The Pennsylvania State University. Kurt J. Lesker Company. North Carolina State University. Taiwan Semiconductor Manufacturing Company 1

Similar documents
Components Research, TMG Intel Corporation *QinetiQ. Contact:

III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis

Quantum-size effects in sub-10 nm fin width InGaAs finfets

Self-Aligned InGaAs FinFETs with 5-nm Fin-Width and 5-nm Gate-Contact Separation

Enhanced Mobility CMOS

InGaAs Double-Gate Fin-Sidewall MOSFET

Lecture 9. Strained-Si Technology I: Device Physics

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs

Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and Ultra-Thin-Body Surface-Channel MOSFETs

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EECS130 Integrated Circuit Devices

Comparative studies of Ge and Si p-channel metal oxide semiconductor field-effect-transistors with HfSiON dielectric and TaN metal gate

Performance Enhancement of P-channel InGaAs Quantum-well FETs by Superposition of Process-induced Uniaxial Strain and Epitaxially-grown Biaxial Strain

Multiple Gate CMOS and Beyond

The Prospects for III-Vs

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room).

Ultimately Scaled CMOS: DG FinFETs?

EE410 vs. Advanced CMOS Structures

Application of High-κ Gate Dielectrics and Metal Gate Electrodes to enable Silicon and Non-Silicon Logic Nanotechnology

A Multi-Gate CMOS Compact Model BSIMMG

High aspect-ratio InGaAs FinFETs with sub-20 nm fin width

Tri-Gate Fully-Depleted CMOS Transistors: Fabrication, Design and Layout

Analysis of Band-to-band. Tunneling Structures. Title of Talk. Dimitri Antoniadis and Judy Hoyt (PIs) Jamie Teherani and Tao Yu (Students) 8/21/2012

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

Technology Development & Design for 22 nm InGaAs/InP-channel MOSFETs

Recent Development of FinFET Technology for CMOS Logic and Memory

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

Ultra-Scaled InAs HEMTs

Control of Flat Band Voltage by Partial Incorporation of La 2 O 3 or Sc 2 O 3 into HfO 2 in Metal/HfO 2 /SiO 2 /Si MOS Capacitors

Study of Carrier Transport in Strained and Unstrained SOI Tri-gate and Omega-gate Si Nanowire MOSFETs

Low Frequency Noise in MoS 2 Negative Capacitance Field-effect Transistor

Courtesy of S. Salahuddin (UC Berkeley) Lecture 4

Quantum Mechanical Simulation for Ultra-thin High-k Gate Dielectrics Metal Oxide Semiconductor Field Effect Transistors

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Journal of Electron Devices, Vol. 18, 2013, pp JED [ISSN: ]

Frequency dispersion effect and parameters. extraction method for novel HfO 2 as gate dielectric

Normally-Off GaN Field Effect Power Transistors: Device Design and Process Technology Development

Overview of Modeling and Simulation TCAD - FLOOPS / FLOODS

Stretching the Barriers An analysis of MOSFET Scaling. Presenters (in order) Zeinab Mousavi Stephanie Teich-McGoldrick Aseem Jain Jaspreet Wadhwa

Analytical Modeling of Threshold Voltage for a. Biaxial Strained-Si-MOSFET

Performance Analysis of Ultra-Scaled InAs HEMTs

MOS Transistor Properties Review

Supporting Information for: Sustained sub-60 mv/decade switching via the negative capacitance effect in MoS 2 transistors

Advanced and Emerging Devices: SEMATECH s Perspective

PHYSICS, FABRICATION AND CHARACTERIZATION OF III-V MULTI-GATE FETS FOR LOW POWER ELECTRONICS

Microsystems Technology Laboratories, MIT. Teledyne Scientific Company (TSC)

Simple and accurate modeling of the 3D structural variations in FinFETs

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University

NEW ANALYTICAL MODEL AND SIMULATION OF INTRINSIC STRESS IN SILICON GERMANIUM FOR 3D NANO PMOSFETS

Emerging Applications for High K Materials in VLSI Technology

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

Glasgow eprints Service

Modeling Random Variability of 16nm Bulk FinFETs

Simple Theory of the Ballistic Nanotransistor

FLCC Seminar. Spacer Lithography for Reduced Variability in MOSFET Performance

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

EE 292L : Nanomanufacturing. Week 5: Advanced Process Technology. Oct

Effective Capacitance Enhancement Methods for 90-nm DRAM Capacitors

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

GaN based transistors

Lecture 04 Review of MOSFET

MOSFET: Introduction

Recent Progress in Understanding the DC and RF Reliability of GaN High Electron Mobility Transistors

ELEN0037 Microelectronic IC Design. Prof. Dr. Michael Kraft

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

Electric-Field Induced F - Migration in Self-Aligned InGaAs MOSFETs and Mitigation

Lecture 30 The Short Metal Oxide Semiconductor Field Effect Transistor. November 15, 2002

MOS Transistor Theory

MOSFET Physics: The Long Channel Approximation

GeSi Quantum Dot Superlattices

Effects of Rapid Thermal Annealing Temperature on Performances of Nanoscale FinFETs

Fig The electron mobility for a-si and poly-si TFT.

Simulation-based Study of Super-steep Retrograde Doped Bulk FinFET Technology and 6T-SRAM Yield

Field effect = Induction of an electronic charge due to an electric field Example: Planar capacitor

The Devices: MOS Transistors

Department of Electronic Engineering, Chienkuo Technology University, No. 1, Chieh Shou N. Rd., Changhua City, 500 Taiwan, R.O.C.

III-V field-effect transistors for low power digital logic applications

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Strained Germanium Quantum Well PMOSFETs on SOI with Mobility Enhancement by External Uniaxial Stress

ALD high-k and higher-k integration on GaAs

Chapter 4 Field-Effect Transistors

SUPPLEMENTARY INFORMATION

Electronics with 2D Crystals: Scaling extender, or harbinger of new functions?

30 nm In 0.7 Ga 0.3 As Inverted-type HEMT with Reduced Gate Leakage Current for Logic Applications

Nanoscale CMOS Design Issues

Integrated Circuits & Systems

Extending the Era of Moore s Law

VLSI Design The MOS Transistor

The Future of CMOS. David Pulfrey. CHRONOLOGY of the FET. Lecture Lilienfeld s patent (BG FET) 1965 Commercialization (Fairchild)

Semiconductor Physics Problems 2015

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

MOS CAPACITOR AND MOSFET

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

TOTAL IONIZING DOSE RADIATION EFFECTS AND NEGATIVE BIAS TEMPERATURE INSTABILITY ON SiGe pmos DEVICES

Technology Development for InGaAs/InP-channel MOSFETs

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

Prospects for Ge MOSFETs

Lecture 5: CMOS Transistor Theory

Transcription:

Enhancement Mode Strained (1.3%) Germanium Quantum Well FinFET (W fin =20nm) with High Mobility (μ Hole =700 cm 2 /Vs), Low EOT (~0.7nm) on Bulk Silicon Substrate A. Agrawal 1, M. Barth 1, G. B. Rayner Jr. 2, V. T. Arun 1, C. Eichfeld 1, G. Lavallee 1, S-Y. Yu 1, X. Sang 3, S. Brookes 3, N. Agrawal 1, Y. Zheng 1, Y-J. Lee 4, Y-R. Lin 4, C-H. Wu 4, C-H. Ko 4, J. LeBeau 3, R. Engel-Herbert 1, S. E. Mohney 1, Y-C. Yeo 4 and S. Datta 1 1 The Pennsylvania State University 2 Kurt J. Lesker Company 3 North Carolina State University 4 Taiwan Semiconductor Manufacturing Company 1

Outline High Mobility Strained Germanium (s-ge) QW Novel Tri-layer Dielectric Integration on Ge s-ge QW on silicon Buffer Design and Growth s-ge QW FinFET Fabrication and Characterization Benchmarking 2

Strain-Enhanced Mobility Mobility [cm 2 /Vs] 1000 100 1.3% strained-ge QWFET (T QW =15nm) 4x Relaxed-Ge MOSFET Strained Si Biaxial Compressive Strain s-ge QW SiGe Buffer Si Substrate 1 10 Hole Density [x10 12 /cm 2 ] *R. Pillarisetty, Nature 2011 r-ge Si Substrate 4x higher hole mobility for s-ge QWFET compared to r-ge MOSFET 3

Pt/Ti/ Au Si cap vs. GeOx IL Pd/Au 10 nm Ge QW 5 nm Si 0.3 Ge 0.7 Spacer Boron δ-doping 2x10 18 /cm 3 20nm 5x10 18 /cm 3 Phos Doping Si Substrate Pt/Ti/ Au 250 nm Si 0.3 Ge 0.7 Buffer 500 nm Si 0.7 Ge 0.3 Buffer High-k Cap Layer 10A Si Limits EOT Scaling Capacitance [ F/cm 2 ] Si cap passivation limits EOT scaling 3.0 f=1mhz 2.5 2.0 1.5 1.0 w/ Si cap 0.5 Planar 0.0-2 -1 0 1 Gate Voltage [V] Ge QW/10A Si cap/5a Al 2 O 3 /22A HfO 2 4

Pt/Ti/ Au Si cap vs. GeOx IL Pd/Au 10 nm Ge QW 5 nm Si 0.3 Ge 0.7 Spacer Boron δ-doping 2x10 18 /cm 3 20nm 5x10 18 /cm 3 Phos Doping Si Substrate Pt/Ti/ Au 250 nm Si 0.3 Ge 0.7 Buffer 500 nm Si 0.7 Ge 0.3 Buffer High-k Cap Layer 10A Si Limits EOT Scaling 6A GeOx Low EOT, low D IT achieved Capacitance [ F/cm 2 ] 3.0 f=1mhz 2.5 GeOx IL 2.0 2.3X 1.5 1.0 w/ Si cap 0.5 Planar 0.0-2 -1 0 1 Gate Voltage [V] Ge QW/6A GeOx IL/5A Al 2 O 3 /22A HfO 2 GeOx IL passivation instead of Si cap realized Low EOT of 0.83nm obtained on Ge QW 5

Bulk FinFET vs. QW FinFET Biaxial Strain r-ge Si Substrate s-ge QW SiGe Buffer Si Substrate W Fin High-k Cap layer Gate Metal r-ge High-k Cap Layer Gate Metal s-ge T QW r-ge SiGe Buffer Si Substrate Si Substrate Both W fin and T QW determine strain in Ge QW 6

S-Ge QW FinFET Highlights Channel Strain Asymmetric Uniaxial strain; μ Hole Enhancement Gate Metal s-ge Ge-Passivation In-situ H-Plasma clean Controlled sub-nm GeO x ; Low D IT Ultrathin EOT Phos Doping SiGe Buffer Si Substrate SiGe Buffer Optimization Retrograde Phos Doping; Eliminate parallel channel Scaled FinFET 20nm Fin Width; E-Mode Operation 7

Tri-Layer High-κ Gate Stack GOAL: Sub-1 nm (EOT) Metal 1.5eV p-ge E C E F E V 2.5eV HfO 2 Al 2 O 3 GeO x Reduce gate leakage Prevent HfO 2 -GeO x intermixing Reduce D IT Low temperature process prevent Si- Ge interdiffusion 8

GeO x Thickness [A] Tri-Layer Process Flow 30 25 20 15 10 5 0 Native GeO x 30 sec, 100W H-Plasma T=250C 0 1 2 Time [mins.] GeO x Thickness [A] 6 4 2 O-Plasma 125W, 2 sec Pulse Plasma-OFF Plasma-ON T=250C 0 0 2 4 6 Time [mins.] 5 10 15 Cycle # Removal of native GeO x with low power H- Plasma etch High quality, uniform GeO x IL formed using low power O-Plasma pulse 9

Al 2 O 3 Thickness [A] 4 2 Tri-Layer Process Flow Thermal ALD TMA Precursor + H 2 O 6 T=250C Nucleation delay 0 0 2 4 6 8 10 Cycle # HfO 2 Thickness [A] 20 15 10 5 Thermal ALD TDMAH Precursor + H 2 O T=250C No Nucleation delay 0 0 5 10 15 20 Cycle # Ultrathin Al 2 O 3 cap layer and HfO 2 high-κ deposited using Thermal ALD 10

Tri-Layer High-κ: In-situ GeO x Passivation Ge 17A HfO 2 6A GeO x / 5A Al 2 O 3 2nm Count [a.u.] Ge O Al Hf 0 1 2 3 4 5 6 7 8 Depth [nm] In-situ plasma clean and GeO x IL realized for enhanced surface passivation Low power plasma reduces surface roughness 11

Capacitance [ F/cm 2 ] 3 2 1 0 Tri-Layer High-κ/Ge C-V Characteristics HfO 2 / 5A Al 2 O 3 / 6A GeO x /p-ge 20A 75kHz to 2MHz 22A 30A HfO 2 Thickness T=300K 17A HfO 2 /3A Al 2 O 3 / 6A GeO x /p-ge D IT [/cm 2 /ev] 10 14 17A 20A E V 22A 30A 10 13 10 12 HfO 2 Thickness -2-1 0 1 2 Gate Voltage [V] Energy [E-E V ] HfO 2 /5A Al 2 O 3 /6A GeO x /p-ge 0.0 0.1 0.2 0.3 EOT of ~0.72nm achieved Band-edge D IT from low 10 12 to 10 13 /cm 2 /ev in midgap observed 12

J G [A/cm 2 ] Gate Leakage Reduction 10 1 10-1 10-3 10-5 10-7 HfO 2 /5A Al 2 O 3 /6A GeO x /p-ge [2] 22A HfO 2 /2A Al 2 O 3 /3A GeO x HfO 2 10 3 X Reducing T=300K -1 0 1 Gate Voltage [V] J G [A/cm 2 ] @ V FB -1V 10 5 10 3 10 1 10-1 10-3 10-5 10-7 [1] HfO 2 (no IL) HfO 2 /Al 2 O 3 /GeO x [3] 4X This work HfO 2 /Al 2 O 3 /GeO x [4] HfO 2 (w/ IL) [1] Poly Si/SiO 2 [2] Al 2 O 3 /GeO x 0.0 0.5 1.0 1.5 2.0 EOT [nm] Low gate leakage of 10-2 A/cm 2 (V G =V FB -1V) obtained at 0.72nm EOT with Tri-layer gate stack [1] C. Choi et al., EDL 2004 [2] R. Zhang et al., IEDM 2011 [3] R. Zhang et al., IEDM 2013 [4] R. Xie et al., IEDM 2008 13

s-ge QW on Silicon: SiGe Buffer Optimization Si Cap 10 nm Ge QW 5 nm Si 0.3 Ge 0.7 Spacer 3nm Boron Modulation doping Depth=150nm, 250nm Si 0.3 Ge 0.7 Buffer 20nm 5x10 18 /cm 3 Phos Doping 2 μm Si 0.3 Ge 0.7 Buffer 500 nm Si 0.7 Ge 0.3 Buffer Si Substrate I D [ A/ m] 10 2 10 1 10 0 10-1 10-2 10-3 10-4 100mV/dec Planar w/ Si cap Phos Doping Depth No Phos Depth=150nm V DS =-0.5V L G =5 m Depth=250nm -1 0 1 Gate Voltage [V] 10 3 X I OFF reduction with deeper Phos doping in SiGe buffer with no degradation in I ON 14

I D [ A/ m] 10 3 10 1 10-1 10-3 10-5 QW MOSFET with Tri-layer High-k V DS =-0.05V, -0.5V L G =5 m w/ Si cap 100mV/dec Planar w/ GeOx IL 96mV/dec -1 0 1 Gate Voltage [V] Source Current [ A/ m] 150 100 50 V G -V T =-1V to 1V V G,Step =0.1V L G =5 m w/ Si Cap 0-1.0-0.5 0.0 300 200 100 Drain Voltage [V] w/ GeOx IL 0-1.0-0.5 0.0 Ge QW/Si Cap or GeO x IL/5A Al 2 O 3 /22A HfO 2 2X higher I ON (V DS =-0.5V) with 96 mv/dec subthreshold slope obtained with Tri-layer high-κ 15

Hole Mobility [cm 2 /Vs] 1000 Drift Mobility 100 w/ GeOx IL w/ Si Cap This work 4X Si Universal Unstrained Ge 10 12 10 13 Hole Density [/cm 2 ] Hole Mobility [cm 2 /Vs] 800 600 400 200 [1] IEDM, 2010 [1] IEDM, 2010 This work w/ Si cap 4X [3] IEDM, 2005 0 [2] VLSI, 2009 5 10 15 20 EOT [A] 25 Ns=5x10 12 /cm 2 4X higher hole mobility compared to r-ge achieved [1] R. Pillarisetty et al., IEDM 2010 [2] J. Mitard et al., VLSI 2009 [3] O. Weber et al., IEDM 2005 16

Hole Mobility [cm 2 /Vs] 1000 Drift Mobility 100 w/ GeOx IL w/ Si Cap This work Si Universal 4X Unstrained Ge 10 12 10 13 Hole Density [/cm 2 ] Hole Mobility [cm 2 /Vs] 800 600 400 200 This work w/ GeOx IL [1] IEDM, 2010 [1] IEDM, 2010 This work w/ Si cap 4X [3] IEDM, 2005 0 [2] VLSI, 2009 5 10 15 20 EOT [A] 25 Ns=5x10 12 /cm 2 Highest hole mobility at lowest EOT achieved with GeO x IL [1] R. Pillarisetty et al., IEDM 2010 [2] J. Mitard et al., VLSI 2009 [3] O. Weber et al., IEDM 2005 17

Outline Integrate s-ge QW and Tri-layer high-κ in a FinFET 18

Asymmetric Strained FinFET Biaxial Compressive Strain Z Y X Transverse (100) ε XX [%] 0.5-2 s-ge QW Phos Doping SiGe Buffer Si Substrate Transverse Strain, XX [%] Phos Doping SiGe Buffer Si Substrate 0.0-0.5-1.0-1.5-10 0 10 Position Across Fin [nm] Strain relaxation near sidewall results in net uniaxial strain along the channel direction 19

Transverse Strain, xx [%] Fin Mobility 1 0-1 -1.5-2.0-2.5-2 20 40 Fin Width [nm] Longitudinal Strain, YY [%] 1000 500 20nm 0 0-1 -2-3 Uniaxial Strain [%] Mobility enhancement due to increasing uniaxial compressive strain with reducing W fin 20 Hole Mobility [cm 2 /Vs] Ns=10 13 /cm 2 1500 (110)Ge Wfin (100)Ge 50nm * M. Chu et al., Annu. Rev. Mater. Res. 2009

FinFET Fabrication Flow 1 nm Si Cap 10 nm Ge QW 5 nm Si 0.3 Ge 0.7 Spacer 3nm Boron Modulation doping 250 nm Si 0.3 Ge 0.7 Buffer PR PR 10 nm Ge QW 20nm 5E18 /cm 3 Phos Doping 2 μm Si 0.3 Ge 0.7 Buffer 500 nm Si 0.7 Ge 0.3 Buffer Si Substrate Gate Metal Fin Pattern + Hardmask Deposition Si 0.3 Ge 0.7 Buffer Fin Pattern + Deposit Hardmask Dry RIE Etch 10nm Ge QW B-doping Si 0.3 Ge 0.7 Buffer 20nm 5E18 /cm 3 Phos Doping 500 nm Si 0.7 Ge 0.3 Buffer Si Substrate Tri-Layer High-k + Gate Patterning SiGe Buffer 21 FinFET fabrication using Sidewall Image Transfer (SIT)

FinFET Fabrication : SEM Source Gate Fin W fin =20nm Drain W fin =20nm Ge Ge Si 0.3 Ge 0.7 Si 0.3 Ge 0.7 200 nm 20 nm Fin Pitch=80nm W fin =20nm; Fin pitch = 80nm; Tri-layer high-κ realized on s-ge QW with SIT process 22

FinFET Fabrication : TEM Gate Metal 10nm Ge QW B-doping Si 0.3 Ge 0.7 Buffer 20nm 5E18 /cm 3 Phos Doping 500 nm Si 0.7 Ge 0.3 Buffer W fin =20nm Ge Si 0.3 Ge 0.7 Buffer Al 2 O 3 /GeO x HfO 2 Si Substrate 10nm Vertical fin sidewall profile achieved for W fin =20nm QW FinFET 23

I D [ A/ m] Long Channel FinFET Performance 10 3 w/ GeOx IL V DS =-0.05V -0.5V L G =5 m 10 2 10 1 10 0 10-1 10-2 10-3 150mV/dec W Fin Planar 20nm 96mV/dec -2-1 0 1 Gate Voltage [V] I D [ A m] 300 200 100 Planar FinFET (W Fin =20nm) V G -V T =-1V to 1V V G,Step =0.1V L G =5 m 0-1.0-0.5 0.0 Drain Voltage [V] E-Mode (V T =-0.75V); I ON /I OFF ~10 4 ; SS=150mV/dec for W fin =20nm FinFET with Tri-layer high-κ obtained 24

V T,SAT [V] E-Mode QW FinFET Operation 0.4 Depletion Mode 0.2 0.0-0.2-0.4-0.6-0.8 150 V DS =-0.5V 250 140 Enhancement 130 200 Mode 120 110 150 V DS =-0.5V 100 L G =5 m 100 V DS =-0.5V 90 20 50 Planar 20 50 Planar 20 50 Planar Fin Width [nm] Fin Width [nm] Fin Width [nm] SS [mv/dec] Peak Gm [ S/ m] W fin =20nm; L G =5μm; 10 fins/μm E-Mode operation for W fin =45nm and 20nm Degradation in SS (36%) and peak Gm (60%) with reducing W fin 25

Hole Mobility [cm 2 /Vs] Fin Mobility 1000 100 Planar W Fin =70nm W Fin =45nm W Fin =20nm Unstrained Ge Si Universal T=300K 2.6X 2X 10 12 10 13 Hole Density [/cm 2 ] Peak Mobility [cm 2 /Vs] 1000 900 800 700 20 50 Planar Fin Width [nm] 2.6X higher μ Peak obtained with s-ge QW 26 FinFET (W fin =20nm) compared to unstrained-ge

FinFET Hole Transport Highlights Hole Mobility [cm 2 /Vs] Planar FinFET Hole Density [/cm 2 ] Reducing sidewall D IT and sidewall roughness key to achieving higher fin mobility 27

Transport Degradation Hole Mobility [cm 2 /Vs] 1000 100 Planar N S N -1 S N -1 S 77K 150K 300K FinFET (W Fin =20nm) N S N -1 S N -2 S 10 12 10 13 10 12 10 13 Hole Density [/cm 2 ] Scattering Mechanism Acoustic Phonon Ns and T Dependence Ns -1/3 T Sidewall Roughness Ns -2 T 0 Remote Charge Scattering Ns 3/2 T 0 Strong Ns dependence for FinFET at 77K indicates sidewall roughness scattering 28

Transport Degradation Hole Mobility [cm 2 /Vs] 1000 100 Planar W Fin =70nm Scattering Mechanism Acoustic Phonon W Fin =45nm W Fin =20nm Ns=10 13 /cm 2 T -1 T 0 100 200 Temperature [K] Ns and T Dependence Ns -1/3 T Sidewall Roughness Ns -2 T 0 Remote Charge Scattering Ns 3/2 T 0 Reduced temperature dependence of mobility for FinFET is indicative of sidewall roughness 29

Short Channel Ge QW FinFET Gate Fin Source Drain Al Gate 100nm L G 10nm s-ge QW GeO x /Al 2 O 3 HfO 2 100nm 20nm Si 0.3 Ge 0.7 Buffer Short channel FinFET with gate length of 100nm and Tri-layer high-κ fabricated using SIT 30

I D [ A/ m] Short Channel FinFET Performance 10 2 10 0 10-2 10-4 10-6 V DS =-0.05V V DS =-0.5V 130 mv/dec Tri-Layer High-k/s-Ge QW FinFET -1.5-1.0-0.5 0.0 0.5 Gate Voltage [V] I D [ A m] 200 150 100 50 Tri-Layer High-k/s-Ge QW FinFET V G -V T =-1V to 1V 0-1.0-0.5 0.0 Drain Voltage [V] W fin =20nm; L G =100nm; 10 fins/μm V G,Step =0.1V E-Mode L G =100nm QW FinFET (W fin =20nm) with with I ON =90μA/μm (V G -V T =-0.5V) and SS=130 mv/dec 31

G m [ S/ m] 200 150 100 50 Transconductance Tri-Layer High-k/s-Ge QW FinFET W Fin =20nm V DS =-0.5V 1.6X L G =100nm L G =5 m 0-1.5-1.0-0.5 0.0 Gate Voltage [V] R SD-Linear [ m] 7x10 4 6x10 4 5x10 4 4x10 4 3x10 4 2x10 4 1x10 4 0 FinFET W Fin =20nm L G =100nm R Ext = 6.4k - m V G -V T =0V V G -V T =-0.2V V G -V T =-0.8V 0 1 2 3 4 5 Gate Length [ m] Peak G m enhancement of 1.6X observed for L g =100nm QW FinFET High R access =6.4kΩ-μm limits short channel performance 32

I D [ A/ m] Benchmarking 10 4 10 2 10 0 10-2 10-4 10-6 [1] Intel 22nm pmos FinFET W Fin =20nm L G =100nm V DS =-0.5V -1.5-1.0-0.5 0.0 V G -V T [V] 3D simulation model calibration to experiment performed using self-consistent Poisson- Schrodinger solver for QW FinFET [1] C. Auth et al., VLSI 2012 33

I D [ A/ m] Performance Projection 10 4 10 2 10 0 10-2 10-4 10-6 20X [1] Intel 22nm pmos FinFET W Fin =20nm L G =100nm V DS =-0.5V -1.5-1.0-0.5 0.0 V G -V T [V] 0 0.0 0.1 0.2 0.3 0.4 Channel Position [nm] v inj estimated at 8x10 6 cm/s for s-ge QW short channel FinFET at L G =100nm v eff [x10 6 cm/s] 10 5 v inj =8x10 6 virtual source cm/s 3x10 6 cm/s Intel 22nm pmos FinFET R ext = 6.4 kω-μm -> 200 Ω-μm [1] C. Auth et al., VLSI 2012 V GS =V DS =-0.5V L G =100nm 34

Conclusion Asymmetric uniaxial strain along fin (1.8%) results in high hole mobility in s-ge QW FinFET In-situ H-plasma clean and Tri-layer High-k gate stack developed: Low leakage (10-2 A/cm 2 ), low D IT at ultrathin EOT (0.72nm) obtained Mobility of 770 cm 2 /Vs at 0.83nm EOT achieved with s-ge QW MOSFETs E-Mode 1.3% s-ge QW FinFET with W fin =20nm and μ Hole =700 cm 2 /Vs (2.6X over r-ge) achieved with Trilayer high-k s-ge QW FinFET shows 8x10 6 cm/s v inj (simulation) with lower R access 35

Acknowledgements TSMC o Exploratory Technology Development Kurt J. Lesker Co. Penn State Nanofab National Science Foundation THANK YOU 36