Développement de micro-préconcentrateurs pour l'analyse de traces de gaz et explosifs.

Similar documents
MODELING, DESIGN AND EXPERIMENTAL CARACHTERIZATION OF MICRO-ELECTRO ELECTRO-MECHANICAL- SYSTEMS FOR GAS- CHROMATOGRAPHIC APPLICATIONS


Lecture 18: Microfluidic MEMS, Applications

Electronic Supplementary Material Experimentally Validated Mathematical Model of Analyte Uptake by Permeation Passive Samplers

Atmospheric Analysis Gases. Sampling and analysis of gaseous compounds

Outline. Chemical Microsystems Applications. Microfluidic Component Examples Chemical Microsystems for Analysis Chemical Microsystems for Synthesis

Micro-sensors based on thermal transduction for steady and unsteady flow measurements

THEORETICAL DETERMINATION OF THE SAMPLING RATES OF DIFFUSION SAMPLERS FOR VOCS AND ALDEHYDES

An Investigation on NEG Thick Film for Vacuum packaging of MEMS

Sensors and Actuators B: Chemical

THE NEW QUANTITATIVE ANALYTICAL METHOD FOR ULTRATRACE SULFUR COMPOUNDS IN NATURAL GAS

RESEARCH ON BENZENE VAPOR DETECTION USING POROUS SILICON

Innovative Thermal Desorption From Agilent Technologies. Vivek Dhyani Application Chemist

Regents of the University of California

A Micro-GC Based Chemical Analysis System

systems Dibyadeep Paul

Time-of-Flight Flow Microsensor using Free-Standing Microfilaments

EE C245 ME C218 Introduction to MEMS Design Fall 2007

Microfabricated Passive Vapor Preconcentrator/Injector Designed for Microscale Gas Chromatography

Integrated measuring system for MEMS

DETERMINATION OF UPTAKE RATES FOR VOCs IN AMBIENT AIR BY USING AXIAL TYPE THERMAL DESORPTION PASSIVE TUBES

Determination of Total Volatile Organic Compounds in Indoor Air Using Agilent 7667A mini TD and 7820A GC

Kurita Water Industries Ltd. Takeo Fukui, Koji Nakata

Magnitudes of Back Diffusion During Long-Term Diffusive Sampling of Volatile Organic Compounds Using Carbotrap and Chromosorb 106

Fabrication Technology, Part I

AUTOMATED ONLINE IDENTIFICATION AND MONITORING OF IMPURITIES IN GASES

LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT. Thomas Wenzel, Bates College. In-class Problem Set Extraction.

Applying the Technology of the TurboMatrix 650 ATD to the Analysis of Liquid Accelerants in Arson Investigation

The Use of COMSOL Multiphysics for Studying the Fracture Pressure of Rectangular Micro-Channels Embedded in Thin Silicon Substrates

Analysis of TO-15/TO-17 air toxics in urban air using TD GC/TOF MS and automated compound identification software

TRENDS AND NEEDS FOR ON LINE MICRO ANALYSIS FOR R&D INNOVAL and AXEL'ONE Projects from AXELERA

Chemistry Instrumental Analysis Lecture 31. Chem 4631

Resistance Thermometry based Picowatt-Resolution Heat-Flow Calorimeter

Gruznov, Vladimir. Calhoun: The NPS Institutional Archive Monterey, California. Naval Postgraduate School

EE 527 MICROFABRICATION. Lecture 25 Tai-Chang Chen University of Washington

Development of Portable GC/MS System with Benchtop Performance for Critical DoD Applications. Mitch Wells, Ph.D. Philip Tackett, Ph.D.

Microfabricated out-of-plane arrays of integrated capillary nano-electrospray emitters

Too many answers to list.

EE 527 MICROFABRICATION. Lecture 24 Tai-Chang Chen University of Washington

EMICODE Test Report. 1 Sample Information. 2 Evaluation of the Results. Report No. G12871B_02

Hiden Isochema. Gravimetric Gas & Vapor Sorption Analyzers. Hiden Isochema IGA Series. Advancing Sorption Analysis

Gas Chromatography. Presented By Mr. Venkateswarlu Mpharm KTPC

Validation of a new flow-reactor for the study of secondary organic aerosol (SOA) formation

US EPA Method 8260 with the Tekmar Atomx XYZ P&T System and Agilent 7890B GC/5977A MS

EMICODE Test Report. 1 Sample Information. 2 Evaluation of the Results. Report No A_04

Real-Time Detection: From Gisclard et al.: A Simple Device for Air Analysis. AIHA Quarterly, 14(1):23-25 (1953)

Chemistry Instrumental Analysis Lecture 27. Chem 4631

Chapter 3 Engineering Science for Microsystems Design and Fabrication

UNIT 3. By: Ajay Kumar Gautam Asst. Prof. Dev Bhoomi Institute of Technology & Engineering, Dehradun

Application Note 032

Volatile Organic Compounds in Every Day Food

Gas Chromatography (GC)

Introduction to Photolithography

System and JUREK ANNE. Introduction: in an in purge and. trap sampling. Discussion: As part of. consistent and reliable data. (MoRT) to.

Thermal Desorption Technical Support. Note 56: TD-GC/MS analysis of vapour-phase organic compounds for materials emissions testing.

498 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 14, NO. 3, JUNE 2005

CHAPTER 5 CONVECTIVE HEAT TRANSFER COEFFICIENT

Zebra GC: A Fully Integrated Micro Gas Chromatography System

Etching Issues - Anisotropy. Dry Etching. Dry Etching Overview. Etching Issues - Selectivity

Rapid Catalyst Screening Reactors

Heat Removal of a Protection Chip after Surge Pulse Tom Graf Hochschule Luzern T&A Technikumstrasse 21 CH-6048 Horw Switzerland

UltiMetal Plus Advanced Chemistry for Stainless Steel Surface Deactivation

Carbon Nanotube Thin-Films & Nanoparticle Assembly

Maximizing Sample Throughput In Purge And Trap Analysis

Supporting Information for: Electrical probing and tuning of molecular. physisorption on graphene

Analytical Trap Comparison for USEPA Method 8260C

ANALYTICAL METHOD DETERMINATION OF VOLATILE ALDEHYDES IN AMBIENT AIR Page 1 of 11 Air sampling and analysis

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes

Analysis of Geosmin and 2-Methylisoborneol Utilizing the Stratum PTC and Aquatek 70

2401 Gas (liquid) Chromatography

SUPPLEMENTARY FIGURES

SUBSTITUTING particle-sensitive check-valves in micropumps

Influence Of The Substrates On Water-based Paints Emissions Fabio Abbà,1*, Mikaela Decio 2, Tiziano Cerulli 2 and Roberto Leoni 2

US EPA Method with the Tekmar Lumin P&T Concentrator, AQUATek LVA and Agilent 7890B GC/5977A MS

Hiden CATLAB Systems Microreactor for Catalysis Studies & Thermal Analysis

VOC EMISSION TEST REPORT BREEAM NOR

IMPROVEMENT OF IAQ BY COATING OF ADSORPTIVE POLYMER: THE DEVELOPMENT OF MATERIAL, EVALUATION AND ITS APPLICATION

Raw Material Finished product By product Exposure standards Length of shift Physical environment

Thermal Soil Desorber Instructions September 2006

Chapter 27: Gas Chromatography. Principles Instrumentation Detectors Columns and Stationary Phases Applications

Application Note 116 Monitoring VOCs in Ambient Air Using Sorbent Tubes with Analysis by TD-GC/MS in Accordance with Chinese EPA Method HJ

Cryogenic Instrumentation I Thermometry OUTLINE Thermometry Pt (pure metal) Temperature Ranges of Thermometer Application Typical Resistive Thermal

Validation of USEPA Method Using a Stratum PTC and the New AQUATek 100 Autosampler

M1 Test Report. 1 Sample Information. 2 Evaluation of the Results. Report No A_04

MICROMECHANICAL TEMPERATURE SENSOR

VOC TEST REPORT CDPH

Instrumental Chemical Analysis

Real-Time Chemical Sensing for Advanced Process Control in ALD

Instrumentation and Operation

2D Simulations and Electro-Thermal Analysis of Micro-Heater Designs Using COMSOL TM for Gas Sensor Applications

Micro Chemical Vapor Deposition System: Design and Verification

Portable type TXRF analyzer: Ourstex 200TX

Test Report. Tremco-Illbruck GmbH & Co KG. Product Emissions Test (AgBB/DIBt Test Protocol) Butyl und Bitumenprimer. June 2011

The Analysis of Trace Contaminants in High Purity Ethylene and Propylene Using GC/MS. Application. Agilent Technologies/Wasson ECE Monomer Analyzer

AppNote 2/1996. Andreas Hoffmann Gerstel GmbH & Co.KG, Aktienstrasse , D Mülheim an der Ruhr, Germany

Gas chromatography. Advantages of GC. Disadvantages of GC

Free-Space MEMS Tunable Optical Filter in (110) Silicon

SUPERCRITICAL CARBON DIOXIDE DESORPTION OF XYLENE FROM ZEOLITE

Application Note. Abstract. Introduction. Experimental-Instrument Conditions. By: Anne Jurek

Emission measurements according to, M1 (3 appendices)

Transcription:

Développement de micro-préconcentrateurs pour l'analyse de traces de gaz et explosifs. JP Viricelle a, P. Breuil a, C. Pijolat a, F James a, M. Camara b, D. Briand b a Ecole Nationale des Mines, SPIN-EMSE, CNRS:UMR5307, LGF, F-42023 Saint-Etienne, France b Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Sensors, Actuators and Microsystems Laboratory (SAMLAB), Neuchâtel, Switzerland 1

Outline Micro-preconcentrators Context / Principle Design and fabrication Adsorbent characterization / Parameters Applications VOC preconcentration test, GC analysis Explosive detection Conclusions 2

Introduction: context Challenge : Gas trace detection with sensor or analyzers with limited sensitivity Miniaturized system for in situ detection Conventional trap (preconcentration tube) Reduce dead volume and thermal mass MEMS technology Microfabricated preconcentrator Miniaturized analyzer : Micro-GC module Miniaturized system : Micro-GC /Micropreconcentrator coupling 3

Introduction: preconcentration principle Process : Accumulate a target gas, then desorbed it by a temperature pulse Gas pre-conditioning is of importance for the detection of chemical substances in trace level. Desorption Adsorption 1000 with preconcentration without preconcentration adsorbant Micro-préconcentrateur Sensor analyser 10 Heating 4

Introduction: Preconcentration factor Preconcentration factor : ratio of outlet to inlet concentration Si t 1 < temps de perçage, conservation de la matière : Preconcentration factor: PF = t 1f 1 t 2 f 2 = C 2 C 1 C 1. t 1. f 1 = C 2. t 2. f 2 C: concentration t: time f: flow Desorption Augmentation du facteur step de préconcentration PF implique : - un débit d adsorption élevé ; - un temps Adsorption d intégration le plus long possible ; - un débit de step désorption faible ; - enfin une désorption le plus rapide possible. Time (min) 5

Design Preconcentrator design Characteristics Values Depth 500µm Chamber volume 14 μl Inlet/outlet channels preconcentrator/ 1euro External diameter capillary Internal diameter capillary Resistance value 500 µm 385 µm 10 Ω Design and schematic device composition: a) platinum heater, b) etched silicon wafer c) glass cover d) capillaries 6

Preconcentrator fabrication Microfabrication at EPFL, Neuchâtel Deep Reactive Ion Etching (DRIE) Structured Wafer DRIE Resin bonding (500 resine removal µm (Si/Pyrex : deep) design glass) Silicon Photoresist Pyrex glass Structured silicon wafer Silicon material -good thermal conductiviy, -suitable material for DRIE) MEMS preconcentrator 7

Temperature ( C) Temperature ( C) Heater deposition Heater deposition by screen printing Pt Si SiO 2 Short circuit due to the silicon conductivity Pt Si SiO 2 Si 3 N 4 Better insulation with a layer of silicon nitride 350 300 250 Température calculée à partir de la résistance mesurée Calculed temperature with R value Temperature set Consigne de Température ( C) 350 300 250 Calculed temperature with R value Température calculée à partir de la résistance mesurée Temperature set Consigne de température ( C) 200 200 150 100 50 0 0 10 20 30 Time (min) 150 100 50 0 0 10 20 30 Time (min) 8

Micro-Preconcentrators development Etched Silicon Microcomponent Platinum heater deposition by screen-printing. 1,5 cm 300 C 380 C T 405 C Thèses M. CAMARA (2010) F James (2015) 3 cm Heating element and temperature distribution Adsorbent chamber Metallic capillaries sealed with ceramic cement, with 1/16 connectors. Capillary : Ø interne 220 µm for 325µm deep IMT micro component. Micro-préconcentrateur device 9

Sorbent deposition Carbon Nanopowder deposition by microfluidic method Mass deposition : 2 mg carbon nanopowder Characterizations Carbon Tenax TA Particule diameter 100 nm 200 µm Surface Area 95 m 2 /g 20 m 2 /g 10

Intensity (a.u) Sorbent material study Temperature Programmed Desorption Thermal desorption of gas species analyzed by mass spectrometry Carbon nanopowder Vapor exposure : 1 ppm of Toluene during1 hour at 10L/h 2,0E-08 1,5E-08 1,0E-08 5,0E-09 Pv=2,9 kpa b.p = 110 C Toluene Blank Thermal desorption: Desorption temperature at 250-300 C 0,0E+00 0 100 200 300 400 500 Temperature ( C) 11

Preconcentration test. Laboratory test bench Setup Permeation tube Carbon Preconcentrator Photo Ionisation Detector (PID) for Vapour Organic Compounds (VOCs) 12

Concentration (ppm) Concentration (ppm) Preconcentration test. Parameter influence Heating rate and flow rate influence Vapor exposure : 1 ppm of Toluene during 5 min at 10L/h 70 60 50 40 30 20 10 0 Heat Montée rate en : 40 C/s to à reach 300 C 300 C Heat Montée rate en : 15 C/s to reach à 300 C 300 C 5 6 7 8 9 10 11 Time (min) High heating rate for high peak detection 100 90 80 70 60 50 40 30 20 10 0 désorption Flow rate :1L/h à 1L/h désorption Flow rate :3L/h à 3L/h désorption Flow rate :5L/h à 5L/h désorption Flow rate :10L/h à 10L/h 10 10,5 11 11,5 12 12,5 13 Time (min) C out Low flow rate for high peak detection Number of desorbed flow rate particles 13

1 rst application : GC Analysis. Industrial Setup Setup and GC process Heating and Sampling injection Preconcentrator 6 ways valve Preconcentrator as a sample loop 14

1 rst application : GC Analysis Chromatograms ppm trace level analysis Industrial applications: Gas mixture analysis (Toluene,Methylisobutyketone, Chloroforme, Vinyl acetate) PF= A 2 A 1 A : peak area Target Gas Initial Preconcentration Concentrations factors (PF) Toluene 8 ppm 689 Vinyl acetate monomer 9 ppm 658 Chloroform 11 ppm 438 MIBK 7 ppm 576 ppb trace level analysis with interferences (natural gas) Target Gas Initial Preconcentration Concentrations factors (PF) Toluene 37 ppb 200 Vinyl acetate monomer 39 ppb 800 Chloroform 46 ppb 600 MIBK 35 ppb 200 15

Intensité (u.a) Concentration (ppb) 2 nd application : Explosive detection Explosive detection Micropreconcentration of DNT (Dinitrotoluène) Use of porous silicon (composant wall) as adsorbant pore size Ø : 1-2 µm and thickness: 90-110 µm ppb trace level analysis Thermal Programmed Desorption of DNT on porous silicon Preconcentration test of DNT on porous silicon 1,0E-12 Silicium poreux 3500 8,0E-13 3000 2500 Desorption @ 250 C 6,0E-13 2000 4,0E-13 2,0E-13 1500 1000 500 DNT adsorption 300 ppb Silicium poreux Silicium normal 0,0E+00 0 100 200 300 400 Temperature ( C) 0 0 5 10 15 20 25 30 Temps (min) 16

Conclusions Microfabricated MEMS preconcentrator Low volume :14 µl Fast Heating rate :40 C/s Flow rate : 1 to 20 L/h Various adsorbent material : Carbon nanopowder or nanotubes, Tenax, porous silicon, Good adsorption capacity for large range of VOCs, explosives, drugs Wide range of applications Coupling micropreconcentrator/µ-gc or with other analyzer Air quality monitoring (VOCs) Security applications (explosives, drugs) Any need of traces detection 17

Acknowledgments L analyse en ligne au coeur des procédés EC project on Explosive detection FP7-SEC-2011-1 N 285203 TraceTech Security Thank you for attention 18