Operational Amplifier (Op-Amp) Operational Amplifiers. OP-Amp: Components. Internal Design of LM741

Similar documents
Electronic Circuits Summary

PHYS225 Lecture 9. Electronic Circuits

Operational amplifiers (Op amps)

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.

Lecture 7: Transistors and Amplifiers

Operational Amplifiers

ELECTRONIC SYSTEMS. Basic operational amplifier circuits. Electronic Systems - C3 13/05/ DDC Storey 1

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A =

Basic Principles of Sinusoidal Oscillators

EE100Su08 Lecture #9 (July 16 th 2008)

Problem Set 4 Solutions

ECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OP-AMP) Circuits

E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1

Time Varying Circuit Analysis

U1 is zero based because its noninverting terminal is connected to circuit common. Therefore, the circuit reference voltage is 0 V.

Operational amplifiers (Op amps)

6.301 Solid-State Circuits Recitation 14: Op-Amps and Assorted Other Topics Prof. Joel L. Dawson

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

CMOS Comparators. Kyungpook National University. Integrated Systems Lab, Kyungpook National University. Comparators

Design of Analog Integrated Circuits

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

Homework Assignment 08

ESE319 Introduction to Microelectronics. Output Stages

Section 4. Nonlinear Circuits

VI. Transistor amplifiers: Biasing and Small Signal Model

OPAMPs I: The Ideal Case

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown.

Input and Output Impedances with Feedback

EE 230 Lecture 20. Nonlinear Op Amp Applications. The Comparator Nonlinear Analysis Methods

Electronic Circuits. Transistor Bias Circuits. Manar Mohaisen Office: F208 Department of EECE

Chapter 10 Feedback. PART C: Stability and Compensation

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

OPERATIONAL AMPLIFIER APPLICATIONS

FEEDBACK AND STABILITY

Today. 1/25/11 Physics 262 Lecture 2 Filters. Active Components and Filters. Homework. Lab 2 this week

WHITE PAPER: SLOA011 Author: Jim Karki Digital Signal Processing Solutions April 1998

Electronics II. Final Examination

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review.

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

ESE319 Introduction to Microelectronics Common Emitter BJT Amplifier

55:041 Electronic Circuits The University of Iowa Fall Final Exam

Chapter 9 Bipolar Junction Transistor

e453.eps 1 Change (or the absolute value) in the measured physical variable 2 Change in the sensor property is translated into low-power-level

Mod. Sim. Dyn. Sys. Amplifiers page 1

EE105 Fall 2014 Microelectronic Devices and Circuits

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130

Linear Circuit Experiment (MAE171a) Prof: Raymond de Callafon

Mod. Sim. Dyn. Sys. Amplifiers page 1

EE 321 Analog Electronics, Fall 2013 Homework #3 solution

analyse and design a range of sine-wave oscillators understand the design of multivibrators.

ECE3050 Assignment 7

At point G V = = = = = = RB B B. IN RB f

Section 1: Common Emitter CE Amplifier Design

Chapter 5. BJT AC Analysis

Exploring Autonomous Memory Circuit Operation

ECS 40, Fall 2008 Prof. Chang-Hasnain Test #3 Version A

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points):

SWITCHED CAPACITOR AMPLIFIERS

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16

Switch or amplifies f. Capacitor i. Capacitance is measured in micro/pico farads ii. Filters frequencies iii. Stores electrical energy

CS 436 HCI Technology Basic Electricity/Electronics Review

Lecture 4: Feedback and Op-Amps

Whereas the diode was a 1-junction device, the transistor contains two junctions. This leads to two possibilities:

D is the voltage difference = (V + - V - ).

Midterm 1 Announcements

ECE Analog Integrated Circuit Design - II P.E. Allen

Biasing the CE Amplifier

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

The current source. The Active Current Source

or Op Amps for short

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction: Op-amps in Negative Feedback

Electronics II Physics 3620 / 6620

ECE 220 Laboratory 4 Volt Meter, Comparators, and Timer

Lecture 37: Frequency response. Context

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

Electrical System Elements

ELEN 610 Data Converters

Electrical System Elements

EE40 Midterm Review Prof. Nathan Cheung

Homework Assignment 09

Electronics and Communication Exercise 1

Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II )

Interfacing a Sensor-- use of Signal Conditioners

Analog Computing Technique

H(s) = 2(s+10)(s+100) (s+1)(s+1000)

AN019. A Better Approach of Dealing with Ripple Noise of LDO. Introduction. The influence of inductor effect over LDO

ECE1750, Spring Week 11 Power Electronics

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

e453.eps 1 Change (or the absolute value) in the measured physical variable 2 Change in the sensor property is translated into low-power-level

E40M Review - Part 1

Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm-1 Exam (Solution)

ECE2210 Final given: Spring 08

Nyquist-Rate A/D Converters

Transistor amplifiers: Biasing and Small Signal Model

Chapter 2 - DC Biasing - BJTs

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Electronics II. Midterm #1

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Homework Assignment 11

Transcription:

(Op-Amp) s Prof. Dr. M. Zahurul Haq zahurul@me.buet.ac.bd http://teacher.buet.ac.bd/zahurul/ Department of Mechanical Engineering Bangladesh University of Engineering & Technology ME 475: Mechatronics The OP-Amp is a low-cost and versatile I (Integrated ircuit) consisting of many internal transistors, resistors, and capacitors. These are basic building blocks for: Amplifiers Integrators and Differentiators Summers omparators A/D and D/A converters Active filters Sample and Hold circuits...etc. Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 / 3 Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 2 / 3 OP-Amp: omponents Internal Design of LM74 The OP-Amp has Single Output and Two Inputs: Noninverting input []: output is in phase with input. 2 Inverting input [-]: output is 80 o out of phase with input. e560.eps e039.eps Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 3 / 3 Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 4 / 3

OP-Amp: Equivalent ircuit OP-Amp: haracteristics ule. Infinite input impedance, Z in = ½ =µ I = I = 0; ule 2. Infinite gain, =µ E = E ; ule 3. Zero output impedance, Z out = 0 =µ = f (I o ). ½ ½ haracteristics Ideal Value Typical real-world value Open-loop gain 0 5 V V Offset voltage 0 mv Bias currents 0 0 6 0 4 A Input impedance 0 5 0 Ω Output impedance 0 0Ω Ideal op-amps rejects inputs common to both inputs (common mode rejection). Actual ommon Mode ejection atio, M = Eo E cm 0 6 the larger the M, the better the amplifier. e427.eps Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 5 / 3 Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 6 / 3 OP-Amp: Examples OP-Amp: Voltage omparator e76.eps E ref E o 5 V e77.eps 0.0002 V V V 2 5 V V out 2 V 2 V x007.eps In comparator circuit, there is no negative feedback, hence the circuit exhibits infinite gain and the op-amps will saturate, i.e. the output remains at the most positive or most negative output value. Hence, Esat E = i E ref E sat E ref Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 7 / 3 Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 8 / 3

omparator ircuit: Application Window omparator ircuit e040.eps hatter is a practical problem, output voltage oscillates back-and-forth when input voltage is near to the threshold. Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 9 / 3 e04.eps Window omparator is with inbuilt hysteresis; hysteresis means that switch-on voltage is greater than switch-off voltage. Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 0 / 3 OP-Amp: Inverting Amplifier OP-Amp: Noninverting Amplifier F F X I i I F I 00 i X I F x008.eps At X, I i I F = 0 (KL & ule ), & E X = 0 (ule 2); I E i E X i = I F Eo E X F =µ gain G = Eo = F x009.eps At X, I i I F = 0 (KL & ule ), & E X = (ule 2); I E X i = I F Eo E X F =µ G = F Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 / 3 Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 2 / 3

OP-Amp: Follower/Buffer Op-Amp: Voltage Follower Application In a noninverting amplifier with = ½ & F = 0, gain, G is unity and there is no voltage amplification. This circuit is known as a buffer or follower. It has a high input impedance and low output impedance. The high input impedance effectively isolates the source from the rest of the circuit. 5 Sensor V in = 0.45 V ontroller 5 V V in = 0.45 V (a) Signal experiences voltage drop (b) Equivalent circuit 5 5 V V in = 5 V Sensor ontroller x00.eps Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 3 / 3 (c) No signal voltage drop Prof. e78.eps Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 4 / 3 Op-Amp: Summing Amplifier Summing Amplifier: Application e79.eps E V 2 V 4 V V 7 V 2 V? 4 V F 4 V Example: Interface circuit for an air conditioning system when the sum of the voltages of temperature and humidity sensors goes above.0 V, & a threshold circuit in air conditioner require 5.0 V. x0.eps E 2 E 3 00 E o = E F E2 2 E3 3 Temperature e042.eps Humidity V t V h 5 kω (V t V h ) 5 Inverter V out = (V t V h ) 5 If = 2 = 3 is a weighted sum of input voltages. Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 5 / 3 Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 6 / 3

OP-Amp: Differential Amplifier Instrument Amplifier E E 2 I e E 00 e o 2 E 00 I A 2 c 2 a D 3 b I 2 4 E 2 B 2 c 2 x02.eps e = e =µ E = E 2 2 2 4 2 3 4 = (E 2 E ) 2 E o 2 = E 4 2 3 4 E 2 = c(e 2 E ) if 2 = 4 3 = c Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 7 / 3 x03.eps I = Ec E D = E E2 = E A E B a b ; & = c(e A E B ) G = Eo E 2 E = c( a b) Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 8 / 3 OP-Amp: Integrator Output of an Integrator ircuit ( = ) 00 X I00 i I F x04.eps I i = I F = c deo dt & I i I F = 0(KL) Ê = Ei ()d Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 9 / 3 e043.eps Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 20 / 3

OP-Amp: Differentiator Output of a Differentiator kt. ( = ) d 00 X 00 I i I F V in (Volts) c a b 0 2 3 Time (sec) Time (sec) 0 2 3 x05.eps V out * 2 I i = d dt I F = c Eo & I i I F = 0(KL) = d dt e044.eps 3 Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 2 / 3 Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 22 / 3 OP-Amp: Differentiator & Integrator OP-Amp: Proportional ontroller 5 V B Bias Sensor (05 V) Set point 5 V (3 V) U Error Differential amp 20 kω U 2 Proportional gain amp U 3 Inverter To valve (05 V) e80.eps e428.eps Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 23 / 3 Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 24 / 3

OP-Amp: PID ontroller OP-Amp: Sample and Hold ircuit Process variable (feedback) Set point U Error 2 U 2 Proportional U Output PID 5 Summer and Multiplier Analog Input ontrol Switch D e8.eps U 3 Integral 3 U 4 Derivative Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 25 / 3 x06.eps S/H amplifier holds an analog value, until an A/D converter is ready to convert it to digital. The basis circuit consists of an electronic switch to the sample, with a capacitor for the hold and an op-amp voltage follower. Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 26 / 3 OP-Amps: urrent Source Low-Pass Filter ircuit f 2 i 2 load 3 I I = E 2 i 3 if 2 > > load. V in f c = 2π V out x07.eps e0.eps Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 27 / 3 Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 28 / 3

High-Pass Filter ircuit Band-Pass/Band-eject Filter ircuits i f Band-Pass Filter - A band-pass filter can be built by cascading a low-pass filter and a high-pass filter together. The cut-off frequency of the low-pass filter must be higher than the cut-off frequency of the high-pass filter. Band-eject Filter - V in f c = 2π V out V in 2 f n = 2π V out 2 e02.eps e03.eps Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 29 / 3 Prof. Dr. M. Zahurul Haq (BUET) OP-Amp ME 475 30 / 3