

Direction Finding for Bistatic MIMO Radar with Non-Circular Sources

Co-prime Arrays with Reduced Sensors (CARS) for Direction-of-Arrival Estimation

Research Article Novel Diagonal Reloading Based Direction of Arrival Estimation in Unknown Non-Uniform Noise

Tensor MUSIC in Multidimensional Sparse Arrays

DOA AND POLARIZATION ACCURACY STUDY FOR AN IMPERFECT DUAL-POLARIZED ANTENNA ARRAY. Miriam Häge, Marc Oispuu

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 1, JANUARY

New Approaches for Two-Dimensional DOA Estimation of Coherent and Noncircular Signals with Acoustic Vector-sensor Array

Spatial Smoothing and Broadband Beamforming. Bhaskar D Rao University of California, San Diego

X. Zhang, G. Feng, and D. Xu Department of Electronic Engineering Nanjing University of Aeronautics & Astronautics Nanjing , China

Spatial Array Processing

HIGH-SPEED data transmission and real-time multimedia

(a)

ASYMPTOTIC PERFORMANCE ANALYSIS OF DOA ESTIMATION METHOD FOR AN INCOHERENTLY DISTRIBUTED SOURCE. 2πd λ. E[ϱ(θ, t)ϱ (θ,τ)] = γ(θ; µ)δ(θ θ )δ t,τ, (2)

THE estimation of covariance matrices is a crucial component

POLYNOMIAL-PHASE SIGNAL DIRECTION-FINDING AND SOURCE-TRACKING WITH A SINGLE ACOUSTIC VECTOR SENSOR. Xin Yuan and Jiaji Huang

I Introduction Sensor array processing has been a key technology in radar, sonar, communications and biomedical signal processing. Recently, as the ce

Performance Analysis of an Adaptive Algorithm for DOA Estimation

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 10, OCTOBER where y(t) and e(t) are 6m 2 1 complex vectors, respectively, given by

Array Signal Processing

Robust Angle Estimation for MIMO Radar with the Coexistence of Mutual Coupling and Colored Noise

Performance Analysis of Coarray-Based MUSIC and the Cramér-Rao Bound

Array Signal Processing Robust to Pointing Errors

1 Introduction Blind source separation (BSS) is a fundamental problem which is encountered in a variety of signal processing problems where multiple s

Array Signal Processing Algorithms for Beamforming and Direction Finding

Root-MUSIC Time Delay Estimation Based on Propagator Method Bin Ba, Yun Long Wang, Na E Zheng & Han Ying Hu

Performance Analysis for Strong Interference Remove of Fast Moving Target in Linear Array Antenna

Detection and Localization of Tones and Pulses using an Uncalibrated Array

Correlation Subspaces: Generalizations and Connection to Difference Coarrays

Using an Oblique Projection Operator for Highly Correlated Signal Direction-of-Arrival Estimations

Copyright c 2006 IEEE. Reprinted from:

Optimal Time Division Multiplexing Schemes for DOA Estimation of a Moving Target Using a Colocated MIMO Radar

-Dimensional ESPRIT-Type Algorithms for Strictly Second-Order Non-Circular Sources and Their Performance Analysis

EXTENSION OF NESTED ARRAYS WITH THE FOURTH-ORDER DIFFERENCE CO-ARRAY ENHANCEMENT

Instrumental Variable Subspace Tracking Using Projection Approximation Tony Gustafsson y October 17, 1996 Abstract Subspace estimation plays an import

hundred samples per signal. To counter these problems, Mathur et al. [11] propose to initialize each stage of the algorithm by aweight vector found by

A Quaternion-ESPRIT Source Localization Method with Uniform Loop and Dipole Pair Circular Array

Direction of Arrival Estimation: Subspace Methods. Bhaskar D Rao University of California, San Diego

Rational Invariant Subspace Approximations with Applications

Overview of Beamforming

Real Time Implementation for DOA Estimation Methods on NI-PXI Platform

II. BACKGROUND. A. Notation

CHAPTER 3 ROBUST ADAPTIVE BEAMFORMING

Multivariate Statistical Analysis

High-resolution Parametric Subspace Methods

arxiv: v2 [cs.it] 7 Jan 2017

ELEC E7210: Communication Theory. Lecture 10: MIMO systems

ROYAL INSTITUTE OF TECHNOLOGY KUNGL TEKNISKA HÖGSKOLAN. Department of Signals, Sensors & Systems Signal Processing S STOCKHOLM

Research Article Joint Gain/Phase and Mutual Coupling Array Calibration Technique with Single Calibrating Source

2-D SENSOR POSITION PERTURBATION ANALYSIS: EQUIVALENCE TO AWGN ON ARRAY OUTPUTS. Volkan Cevher, James H. McClellan

ML ESTIMATION AND CRB FOR NARROWBAND AR SIGNALS ON A SENSOR ARRAY

SPOC: An Innovative Beamforming Method

A Root-MUSIC-Like Direction Finding Method for Cyclostationary Signals

1254 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 4, APRIL On the Virtual Array Concept for Higher Order Array Processing

Estimation of the Optimum Rotational Parameter for the Fractional Fourier Transform Using Domain Decomposition

PERFORMANCE ANALYSIS OF COARRAY-BASED MUSIC AND THE CRAMÉR-RAO BOUND. Mianzhi Wang, Zhen Zhang, and Arye Nehorai

Research Article Computationally Efficient DOA and Polarization Estimation of Coherent Sources with Linear Electromagnetic Vector-Sensor Array

Azimuth-elevation direction finding, using one fourcomponent acoustic vector-sensor spread spatially along a straight line

A Novel DOA Estimation Error Reduction Preprocessing Scheme of Correlated Waves for Khatri-Rao Product Extended-Array

Detection in reverberation using space time adaptive prewhiteners

Progress In Electromagnetics Research, PIER 102, 31 48, 2010

DOA estimation and tracking of ULAs with mutual coupling

Robust covariance matrices estimation and applications in signal processing

Relative Irradiance. Wavelength (nm)

A Robust Framework for DOA Estimation: the Re-Iterative Super-Resolution (RISR) Algorithm

Different Wideband Direction of Arrival(DOA) Estimation methods: An Overview

Joint Azimuth, Elevation and Time of Arrival Estimation of 3-D Point Sources

Direction-of-Arrival Estimation Using Distributed Body Area Networks: Error & Refraction Analysis

Transcription:

A Fast Algorithm for 2-D Direction-of-Arrival Estimation Yuntao Wu 1,Guisheng Liao 1 and H. C. So 2 1 Laboratory for Radar Signal Processing, Xidian University, Xian, China 2 Department of Computer Engineering & Information Technology, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Tel : (852) 2788 7780 Fax : (852) 2788 8292 email: ithcso@cityu.edu.hk April 23, 2003 Keywords : 2-D DOA estimation, propagator method, fast algorithm Abstract : A computationally ecient method for two-dimensional direction-of-arrival estimation of multiple narrowband sources impinging on the far eld of a planar array is presented. The key idea is to apply the propagator method which only requires linear operations but does not involve any eigendecomposition or singular value decomposition as in common subspace techniques such as MUSIC and ESPRIT. Comparing with a fast ESPRIT-based algorithm, it has a lower computational complexity particularly when the ratio of array size to the number of sources is large, at the expense of negligible performance loss. Simulation results are included to demonstrate the performance of the proposed technique. 1 Introduction The problem of estimating the two-dimensional (2-D) directions-of-arrival (DOAs), namely, the azimuth and elevation angles, of multiple sources has received considerable attention in the eld of array processing [1]-[7]. Although the maximum likelihood estimator [1] provides optimum parameter estimation, its computational complexity is extremely demanding. Simpler but suboptimal solutions can be achieved by the subspace based approach, which relies on the decomposition of the observation space into signal subspace and noise subspace. However, conventional subspace techniques for 2-D DOA estimation such as MUSIC [2] and ESPRIT [3]-[7] necessitate eigendecomposition of the sample covariance matrix (SCM) or the singular value decomposition (SVD) of the data matrix (DM) to estimate the signal and noise subspaces, and huge computation will be involved particularly when the dimensions of the underlying matrices are large, for example, in the case of large towed arrays in sonar. Furthermore, many of the above methods [1]-[6] require reasonably accurate initial DOA estimates, 2-D search and/or complex pair matching of the azimuth and elevation angles, although the ESPRIT-based technique proposed in [7] is direct, that is, free of these operations. 1

The aim of this paper is to develop a computationally simple 2-D DOA estimation algorithm by utilizing the propagator method (PM) [8], which is also a subspace scheme but does not involve eigendecomposition or SVD. In fact, [9] has proposed a PM-based DOA estimation method but unfortunately, a 2-D peak search is needed. Our derived algorithm is direct and has a lower computational complexity comparing with [7], particularly when the ratio of the number of sensors to the number of sources is large, at the expense of negligible performance loss. The rest of the paper is organized as follows. The data model is presented in Section 2. Our 2-D DOA estimation algorithm is developed in Section 3. In Section 4, simulation results are included to demonstrate the eectiveness of the proposed method, while in Section 5, conclusions are drawn. 2 Data Model Consider two parallel uniform linear arrays (ULAs) with interelement spacing equals d, such that one ULA consists of (N + 1) sensors while another has N sensors, which is depicted in Figure 1. From this conguration, we form three sub-ulas of N sensors, namely, X, Y and Z, which have coordinates (d i 0), (d i + d 0) and (d i d), for 0 i N ; 1, respectively. As in common ESPRIT-based approach [6], it is necessary to have 3 subarrays for 2-D DOA estimation, while one-dimensional DOA estimation problem only requires two subarrays. It is noteworthy that although a conguration of two ULAs is considered, our proposed method can be extended to other planar array geometries [6]-[7]. Suppose that there are p narrow-band sources, s(t), with same wavelength impinging on the arrays, such that the kth source has an elevation angle k and azimuth angle k. The observed signals at the X, Y and Z subarrays are given by x(t) =As(t)+n x (t) y(t) =A y s(t)+n y (t) z(t) =A z s(t)+n z (t) t =1 2 M (1) respectively, where each sensor receives M snapshots. The matrices and vectors in (1) have the following forms: x(t) =[x 1 (t) x 2 (t) x N (t)] T y(t) =[y 1 (t) y 2 (t) y N (t)] T z(t) =[z 1 (t) z 2 (t) z N (t)] T s(t) =[s 1 (t) s 2 (t) s p (t)] T n k =[n k 1 (t) n k 2 (t) n k N (t)] T k = x y z A =[a 1 ( 1 1 ) a 2 ( 2 2 ) a p ( p p )] a i ( i i )=[1 e j2 d cos(i)sin(i) e j2(n;1) d cos(i) sin(i) ] T i =1 2 p y = diag(e j2 d cos(1) sin(1) e j2 d cos(2) sin(2) e j2 d cos(p) sin(p) ) z = diag(e j2 d sin(1) sin(1) e j2 d sin(2) sin(2) e j2 d sin(p) sin(p) ) (2) where T denotes the transpose operation. It is assumed that the source number p, with p<n,isknown a priori and all sources are not fully correlated while the additive noises n x (t), n y (t) and n z (t) are stationary zero-mean random processes which are uncorrelated with s(t). We further assume that the columns of A are linearly independent and the 2-D angle pairs ( i i ) are distinct points in the [0 =2] [0 2] plane. Given x(t), y(t) and z(t), the task is to estimate ( i i ), i =1 2 p. In our proposed method, we rstnd the matrices y and z, and the 2-D angles can then be obtained easily from their diagonal elements. 2

3 Proposed Method We rst give the denition of the propagator [8]. Let B =[A T (A y ) T (A z ) T ] T. The matrix A is partitioned into A =[A T 1 A T 2 ] T, where A 1 and A 2 contain the 1th to pth rows and the (p +1)thto Nth rows of the matrix A, respectively. Similarly, we partition B as B =[A T 1 B T 2 ] T where B 2 comprises the last (p + 1)th to 3Nth rows of B. Under the hypothesis that A 1 is nonsingular, the propagator P is dened as a unique linear operator of the form where H denotes the Hermitian transpose. P H A 1 = B 2 (3) Grouping the sensor output as q(t) = [x T (t) y T (t) z T (t)] T, the propagator can be estimated from the DM, namely Q = [q(1) q(2) q(m)] or the SCM, viz R = P 1 M M t=1 q(t)qh (t), as follows. Partitioning Q and R into Q1 Q = and R =[R 1 R 2 ] (4) Q 2 where Q 1 and Q 2 contain the rst p and last (3N ; p) rows of Q while R 1 and R 2 contain the rst p and last (3N ; p) columns of R. The least squares solutions for the propagator based on DM and SCM are given by [8] ^P DM =(Q 1 Q H 1 ) ;1 Q 1 Q H 2 and ^P SCM =(R H 1 R 1 ) ;1 R H 1 R 2 (5) From the partitioning of A and B, it is easily seen that B T 2 =[A T 2 (A 1 y ) T (A 2 y ) T (A 1 z ) T (A 2 z ) T ] T (6) On the other hand, we can partition ^P H, which denotes the Hermitian transpose of either ^P DM or ^P SCM,as ^P H =[^P T 1 ^P T 2 ^P T 3 ^P T 4 ^P T 5 ] T (7) where the dimensions of A 2, A 1 y, A 2 y, A 1 z and A 2 z are identical to those of ^P 1, ^P 2, ^P 3, ^P 4 and ^P 5, respectively. According to (3) and comparing (6) and (7), we develop the following equations: From (8) and assuming that N>2p, we get ^P 1 A 1 = A 2 (8) ^P 3 A 1 = A 2 y (9) ^P 5 A 1 = A 2 z (10) A 1 = ^P # 1 A 2 (11) where # denotes the pseudoinverse. Substituting (11) into (9) and (10) yields ^P 3 ^P # 1 A 2 = A 2 y ^P 5 ^P # 1 A 2 = A 2 z (12) 3

This implies that the estimates of the diagonal elements of matrices y and z can be obtained by thep eigenvalues of ^P 3 ^P # 1 and ^P 5 ^P # 1, respectively, using eigenvalue factorization: ^P 3 ^P # 1 = U ^ 1 y U ;1 1 ^P 5 ^P # 1 = U ^ 2 z U ;1 (13) 2 where U 1 and U 2 are the corresponding eigenvector matrices while ^ y = diag( ^ y 1 ^ y 2 ^ y p ) and ^ z = diag( ^ z 1 ^ z 2 ^ z p ) are the estimates of y and z. As a result, the estimated elevation and azimuth angles are computed from!! ^ ^ i =tan ;1 6 z i ^ y i 1 ^ i =sin ;1 q(6 ( 2 d ^ y i )) 2 +(6 ( ^ z i )) 2 i =1 2 p We also notice that the eigenvectors in U 1 and U 2 can be considered as the estimates of the p column components of the matrix A 2.Bycontrasting these two sets of eigenvectors, it is easy [6] to determine the correct pairs of (^ i ^ i ). It is noteworthy thatfor2p N>p, we can use the equations ^P 2 A 1 = A 1 y and ^P 4 A 1 = A 1 z, instead of (8)-(10). Regarding major computational complexity, the number of multiplications involved in calculating ^P is in the order of 3NMp, that is, O(3NMp). Comparing with the direct ESPRITbased technique [7] which requires O(N 3 +3N 2 M) in the eigendecomposition of the cross covariance matrices, we see under typical circumstances that M >> N, the ratio of the computational requirement of the proposed technique to that of [7] is O(p=N). This implies when the array size is large and/or the number of sources is small, it is advantageous to use the former method for saving computations. (14) 4 Simulation Results Computer simulations have been conducted to evaluate the 2-D DOA estimation performance of the proposed method. Comparison with the direct 2-D ESPRIT algorithm [7] is also made. The sensor displacement d is taken to be half the wavelength of the signal waves. We consider two uncorrelated signal sources with identical powers while the additive noises are white Gaussian processes. The number of snapshots q at each sensor is M =200.Weuse root mean square error (RMSE), which is dened as Ef(^ i ; i ) 2 +(^ i ; i ) 2 g, i =1 2, as the performance measure. All results provided are based on 500 independent runs. In the rst test, each subarray consists of N = 16 sensors which correspond to a total number of 33 sensors. Figure 2 plots the RMSEs for the rst signal source of the proposed and direct 2-D ESPRIT methods as a function of signal-to-noise ratio (SNR). The actual 2-D DOAs of the rst and second sources are given by(30 o 60 o ) and (60 o 30 o ), respectively. We see that the proposed method is comparable to [7] and the performance degradation of the former is only around 0.5 db, because the eective aperture size in the latter is larger. Although not shown, the RMSEs for the second source are very similar to those in Figure 2. The above test is repeated for dierent N at SNR = 20 db and the corresponding RMSEs are plotted in Figure 3. Again, we have not included the results for the second source because of similarity to Figure 3. It can be observed that the estimation performance of the proposed algorithm is close to that of the 2-D ESPRIT method when N is suciently large. 4

5 Conclusions A fast algorithm for 2-D DOA estimation is proposed based on the propagator method. The main motivation of using the propagator is that it only requires linear operations but does not involve any eigendecomposition or SVD as in common subspace methods. It is shown that the proposed method is more computationally ecient than a direct ESPRIT algorithm when the ratio of array size to source number is large, at the expense of negligible loss in estimation performance. Acknowledgement The work described in this paper was supported by a grant from City University of Hong Kong (Project No. 7001203). References [1] Y.Hua, T.K.Sarkar and D.D.Weiner, "An L-shaped array for estimating 2-D directions of wave arrival," IEEETrans.AntennasandPropagation, vol.39, no.2, pp.143-146, 1991 [2] Q.Cheng and Y.Hua, "Further study of the pencil-music algorithm," IEEETrans.AerospaceElect. Syst., vol.32, no.1, pp.284-299, 1996 [3] A.J.van der Veen, P.B.Ober and E.F.Deprettere, "Azimuth and elevation computation in high resolution DOA estimation," IEEETrans.SignalProcessing, vol.40, no.7, pp.1828-1832, 1992 [4] A.L.Swindlehurst and T.Kailath, "Azimuth/elevation direction nding using regular array geometries," IEEETrans.AerospaceElect.Syst., vol.29, no.1, pp.145-156, 1993 [5] M.D.Zoltowski, M.Haardt and C.P.Mathews, "Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT," IEEETrans.SignalProcessing, vol.44, no.2, pp.316-328, 1996 [6] T.H.Liu and J.M.Mendel, "Azimuth and elevation direction nding using arbitrary array geometries," IEEETrans.SignalProcessing, vol.46, no.7,pp.2061-2065, 1998 [7] V.S.Kedia and B.Chandna, "A new algorithm for 2-D DOA estimation," Signal Processing, vol.60, pp.325-332, 1997 [8] S.Marcos, A.Marsal and M.Benidir, "The propagator method for source bearing estimation," Signal Processing, vol.42, pp.121-138, 1995 [9] P.Li, B.Yu and J.Sun, "A new method for two-dimensional array signal processing in unknown noise environments," SignalProcessing, vol.47, pp.319-327, 1995 Z subarray (0,d) (d,d) (Nd-d,d) (0,0) (d,0) (Nd-d,0) (Nd,0) X subarray Y subarray Figure 1: Illustration of the array geometry 5

10 Proposed 2 D ESPRIT RMSE for Source 1 (db) 15 20 25 0 5 10 15 20 25 SNR(dB) Figure 2: RMSE for the rst source versus SNR 0 5 Proposed 2 D ESPRIT RMSE for Source 1 (db) 10 15 20 25 6 8 10 12 14 16 18 20 N Figure 3: RMSE for the rst source versus N at SNR = 20 db 6