Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany

Similar documents
Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany

Spin-orbit Effects in Semiconductor Spintronics. Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg

The Quantum Spin Hall Effect

Topological insulators

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

InAs/GaSb A New 2D Topological Insulator

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology.

Introductory lecture on topological insulators. Reza Asgari

Topological Insulators

Introduction to topological insulators. Jennifer Cano

Topological insulator (TI)

Quantum Spin Hall Insulator State in HgTe Quantum Wells

InAs/GaSb A New Quantum Spin Hall Insulator

Quantum Spin Hall Effect: a theoretical and experimental introduction at kindergarten level, non-shown version

Topological insulators

Topological Insulators and Superconductors

Topological Insulators and Superconductors. Tokyo 2010 Shoucheng Zhang, Stanford University

Topological Insulators

Spatially resolved study of backscattering in the quantum spin Hall state SUPPLEMENTAL MATERIAL

Basics of topological insulator

Topological Insulator Surface States and Electrical Transport. Alexander Pearce Intro to Topological Insulators: Week 11 February 2, / 21

Topological insulators and the quantum anomalous Hall state. David Vanderbilt Rutgers University

Topological insulator with time-reversal symmetry

Spin orbit interaction in graphene monolayers & carbon nanotubes

Lecture notes on topological insulators

Local currents in a two-dimensional topological insulator

Topological Physics in Band Insulators II

arxiv: v1 [cond-mat.mes-hall] 19 Dec 2008

From graphene to Z2 topological insulator

5 Topological insulator with time-reversal symmetry

Quantum Hall effect. Quantization of Hall resistance is incredibly precise: good to 1 part in I believe. WHY?? G xy = N e2 h.

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Disordered topological insulators with time-reversal symmetry: Z 2 invariants

Organizing Principles for Understanding Matter

Symmetry, Topology and Phases of Matter

Quantum anomalous Hall states on decorated magnetic surfaces

Effective Field Theories of Topological Insulators

First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov

Topological insulators. Pavel Buividovich (Regensburg)

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST

Zürich. Transport in InAs-GaSb quantum wells. Klaus Ensslin

Supplementary Online Information : Images of edge current in InAs/GaSb quantum wells

POEM: Physics of Emergent Materials

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface

Topological Insulators and Ferromagnets: appearance of flat surface bands

Physics of Semiconductors

Bloch, Landau, and Dirac: Hofstadter s Butterfly in Graphene. Philip Kim. Physics Department, Columbia University

New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells

Room temperature topological insulators

Berry s phase in Hall Effects and Topological Insulators

Time Reversal Invariant Ζ 2 Topological Insulator

Observation of neutral modes in the fractional quantum hall effect regime. Aveek Bid

Graphite, graphene and relativistic electrons

POEM: Physics of Emergent Materials

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

Topological Properties of Quantum States of Condensed Matter: some recent surprises.

Topological thermoelectrics

Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models

Quantum Hall Effect in Graphene p-n Junctions

Quantum Spin Hall Effect in Inverted Type II Semiconductors

arxiv: v1 [cond-mat.other] 20 Apr 2010

Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells

Les états de bord d un. isolant de Hall atomique

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015)

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Spin Superfluidity and Graphene in a Strong Magnetic Field

Chiral Majorana fermion from quantum anomalous Hall plateau transition

Graphene and Carbon Nanotubes

Andreev transport in 2D topological insulators

Topological Physics in Band Insulators. Gene Mele DRL 2N17a

Topological states of matter in correlated electron systems

Recent developments in topological materials

HIGHER INVARIANTS: TOPOLOGICAL INSULATORS

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots

Building Frac-onal Topological Insulators. Collaborators: Michael Levin Maciej Kosh- Janusz Ady Stern

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea

Topological Physics in Band Insulators IV

v. Tε n k =ε n k T r T = r, T v T = r, I v I = I r I = v. Iε n k =ε n k Berry curvature: Symmetry Consideration n k = n k

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:

Topological Defects inside a Topological Band Insulator

Three Most Important Topics (MIT) Today

arxiv: v1 [cond-mat.mes-hall] 20 Aug 2013

Exploring topological states with cold atoms and photons

arxiv: v1 [cond-mat.mes-hall] 17 Jan 2013

Abelian and non-abelian gauge fields in the Brillouin zone for insulators and metals

Tutorial: Berry phase and Berry curvature in solids

Emergent topological phenomena in antiferromagnets with noncoplanar spins

Floquet Topological Insulators and Majorana Modes

Spin-orbit effects in graphene and graphene-like materials. Józef Barnaś

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator

STM spectra of graphene

Weyl semi-metal: a New Topological State in Condensed Matter

Splitting of a Cooper pair by a pair of Majorana bound states

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA

Topological Insulators in 3D and Bosonization

Electrical Control of the Kondo Effect at the Edge of a Quantum Spin Hall System

Transcription:

Hartmut Buhmann Physikalisches Institut, EP3 Universität Würzburg Germany

Outline Insulators and Topological Insulators HgTe quantum well structures Two-Dimensional TI Quantum Spin Hall Effect experimental observations: quantized conductivity non-locality spin polarization Three-Dimensional TI Quantum Hall Effect

The Insulating States Topologically Generalized C.L.Kane and E.J.Mele, PRL 95, 14682 (25) C.L.Kane and E.J.Mele, PRL 95, 22681 (25) A.Bernevig and S.-C. Zhang, PRL 96, 1682 (26) C.L.Kane and E.J. Mele, Science 314, 1692 (26)

The Usual Boring Insulating State Characterized by energy gap: absence of low energy electronic excitations Covalent Insulator e.g. intrinsic semiconductor Atomic Insulator e.g. solid Ar The vacuum electron E gap ~ 1 ev 4s E gap ~ 1 ev 3p Dirac Vacuum E gap = 2 m e c 2 ~ 1 6 ev Silicon positron ~ hole

The Insulating State Topologically Generalized C.L.Kane and E.J.Mele, PRL 95, 14682 (25) C.L.Kane and E.J.Mele, PRL 95, 22681 (25) A.Bernevig and S.-C. Zhang, PRL 96, 1682 (26) C.L.Kane and E.J. Mele, Science 314, 1692 (26)

The Integer Quantum Hall State 2D Cyclotron Motion, Landau Levels E E gap c Energy gap, but NOT an insulator

Edge States Quantized Hall conductivity : bulk insulating J E y xy x 2 xy n e h Integer accurate to 1-9

Perfect Conductor magnetic field 1d dispersion - - - E - - - -k F k F k The QHE state spatially separates the right and left moving states (spinless 1D liquid) suppressed backscattering first example of a new Topological Insulator

Topological Insulator

Topological Band Theory The distinction between a conventional insulator and the quantum Hall state is a topological property of the manifold of occupied states H( k) : Brillouin zone (torus) Bloch Hamiltonians with energy gap Classified by Chern (or TKNN) integer topological invariant (Thouless et al, 1982) 1 2 n d u u 2i BZ k k k ( k) ( k) u(k) = Bloch wavefunction Insulator : n = IQHE state : xy = n e 2 /h

Geometry and Topology Gauss and Bonnet topological 1 2 S KdA 2(1 g) geometric Example: Mug to Torus S: surface K -1 : product of the two radii of curvatures da: area element g: number of handles

Edge States The TKNN invariant can only change at a phase transition where the energy gap goes to zero Vacuum Vacuum n = n = 3 n = Dn = # Chiral Edge Modes This approach can actually be generalized to a spinfull QHE at zero magnetic field: the Quantum Spin Hall Effect

The Insulating State Topologically Generalized C.L.Kane and E.J.Mele, PRL 95, 14682 (25) C.L.Kane and E.J.Mele, PRL 95, 22681 (25) A.Bernevig and S.-C. Zhang, PRL 96, 1682 (26) C.L.Kane and E.J. Mele, Science 314, 1692 (26)

A two-dimensional topological insulator B quantum Hall effect topological invariant broken time reversal symmetry (TRS)

A two-dimensional topological insulator B

A two-dimensional topological insulator B helical edge states invariant under time reversal

Protected Edge States suppressed backscattering:

Protected Edge States suppressed backscattering: spin rotation: Dj = 2 Interference is destructive

Quantum Spin Hall Effect Stability of Helical Edge States: x 2e h G QSHE 2 x backscattering is only possible by time reversal symmetry breaking processes (for example external magnetic fields) or if more states are present k s k, s, 2 1, x x x x

Topological Insulator : A New B= Phase

Topological Insulator : A New B= Phase There are 2 classes of 2D time reversal invariant band structures Z 2 topological invariant: n =,1 Edge States for <k</a n= : Conventional Insulator n=1 : Topological Insulator Kramers degenerate at time reversal invariant momenta k* = k* + G k*= k*=/a k*= k*=/a even number of bands crossing Fermi energy odd number of bands crossing Fermi energy

QSHE in Graphene Graphene edge states gap C.L.Kane and E.J.Mele, PRL 95, 22681 (25) Graphene spin-orbit coupling strength is too weak gap only about 3 mev. not accessible in experiments

QSHE in HgTe Helical edge states for inverted HgTe QW E H1 E1 k B.A Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757 (26)

HgTe band structure semi-metal 1 5 E (mev) -5 D 8 6 E g -1-15 -1. -.5..5 1. k (.1 ) 7 semiconductor D.J. Chadi et al. PRB, 358 (1972) fundamental energy gap 6 8 E E 3 mev

CdTe and HgTe CdTe HgTe H = H 1 + H D + H mv + H so

E (mev) E (mev) HgTe-Quantum Wells QW Barrier 1 HgTe Hg.32 Cd.68 Te 1 6 5 5-5 8 6 VBO 8-5 -1-15 -1. -.5..5 1.-1. -.5..5 1. k (.1 ) 7 7 k (.1 ) -1-15 VBO = 57 mev

HgTe-Quantum Wells Typ-III QW d 6 HgCdTe HH1 E1 HgTe HgCdTe 8 inverted normal band structure

Bandstructure 6 HgTe HgCdTe 6 Zero Gap for 6.3 nm QW structures HgTe HgCdTe 8 8

E [mev] E [mev] Dirac Band Structure 8 E2 d c 4 E1 H1-4 H2 H3-8 H4 4 6 8 1 d [nm] 12 14 1 5-5 E1 H1 in-plane direction (k x,k y )=(1,) (k x,k y )=(1,1) -1 H2..1.2.3.4.5 k [nm -1 ]

xx [ xx [ Zero Gap 14 12 B = 1 T 8k 7k 7 6 B = 5 T 3k xy [e²/h] 1 8 6 4 2 6k 5k 4k 3k 2k xy [e²/h] 5 4 3 2 1 2k 1k 1k -1 -,5,,5 1, V G - V Dirac [V] -2-1 1 2 3 V G - V Dirac [V] B. Büttner et al., Nature Physics 7, 418 (211)

LL-Dispersion Kane model effective model LLchart Parameters: M ~ (-.35 mev) D = -682.2 mev nm² G = -857.3 mev nm² A = 372.9 mev nm E(VG) conversion taken from appropriate Kane model B. Büttner et al., Nature Physics 7, 418 (211)

Finite Mobility 1.4 xx 8k 6k xx,min =.36 e²/h 1.2 measurement theory 1. 4k 2k DV G xx in e 2 /h.8.6.4 -.6 -.4 -.2..2.4.6 V G -V Dirac [V].2 4 8 12 16 2 24 T [K] B. Büttner et al., Nature Physics 7, 418 (211)

Bandstructure 6 HgTe HgCdTe 6 HgTe HgCdTe 8 8 B.A Bernevig et al., Science 314, 1757 (26)

Effective Tight Binding Model square lattice with 4 orbitals per site s,, s,, ( p ip ),, ( p ip ), x y x y nearest neighbor hopping integral basis: E1, H1, E1, H1 hk ( ) Heff ( kx, ky) * h ( k)

Effective Tight Binding Model square lattice with 4 orbitals per site s,, s,, ( p ip ),, ( p ip ), x y x y nearest neighbor hopping integral basis: E1, H1, E1, H1 hk ( ) Heff ( kx, ky) * h ( k) at the -point k A k h( k) A relativistic Dirac equation 2 M ( k) k Asin k sin x i kx sin kx isin kx M ( k) k 2 M ( k) Ak x ikx x ikx M ( k) HgTe M normalqw for M inverted QW with tunable parameter M (band-gap)

Mass domain wall inverted band structure E H1 E1 k states localized on the domain wall which disperse along the x-direction y M> M< y M> x M< M x M> helical edge states

Quantum Spin Hall Effect M > M < normal insulator QSHE bulk entire sample insulating bulk insulating

x G 2e h 2 x

Experiment e e k k

Small Samples L W (L x W) mm 2. x 1. mm 1. x 1. mm 1. x.5 mm

QSHE Size Dependence 1 6 (1 x 1) mm 2 non-inverted R xx / 1 5 1 4 (2 x 1) mm 2 (1 x 1) mm 2 G = 2 e 2 /h 1 3 (1 x.5) mm 2-1. -.5..5 1. 1.5 2. (V Gate - V thr ) / V König et al., Science 318, 766 (27)

R 2-8, 9-11 (k) QSHE Temperature Dependence 18. 16. 14. 12. 1. 8. 6. Q2367 Microhallbar 1 x 1 mm 2 I(2-8), U(9-11); B= T; T= variabel; T = 1.8 K T = 2.5 K T = 4.2 K T = 6.4 K T = 9.8 K T = 19 K T = 28 K T = 48 K 4. 2.. -2. -2. -1.6-1.2 -.8 -.4. U G (V)

R (kohm) QSHE Excitation Voltage Dependence 18 16 14 12 1 16mV 14mV 12mV 1mV 8mV 6mV 4mV 2mV 8 6 4 2-2. -1.8-1.6-1.4-1.2-1. -.8 -.6 -.4 -.2..2 U g (V)

Conductance Quantization in 4-terminal geometry!? 2 18 V 16 R xx / k 14 12 1 8 G = 2 e 2 /h I 6 4 2-1. -.5..5 1. 1.5 2. (V Gate - V thr ) / V

Small Samples

Role of Ohmic Contacts n-type metallic contact areas and leads areas where scattering takes place spin relaxation

Multi-Terminal Probe 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 T 2 14 4 3 2 2 14 2 4 1 2 2 3 t t I e G h I e G h m m m m generally 2 2 2 1) ( e h n R t 3 exp 4 2 t t R R h e G t 2,exp 4 2 Landauer-Büttiker Formalism normal conducting contacts no QSHE ji j ij i ii i i T R M h e I m m 2

QSHE in inverted HgTe-QWs 4 35 G = 2/3 e 2 /h V 2 3 3 1 I 4 R xx (k 25 2 15 1 2 V 3 I 6 5 4 G = 2 e 2 /h 6 5 1 5 (2 x 1) mm 2 (1 x.5) mm 2-1. -.5..5 1. 1.5 2. (V Gate - V thr ) (V) R R 2t 4t 3

Non-locality 1 2 3 1 mm 2 mm 6 5 4

I (na) Rnl (k) Non-locality I: 1-4 V nl :2-3 V 1 2 3 1 2 V 3 I 4 6 5 4 6 5 Q238-2 @6 mk 22 2 14 18 12 16 14 1 12 1 8 6 4 2 8 6 4 2-5.5-5. -4.5-4. -3.5-3. -2.5-2. -1.5-1. -.5. U Gate [ V ] A. Roth, HB et al., Science 325,295 (29)

R (k) Non-locality I: 1-3 V nl :5-4 1 2 3 6 5 4 LB: 8.6 k 12 V 1 8 G=3 e 2 /h 4-terminal 6 4 2-1 1 2 3 4 V* (V) A. Roth, HB et al., Science 325,295 (29)

Non-locality 1 2 I: 1-4 V nl :2-3 V 4 3 7 6 LB: 6.4 k 5 G=4 e 2 /h R 14,23 / k 4 3 2 1-3.5-3. -2.5-2. -1.5-1. -.5. V gate / V A. Roth, HB et al., Science 325,295 (29)

R nl (k) Non-locality V 1 2 3 LB: 4.3 k 6 5 4 6 5 4 3 2 1-6, -5,5-5, -4,5-4, -3,5-3, V (V) A. Roth, HB et al., Science 325,295 (29)

Back Scattering potential fluctuations introduce areas of normal metallic (n- or p-) conductance in which back scattering becomes possible QSHE The potential landscape is modified by gate (density) sweeps!

Back Scattering area of raised or lowered chem. Pot. the probalility for back scatterring increases strength length additional ohmic contact transition from a two to a three terminal device

Additional Scattering Potential Transition from scattering strength 2 e 2 /h 3/2 e 2 /h A. Roth, HB et al., Science 325,295 (29)

Additional Scattering Potential 7 6 5 R 14,23 / k 4 3 2 1-3.5-3. -2.5-2. -1.5-1. -.5. V gate / V A. Roth, HB et al., Science 325,295 (29)

Rnl (kw) Potential Fluctuations V 1 2 3 LB: 4.3 k 6 5 4 6 5 one additional contact: between 2 and 3 3.7 k 4 3 V x 1 2 3 2 1-6. -5.5-5. -4.5-4. -3.5-3. 6 5 4 A. Roth, HB et al., Science 325,295 (29)

V Potential Fluctuations different gate sweep direction V x 1 2 3 1 2 3 LB: 22.1 k 6 5 4 6 5 4 2 R nl / k 15 1 LB: 12.9 k 5-5.5-5. -4.5-4. -3.5-3. -2.5-2. -1.5-1. -.5. V g / V Hysteresis effects due to charging of trap states at the SC-insulator interface J. Hinz, HB et al., Semicond. Sci. Technol. 21 (26) 51 56

metal insulator QW HgTe Quantum Well Structures layer structure impurity states discharging charging gate insulator Au 1 nm Si N /SiO 3 4 2 cap layer doping layer barrier quantum well barrier doping layer buffer substrate 25 nm HgCdTe x =.7 1 nm HgCdTe x =.7 9 nm HgCdTe with I 1 nm HgCdTe x =.7 4-12 nm HgTe 1 nm HgCdTe x =.7 9 nm HgCdTe with I 1 nm HgCdTe x =.7 25 nm CdTe CdZnTe(1) hysteresis effects: J. Hinz et al., Semicond. Sci. Technol. 21 (26) 51 56

Spin Polarizer

Spin Polarizer 5% 1 : 4 5%

Spin Polarizer 1% 1 % 5% 1%

Spin Injector 1% spin injection 1 % even with backscattering!

Spin Detection 1% Dm spin detector 1 %

QSHE SHE QSHE Spin Hall Effect as creator and analyzer of spin polarized electrons SHE -1

Split Gate H-Bar

QSHE Spin-Detector.1.8.6 5x.4 1..2 n-type injector.8.6 5x QSHI-type detector. -4. -3.5-3. -2.5-2. -1.5-1. -.5..4 detector sweep QSHE.2 p-type injector SHE. -4. -3.5-3. -2.5-2. -1.5-1. -.5. 5 V detector-gate / V 4 QSHI-type detector R 34,12 / k 3 2 1-4.5-4. -3.5-3. -2.5-2. -1.5-1. -.5 V injector-gate / V injector sweep

n-regime Q2198 p-regime 75 75 E / mev 5 25-25 -5 n =4.42 1 11 cm -2 n H1 dl =1. 1 11 cm -2 E1 H2-75..1.2.3.4.5.6 k / nm -1 E F E / mev 5 25-25 -5 p =3.26 1 11 cm -2 n dl =1. 1 11 cm -2 H1 Dk E1 H2-75..1.2.3.4.5.6 k / nm -1 E F eex j s, y pf pf Dk 16m J.Sinova et al., Phys. Rev. Lett. 92, 12663 (24) Intrinsic Spin Hall Effekt Nature Physics 6, 448 (21)

QSHE Spin-Injector.1.8.6 5x.4 1..2 n-type detector.8.6 5x QSHI-type detector. -3.5-3. -2.5-2. -1.5-1. -.5..4 injector sweep QSHE.2 p-type detector. -3.5-3. -2.5-2. -1.5-1. -.5. SHE -1 5 4 QSHI-type injector R 12,34 / k 3 2 1-4.5-4. -3.5-3. -2.5-2. -1.5-1. -.5 V detector-gate / V detector sweep

n-type 1 detector sweep 1 V 8 8 V R nonloc / 6 4 R nonloc / 6 4 2 2-3.5-3. -2.5-2. -1.5-1. -.5. U gate / V p-type -4. -3.5-3. -2.5-2. -1.5-1. -.5. U gate / V 1 1 8 8 R nonloc / 6 4 R nonloc / 6 4 2 2-3.5-3. -2.5-2. -1.5-1. -.5. U gate / V -4. -3.5-3. -2.5-2. -1.5-1. -.5. U gate / V

Spin-Current Switch I 2 I 1

Spin-Current Switch I 2 I 1

Spin-Current Switch I 2 I 1 QSHE

Spin-Current Switch I 2 I 1 ballistic injection

I [na] ballstic 5, 9/1 11/12 1/2 4,5 4, 3,5 B I A C D F I E 3, 8/7 6/5 4/3 2,5 2, 1,5 QSHE 1, -3, -2,5-2, -1,5-1, -,5, U (Gate ACDF) [V]

I [na] I [na] 15 14 9/1 11/12 1/2 13 12 11 B I A C D F I E 1 5, 9 4,5-3, -2,5-2, -1,5-1, -,5, U (Gate ACDF) [V] 8/7 6/5 4/3 4, 3,5 3, 2,5 2, 1,5 1, -3, -2,5-2, -1,5-1, -,5, U (Gate ACDF) [V]

¼ Graphene

E, mev Bulk HgTe 2 1 E F fully strained 7 nm HgTe on CdTe substrate -1-2 -3-4 -5 -,3 -,2 -,1,,1,2,3 k, nm -1 band structure - gap openning - two Dirac cones on different surfaces Qy*1(rlu) 597 596 595 594 593 592 591 x-ray diffraction (115 reflex) Q2424-map_1.xrdml 1.6 2.9 5.2 9.3 16.6 29.7 53.3 95.4 171. 36.3 548.7 982.9 176.7 3154. 565. 1121.3 18131.1 32479.6 58183.3 14228.3 186712.2 167 168 169 17 171 172 173 Qx*1(rlu)

R xx in Ohm R xy in Ohm 16 14 n=2 14 12 12 1 8 6 n=3 n=4 1 8 6 4 2 R xx (SdH) R xy (Hall) 2 4 6 8 1 12 14 16 B in Tesla 4 2

R xx [k] xy [e 2 /h] 14 12 1 8 6 16 14 12 1 8 6 4 2 2 4 6 8 1 12 14 16 B [T] 14 12 1 8 6 4 2 R xy [k] 4 2 2 4 6 8 1 12 14 16 B [T] Brüne et al., Phys. Rev. Lett. 16, 12683 (211)

R xx in Ohm DOS Density of states for two independent surfaces with slightly different density 1 8 n n 1 2 3.71 11 4.851 cm 11-2 cm -2 6 4 2 2 4 6 8 1 12 14 16 B in Tesla

Brüne et al., Phys. Rev. Lett. 16, 12683 (211)

Summary the QSH effect which consists of an insulating bulk and two counter propagating spin polarized edge channels (Kramers doublet) quantized edge channel transport the QSH effect can be used as an effective spin injector and spin detector with 1 % spin polarization properties Strained HgTe bulk exhibits two-dimensional surface states

Acknowledgements Quantum Transport Group (Würzburg, ) C. Brüne C. Ames P. Leubner Ex-QT: C.R. Becker T. Beringer M. Lebrecht J. Schneider S. Wiedmann N. Eikenberg R. Rommel F. Gerhard B. Krefft A. Roth B. Büttner R. Pfeuffer L. Maier M. Mühlbauer A. Friedel Stanford University S.-C. Zhang X.L. Qi J. Maciejko T. L. Hughes M. König C. Thienel H. Thierschmann R. Schaller J. Mutterer A. Astakhova CX Liu Lehrstuhl für Experimentelle Physik 3: L.W. Molenkamp Collaborations: Texas A&M University J. Sinova Univ. Würzburg Inst. f. Theoretische Physik E.M. Hankiewicz B. Trautzettel

Quantum Spin Hall Effekt Science 318, 766 (27) The Quantum Spin Hall Effect: Theory and Experiment J. Phys. Soc. Jap. Vol. 77, 317 (28) Nonlocal edge state transport in the quantum spin Hall state Science 325, 294 (29) Intrinsic Spin Hall Effekt Nature Physics 6, 448 (21) Quantum Hall Effect from the Topological Surface States of Strained Bulk HgTe Phys. Rev. Lett. 16, 12683 (211)