Parity Nonconservation in Cesium: Is the Standard Model in Trouble?

Similar documents
Atomic-Physics Tests of QED & the Standard Model

Precise Relativistic many-body calculations for alkali-metal atoms

Parity Nonconservation in Atoms: The Weak Charge and Anapole Moment of 133 Cs

ATOMIC PARITY VIOLATION

CURRENT STATUS AND FUTURE PROSPECTS

current status And future prospects

HIGH PRECISION CALCULATION FOR THE DEVELOPMENT OF ATOMIC CLOCK AND THE SEARCH BEYOND THE STANDARD MODEL. Z. Zuhrianda

ATOMIC CALCULATIONS FOR TESTS OF FUNDAMENTAL PHYSICS

Atomic Parity Violation in Ytterbium

Status of Atomic PNC: Experiment/Theory

Atomic Parity Violation

Tests of fundamental symmetries with atoms and molecules

ON THE THEORY OF NUCLEAR ANAPOLE MOMENTS. Budker Institute of Nuclear Physics, Novosibirsk, Russia

Prospects for Atomic Parity Violation Experiments

High-precision calculation of the parity-nonconserving amplitude in francium

Triple excitations in the coupled-cluster method. Application to atomic properties.

I.B. Khriplovich Budker Institute of Nuclear Physics, Novosibirsk, Russia

INTERACTION PLUS ALL-ORDER METHOD FOR ATOMIC CALCULATIONS

Atomic Parity Non-Conservation in Francium: The FrPNC Experiment

Parity non-conservation in thallium

Proposed experiment for the anapole measurement in francium. Luis A. Orozco Joint Quantum Institute University of Maryland

arxiv: v2 [physics.atom-ph] 26 Sep 2016

Nuclear structure and the anapole moment in francium; experiments and proposals. Luis A. Orozco UMD

Nuclear Anapole Moments and the Parity-nonconserving Nuclear Interaction

Hadronic Parity Violation

Atomic Clocks and the Search for Variation of Fundamental Constants

Many-body calculations of the static atom-wall interaction potential for alkali-metal atoms

Effects of Neutron Spatial Distributions on Atomic Parity Nonconservation in Cesium.

W + W - The Z pole. e + e hadrons SLC. Cross-section (pb) Centre-of-mass energy (GeV) P529 Spring,

Electroweak Physics. Precision Experiments: Historical Perspective. LEP/SLC Physics. Probing the Standard Model. Beyond the Standard Model

arxiv: v2 [physics.atom-ph] 1 Apr 2013

Theoretical study of lifetimes and polarizabilities in Ba +

What we know about Francium. University of Science and Technology of China Hefei, China July 2018 Luis A. Orozco

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

University of Groningen. Radium Ion Spectroscopy Giri, Gouri Shankar

arxiv: v1 [physics.atom-ph] 26 Jan 2012

Physics 129, Fall 2010; Prof. D. Budker

arxiv:hep-ph/ v1 14 Jul 1999

Dimuon asymmetry and electroweak precision with Z

BLACKBODY RADIATION SHIFTS AND MAGIC WAVELENGTHS FOR ATOMIC CLOCK RESEARCH

Symbolic and numeric Scientific computing for atomic physics

The FrPNC Experiment, weak interaction studies in Francium at TRIUMF

An extended liquid drop approach

Towards a Precise Measurement of Atomic Parity Violation in a Single Ra + Ion

Atomic Calculations for Future Technology and Study of Fundamental Problems

List of Publications (Peer-Reviewed Journals)

Parity Violation in Diatomic Molecules

Fundamental Symmetries in Laser Trapped Francium

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

Electric dipole moments of Hg, Xe, Rn, Ra, Pu, and TlF induced. by the nuclear Schiff moment and limits on time-reversal. violating interactions

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

Resolving all-order method convergence problems for atomic physics applications

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

Parity and Time Reversal Violations in Atoms: Present Status and Future Prospects. Bhanu Pratap Das

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Precision sin 2 θ W (Q 2 ) & Electroweak Physics at The EIC (Electron-Ion Collider) Based on talks at: W&M, Rockefeller, BNL and U.

Precision Tests of the Standard Model. Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004

Neutrino cross sections and nuclear structure

Atomic parity nonconservation in Ra+ Wansbeek, L. W.; Sahoo, B. K.; Timmermans, Robertus; Jungmann, Klaus-Peter; Das, B. P.; Mukherjee, D.

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments)

2008 Brooks/Cole 2. Frequency (Hz)

Determination of the static polarizability of the 8s 2 S 1/2 state of atomic cesium

Excitation energies, polarizabilities, multipole transition rates, and lifetimes of ions along the francium isoelectronic sequence

Isotopic variation of parity violation in atomic ytterbium

Tests of the Electroweak Theory

CHEM 1311A. E. Kent Barefield. Course web page.

Reanalysis of the Reactor Neutrino Anomaly

Optical Lattices. Chapter Polarization

Many-body and model-potential calculations of low-energy photoionization parameters for francium

Radiative-capture reactions

Nuclear structure aspects of Schiff Moments. N.Auerbach Tel Aviv University and MSU

Interpretation of the Wigner Energy as due to RPA Correlations

Global properties of atomic nuclei

Reconciliation of experimental and theoretical electric tensor polarizabilities of the cesium ground state

Hadronic Weak Interactions

Towards a universal nuclear structure model. Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 2017

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

Nuclear Structure for the Crust of Neutron Stars

AFDMC Method for Nuclear Physics and Nuclear Astrophysics

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst

Xe nuclear spin maser and search for atomic EDM

Theory of Electric Dipole Moments of Atoms and Molecules Bhanu Pratap Das

Shell-model description for beta decays of pfg-shell nuclei

Nuclear Schiff moment

Three-nucleon forces and shell structure of neutron-rich Ca isotopes

Structure of the deuteron

Charm CP Violation and the electric dipole moment of the neutron

Made the FIRST periodic table

Electroweak Theory: 2

Blackbody radiation shift, multipole polarizabilities, oscillator strengths, lifetimes, hyperfine constants, and excitation energies in Ca +

Status of the Search for an EDM of 225 Ra

Low-Frequency Conductivity in the Average-Atom Approximation

Nuclear electric dipole moment in the Gaussian expansion method

2. Hadronic Form Factors

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

Electric dipole moments: theory and experiment

arxiv:physics/ v1 [physics.atom-ph] 10 Jul 1997

Lecture #3 a) Nuclear structure - nuclear shell model b) Nuclear structure -quasiparticle random phase approximation c) Exactly solvable model d)

Chemistry Points

Transcription:

Parity Nonconservation in Cesium: Is the Standard Model in Trouble? Walter Johnson Department of Physics Notre Dame University http://www.nd.edu/ johnson May 10, 2001 Abstract This is a brief review of the current status of PNC in cesium including a discussion of the reported 2.3 σ disagreement between experiment and the Standard Model N D Atomic Physics TU Dresden Seminar

Overview review e q e q e fl q e Z q H (1) eff = G 2 2 Q W γ 5 ρ(r) where the conserved weak charge is Q W = N + Z ( 1 4sin 2 θ W ) For states v and w that have the same parity w ez v = Q W Structure factor Measure: E PNC = w ez v Calculate: Structure factor Ratio gives Q W N D Atomic Physics TU Dresden Seminar 1

Some Properties of Cesium review Configuration: [Xe] 6s 55 electrons A=133 (100%) N=78 Z=55 I=7/2 g 7/2 valence proton µ =2.5826 µ N Q = 0.0037 b Levels of Interest 7s 1/2 H H 6s 1/2 (5395Å) H H 4 3 4 3 ν 43 (6s) =9, 192, 631, 770 Hz defines the second! N D Atomic Physics TU Dresden Seminar 2

Z-e Coupling from Standard Model review H (1) = G ( ) [ ( ) ψe γ µ γ 5 ψ e c1p ψpi γ µ ψ pi 2 ( )] + c 1n ψni γ µ ψ ni H (2) = G ( ) [ ( ψe γ µ ψ e c2p ψpi γ µ ) γ 5 ψ pi 2 i i + c 2n ( ψni γ µ γ 5 ψ ni )] where the standard-model coupling constants are c 1p = ( 1 2 1 4sin 2 ) θ W 0.038, c 1n = 1 2, 1 c 2p = 2 g ( A 1 4sin 2 ) θ W 0.047, c 2n = 1 2 g ( A 1 4sin 2 ) θ W 0.047. In the above, g A 1.25 is a scale factor for the partially conserved axial current A N. N D Atomic Physics TU Dresden Seminar 3

Nonrelativistic Nucleons details H (1) : ( ψp γ µ ψ p ) φ p φ p δ µ0 ( ψn γ µ ψ n ) φ n φ n δ µ0 where φ p and φ n are nonrelativistic field operators. From this we extract an effective Hamiltonian to be used in the electron sector; namely, H (1) eff = G 2 2 γ 5 [2Zc 1p ρ p (r)+2nc 1n ρ n (r)]. Here, ρ p (r) and ρ n (r) proton and neutron density functions normalized to 1. Assuming ρ p (r) =ρ n (r) = ρ(r), we may rewrite the effective Hamiltonian as H (1) eff = G 2 2 γ 5 Q W ρ(r) where Q W =[2Zc 1p +2Nc 1n ]= N +Z ( 1 4sin 2 θ W ) N D Atomic Physics TU Dresden Seminar 4

Axial Nuclear Current details H (2) : ( ψp γ µ γ 5 ψ p ) φ p σ i φ p δ µi ( ψn γ µ γ 5 ψ n ) φ n σ i φ n δ µi The corresponding effective Hamiltonian in the electron sector is obtained from H (2) eff = G 2 α [c 2p φ p σφ p + c2n φ n σφ n ] Only unpaired valence nucleons (with polarization corrections) contribute, so the size of H (2) is smaller than that from H (1) by a factor of 1/A. For a single valence proton, this reduces to: H (2) eff = G 2 c 2p κ 1/2 I(I +1) α I ρ p(r) where κ = (I +1/2) for I = L ± 1/2. N D Atomic Physics TU Dresden Seminar 5

Anapole Moment PNC in nucleus nuclear anapole: details The anapole is a toroidal electromagnetic current localized to the nucleus. H (a) eff = G 2 K a κ I(I +1) α I ρ p(r) Combining the two spin-dependent interactions: H (a) eff + H(2) eff = G 2 K κ I(I +1) α I ρ p(r) with K = K a κ 1/2 κ c 2p N D Atomic Physics TU Dresden Seminar 6

Another Spin-Dependent Term [ ] The action of H hyperfine H (1) eff nuclear spin-dependent correction details gives yet another H (Q W ) eff = G 2 K QW κ I(I +1) α I ρ p(r) with 1 K QW (133 Cs) 0.0307 1 C. Bouchiat and C. A. Piketty, Z. Phys. C 49, 91 (1991); Phys. Lett. B 269, 195 (1991). N D Atomic Physics TU Dresden Seminar 7

Atomic Structure details For the 6s 7s transition in atomic cesium: 7s ez 6s = n { 7s ez np1/2 np 1/2 H (1) 6s E np E 6s + 7s H(1) np 1/2 np 1/2 ez 6s E np E 7s } 1. 9 n=6 with SD wave functions & energies (90%) 2. n=10 weak RPA level (10%) 3. Breit interaction at weak HF level (0.2%) 4. Nucleon structure correction ρ N (r) (<0.1%) 5. H (2 ) contribution at weak RPA level N D Atomic Physics TU Dresden Seminar 8

Singles-Doubles Equations digression Ψ v =Ψ DHF + δψ { δψ = ρ ma a ma a + 1 2 am abmn ρ mnab a ma na b a a + ρ mv a ma v + ρ mnvb a ma na b a v Ψ DHF m v bmn E C = E DHF C E v = E DHF v + δe C + δe v (we also include limited triples) N D Atomic Physics TU Dresden Seminar 9

Core Excitation Equations digression (ɛ a ɛ m )ρ ma = bn ṽ mban ρ nb + bnr v mbnr ρ nrab bcn v bcan ρ mnbc (ɛ a + ɛ b ɛ m ɛ n )ρ mnab = v mnab + cd v cdab ρ mncd + rs v mnrs ρ rsab [ + v mnrb ρ ra r c + [ a b m n ] δe C = 1 2 abmn v abmn ρ mnab v cnab ρ mc + rc ṽ cnrb ρ mrac ] 15,000,000 ρ mnab coefficients for Cs (l =6). N D Atomic Physics TU Dresden Seminar 10

digression m a = m a m b n + a a r b n + m c b n + exchange terms m a n b m a n b = a + m r n s b m + a c b d n m a n b + c + a m r n b + m a c n r b + exchange terms Brueckner-Goldstone Diagrams for the core SD equations. N D Atomic Physics TU Dresden Seminar 11

Valence Equations digression (ɛ v ɛ m + δe v )ρ mv = bn ṽ mbvn ρ nb + bnr v mbnr ρ nrvb bcn v bcvn ρ mnbc (ɛ v + ɛ b ɛ m ɛ n + δe v )ρ mnvb = v mnvb + cd v cdvb ρ mncd + rs v mnrs ρ rsvb [ + v mnrb ρ rv r c + [ v b m n ] v cnvb ρ mc + rc ṽ cnrb ρ mrvc ] δe v = ma ṽ vavm ρ ma + mab v abvm ρ mvab + mna v vbmn ρ mnvb 1,000,000 ρ mnvb coefficients for each state (Cs) N D Atomic Physics TU Dresden Seminar 12

SD Correlation Energy digression Correlation energy (cm -1 ) 6000 5000 4000 3000 2000 1000 Na K Rb Expt. E (2) E (2) +E (3) δe υ 0 20 40 60 80 100 Nuclear charge Z Cs Fr Ground-state correlation energies for alkali-metal atoms N D Atomic Physics TU Dresden Seminar 13

Calculations of cesium 6s 7s PNC Amplitude PNC Group E PNC Breit Novosibirsk 0.908 ± 0.010 - Notre Dame 0.905 ± 0.010 HF-level units: iea 0 10 11 Q W N N D Atomic Physics TU Dresden Seminar 14

Status of PNC Experiments PNC (a) Optical rotation: n + n φ = E PNC /M 1 6p 1/2 6p 3/2 transition Element Group 10 8 φ Thallium Oxford -15.7(5) Thallium Seattle -14.7(2) Lead Oxford -9.8(1) Lead Seattle -9.9(1) Bismuth Oxford -10.1(20) (b) Stark interference: Add E(t) =A cos ωt and detect the hetrodyne signal R = E PNC /β 6s 1/2 7s 1/2 (mv/cm) Element Group R 4 3 R 3 4 Cesium Paris (1984) -1.5(2) -1.5(2) Cesium Boulder (1988) -1.64(5) -1.51(5) Cesium Boulder (1997) -1.635(8) -1.558(8) N D Atomic Physics TU Dresden Seminar 15

Bennett & Wieman 2 PNC Measured β =27.024 (43) expt (67) theor a 3 0 Updated theory error estimates! Diff 10 3 Expt Tests Novo ND σ expt Stark(6s-7s) 7p ez ns -3.4-0.7 1.0 τ 6p1/2 6s ez 6p -4.4 4.3 1.0 τ 6p3/2 6s ez 6p -2.6 7.9 2.3 α vs ez np - -1.4 3.2 β vs ez np - -0.8 3.0 A 6s Ψ 6s (0) 1.8-3.1 - A 7s Ψ 7s (0) -6.0-3.4 0.2 A 6p1/2 1/r 3 6p -6.1 2.6 0.2 A 7p1/2 1/r 3 7p -7.1-1.5 0.5 2 S. C. Bennett & C. E. Wieman, Phys. Rev. Letts. 82, 2484 (1999). N D Atomic Physics TU Dresden Seminar 16

Cesium: Theory vs. Experiment PNC β =27.024 (43) exp (67) th a 3 0 (1999) (eliminating axial vector + anapole contribution) I(E PNC )= 0.8379 (37) exp (21) th 10 11 e a 0 (dividing by theoretical matrix element) Q W = 72.06 (29) exp (34) th Marciano & Rosner (with radiative corrections) Q SM W = 73.09 (03) rad. corr. Expt. - Theory = 2.3 σ This difference has been cited as evidence for new physics beyond the Standard Model! N D Atomic Physics TU Dresden Seminar 17

Result for Anapole Moment digression Difference R 3 4 R 4 3 leads to: K = 0.441 (63) (κ 1/2)/κ K (2) = 0.055 K (Q W ) = 0.031 K (a) = 0.355 (63) Theoretical estimates 3 K (a) =0.25 0.75 3 W. C. Haxton and C. E. Wieman, arxiv:nucl-th/0104026 N D Atomic Physics TU Dresden Seminar 18

10. Electroweak model and constraints on new physics 19 Table 10.4: (continued) Quantity Value Standard Model Pull m t [GeV] 174.3 ± 5.1 172.9 ± 4.6 0.3 M W [GeV] 80.448 ± 0.062 80.378 ± 0.020 1.1 80.350 ± 0.056 0.5 M Z [GeV] 91.1872 ± 0.0021 91.1870 ± 0.0021 0.1 Γ Z [GeV] 2.4944 ± 0.0024 2.4956 ± 0.0016 0.5 Γ(had) [GeV] 1.7439 ± 0.0020 1.7422 ± 0.0015 Γ(inv) [MeV] 498.8 ± 1.5 501.65 ± 0.15 Γ(l + l )[MeV] 83.96 ± 0.09 84.00 ± 0.03 σ had [nb] 41.544 ± 0.037 41.480 ± 0.014 1.7 R e 20.803 ± 0.049 20.740 ± 0.018 1.3 R µ 20.786 ± 0.033 20.741 ± 0.018 1.4 R τ 20.764 ± 0.045 20.786 ± 0.018 0.5 R b 0.21642 ± 0.00073 0.2158 ± 0.0002 0.9 R c 0.1674 ± 0.0038 0.1723 ± 0.0001 1.3 A (0,e) FB 0.0145 ± 0.0024 0.0163 ± 0.0003 0.8 A (0,µ) FB 0.0167 ± 0.0013 0.3 A (0,τ) FB 0.0188 ± 0.0017 1.5 A (0,b) FB 0.0988 ± 0.0020 0.1034 ± 0.0009 2.3 A (0,c) FB 0.0692 ± 0.0037 0.0739 ± 0.0007 1.3 A (0,s) FB 0.0976 ± 0.0114 0.1035 ± 0.0009 0.5 ) 0.2321 ± 0.0010 0.2315 ± 0.0002 0.6 s 2 l (A(0,q) FB June 14, 2000 10:38

20 10. Electroweak model and constraints on new physics Table 10.4: (continued) Quantity Value Standard Model Pull A e 0.15108 ± 0.00218 0.1475 ± 0.0013 1.7 0.1558 ± 0.0064 1.3 0.1483 ± 0.0051 0.2 A µ 0.137 ± 0.016 0.7 A τ 0.142 ± 0.016 0.3 0.1425 ± 0.0044 1.1 A b 0.911 ± 0.025 0.9348 ± 0.0001 1.0 A c 0.630 ± 0.026 0.6679 ± 0.0006 1.5 A s 0.85 ± 0.09 0.9357 ± 0.0001 1.0 R 0.2277 ± 0.0021 ± 0.0007 0.2299 ± 0.0002 1.0 κ ν 0.5820 ± 0.0027 ± 0.0031 0.5831 ± 0.0004 0.3 R ν 0.3096 ± 0.0033 ± 0.0028 0.3091 ± 0.0002 0.1 0.3021 ± 0.0031 ± 0.0026 1.7 gv νe 0.035 ± 0.017 0.0397 ± 0.0003 0.041 ± 0.015 0.1 ga νe 0.503 ± 0.017 0.5064 ± 0.0001 0.507 ± 0.014 0.0 Q W (Cs) 72.06 ± 0.28 ± 0.34 73.09 ± 0.03 2.3 Q W (Tl) 114.8 ± 1.2 ± 3.4 116.7 ± 0.1 0.5 3.26 +0.75 0.68 10 3 3.15 +0.21 0.20 10 3 0.1 Γ(b sγ) Γ(b ceν) June 14, 2000 10:38

Possible Explanation of 2.3 σ PNC ' The previous result suggested the possible existence of a Z particle to several authors: 1. R. Casalbuoni, S. De Curtis, D. Dominici, and R. Gatto, Phys. Lett. B460, 135 (1999). 2. J. L. Rosner, Phys. Rev. D61, 016006 (2000). $ 3. J. Erler and P. Langacker, Phys. Rev. Lett. 84, 212 (2000). & % N D Atomic Physics TU Dresden Seminar 19

Breit Revisited PNC Weak HF level: ( h0 + V HF ɛ HF v ) ψhf v = h PNC ψ HF v E PNC = ψ7s HF HF HF ez ψ 6s + ψ 7s ez ψ6s HF Type 7s ez 6s 7s ez 6s E PNC Coul 0.27492-1.01439-0.73947 +Breit 0.27411-1.01134-0.73722 % -0.29% -0.30% -0.30% This correction was included in ND calculation E PNC = 0.907 + 0.002 = 0.905 but not in Novosibirsk calculation. N D Atomic Physics TU Dresden Seminar 20

Derevianko s observation Brueckner level: ( h 0 + V HF + ˆΣ ɛ Br v ) ψbr v = h PNC ψ Br v PNC δvpnc HF ψv Br E PNC = ψ7s Br ez + δ RPA (ez) + ψ Br 6s ψ Br 7s ez + δ RPA (ez) ψ Br 6s Type 7s ez 6s 7s ez 6s E PNC Coul 0.43942-1.33397-0.89456 + Breit 0.43680-1.32609-0.88929 % -0.60% -0.59% -0.59% Using this result for the Breit correction, the final theoretical PNC amplitudes become Group Coul Breit E PNC Novosibirsk 0.908-0.005 0.903 Notre Dame 0.907-0.005 0.902 N D Atomic Physics TU Dresden Seminar 21

Summary PNC With Breit corrections: E theor PNC = 0.902 (4) or (10)? and the deviation of the Q W from the standard model is reduced to 1.5 σ if 0.4% theoretical accuracy is still assumed. However, if a more realistic 1% theoretical uncertainty is assumed, the corresponding value of the weak-charge becomes Q W ( 133 Cs) = 72.42 (0.28) expt (0.74) theor and shows NO significant deviation from the standard model. 4 HELP! accurate calculations needed HELP! 4 A. Derevianko, Phys. Rev. Lett. 85, 1618 (2000); V. A. Dzuba et al., Phys. Rev. A 63, 044103 (2001); M. G. Kozlov et al., arxiv:physics (0101053). N D Atomic Physics TU Dresden Seminar 22