Structure and Function of Neisseria gonorrhoeae MtrF Illuminates a Class of Antimetabolite Efflux Pumps

Similar documents
SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

REVIEWS. The AbgT family: A novel class of antimetabolite transporters. Jared A. Delmar 1 and Edward W. Yu 1,2 *

Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1.

SUPPLEMENTARY INFORMATION. doi: /nature07461

Supplementary Information. Structural basis for precursor protein-directed ribosomal peptide macrocyclization

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

Table 1. Crystallographic data collection, phasing and refinement statistics. Native Hg soaked Mn soaked 1 Mn soaked 2

SUPPLEMENTARY INFORMATION

Supplementary Figure 1. Biochemical and sequence alignment analyses the

Supplementary Figure 1 Crystal contacts in COP apo structure (PDB code 3S0R)

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

Full-length GlpG sequence was generated by PCR from E. coli genomic DNA. (with two sequence variations, D51E/L52V, from the gene bank entry aac28166),

SUPPLEMENTARY FIGURES

THE CRYSTAL STRUCTURE OF THE SGT1-SKP1 COMPLEX: THE LINK BETWEEN

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

SUPPLEMENTARY INFORMATION

Structural basis of PROTAC cooperative recognition for selective protein degradation

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

Supplemental Information. Molecular Basis of Spectral Diversity. in Near-Infrared Phytochrome-Based. Fluorescent Proteins

According to the manufacture s direction (Pierce), RNA and DNA

Plasmid Relevant features Source. W18N_D20N and TrXE-W18N_D20N-anti

Supplementary Information

Table S1. Primers used for the constructions of recombinant GAL1 and λ5 mutants. GAL1-E74A ccgagcagcgggcggctgtctttcc ggaaagacagccgcccgctgctcgg

SUPPLEMENTARY INFORMATION

T H E J O U R N A L O F G E N E R A L P H Y S I O L O G Y. jgp

SUPPLEMENTARY INFORMATION

Crystal Structure of Fibroblast Growth Factor 9 (FGF9) Reveals Regions. Implicated in Dimerization and Autoinhibition

type GroEL-GroES complex. Crystals were grown in buffer D (100 mm HEPES, ph 7.5,

of the Guanine Nucleotide Exchange Factor FARP2

Supplementary figure 1. Comparison of unbound ogm-csf and ogm-csf as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine

Supplemental Information

Nature Structural and Molecular Biology: doi: /nsmb Supplementary Figure 1. Definition and assessment of ciap1 constructs.

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Supporting Protocol This protocol describes the construction and the force-field parameters of the non-standard residue for the Ag + -site using CNS

Supplementary materials. Crystal structure of the carboxyltransferase domain. of acetyl coenzyme A carboxylase. Department of Biological Sciences

Supplemental Methods. Protein expression and purification

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

CH 3 CH 2 OH +H 2 O CHO. 2e + 2H + + O 2 H 2 O +HCOOH

for Molecular Biology and Neuroscience and Institute of Medical Microbiology, Rikshospitalet-Radiumhospitalet

SUPPLEMENTARY INFORMATION

Cryo-EM data collection, refinement and validation statistics

Structural insights into Aspergillus fumigatus lectin specificity - AFL binding sites are functionally non-equivalent

Stabilizing the CH2 domain of an Antibody by Engineering in an Enhanced Aromatic Sequon

Acta Cryst. (2017). D73, doi: /s

SUPPLEMENTARY INFORMATION

Diphthamide biosynthesis requires a radical iron-sulfur enzyme. Pennsylvania State University, University Park, Pennsylvania 16802, USA

Supplementary Figure 1. SDS-PAGE analysis of GFP oligomer variants with different linkers. Oligomer mixtures were applied to a PAGE gel containing

Crystal lattice Real Space. Reflections Reciprocal Space. I. Solving Phases II. Model Building for CHEM 645. Purified Protein. Build model.

Supplementary Figures

SI Text S1 Solution Scattering Data Collection and Analysis. SI references

SUPPLEMENTARY INFORMATION

Expanded View Figures

Table S1. Theoretical and apparent molecular weights of the proteins and protein complexes used for ITC analysis

Supporting Information

Supplementary Information

Supplementary Information. The protease GtgE from Salmonella exclusively targets. inactive Rab GTPases

Bacterial protease uses distinct thermodynamic signatures for substrate recognition

Supplemental Data SUPPLEMENTAL FIGURES

Structural insights into WcbI, a novel polysaccharide-biosynthesis enzyme

ml. ph 7.5 ph 6.5 ph 5.5 ph 4.5. β 2 AR-Gs complex + GDP β 2 AR-Gs complex + GTPγS

Supporting Information

Supplementary Figure S1. MscS orientation in spheroplasts and liposomes (a) Current-voltage relationship for wild-type MscS expressed in E.

Microcalorimetry for the Life Sciences

The copper active site in CBM33 polysaccharide oxygenases

Structure and RNA-binding properties. of the Not1 Not2 Not5 module of the yeast Ccr4 Not complex

RNA Polymerase I Contains a TFIIF-Related DNA-Binding Subcomplex

Structure, mechanism and ensemble formation of the Alkylhydroperoxide Reductase subunits. AhpC and AhpF from Escherichia coli

Building a Homology Model of the Transmembrane Domain of the Human Glycine α-1 Receptor

Advanced Certificate in Principles in Protein Structure. You will be given a start time with your exam instructions

Supplementary Figure 1

The Fic protein Doc uses an inverted substrate to phosphorylate and. inactivate EF-Tu

Supporting Information. UV-induced ligand exchange in MHC class I protein crystals

SUPPLEMENTARY INFORMATION

Nature Structural and Molecular Biology: doi: /nsmb.2783

FW 1 CDR 1 FW 2 CDR 2

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

SUPPLEMENTARY INFORMATION

Supplementary Figure 1. Aligned sequences of yeast IDH1 (top) and IDH2 (bottom) with isocitrate

Supplementary Figure 1. Stability constants of metal monohydroxides. The log K values are summarized according to the atomic number of each element

Structural insights into bacterial flagellar hooks similarities and specificities

Acta Crystallographica Section F

Structural basis for catalytically restrictive dynamics of a high-energy enzyme state

Supplementary figure 1 Application of tmfret in LeuT. (a) To assess the feasibility of using tmfret for distance-dependent measurements in LeuT, a

Supplementary Figure 1 Structure of the Orai channel. (a) The hexameric Drosophila Orai channel structure derived from crystallography 1 comprises

Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets

The structure of vanadium nitrogenase reveals an unusual bridging ligand

A conserved P-loop anchor limits the structural dynamics that mediate. nucleotide dissociation in EF-Tu.

SUPPLEMENTARY INFORMATION

Experimental and Computational Mutagenesis to Investigate the. Positioning of a General Base within an Enzyme Active Site

Biophysics 490M Project

Sunhats for plants. How plants detect dangerous ultraviolet rays

Structure and mechanism of an intramembrane liponucleotide synthetase central for phospholipid biosynthesis

Supplementary Materials for

Transcription:

Cell Reports Supplemental Information Structure and Function of Neisseria gonorrhoeae MtrF Illuminates a Class of Antimetabolite Efflux Pumps Chih-Chia Su, Jani Reddy Bolla, Nitin Kumar, Abhijith Radhakrishnan, Feng Long, Jared A. Delmar, Tsung-Han Chou, Kanagalaghatta R. Rajashankar, William M. Shafer, and Edward W. Yu

Supplemental Figures Fig. S1. Sequence and topology of N.gonorrhoeae MtrF. Related to Figure 1. Alignment of the amino acid sequences of the AbgT family of transporters was done using CLUSTAL W. *, identical residues; :, >60% homologous residues. Secondary structural elements are indicated: TM, transmembrane helix; α, helix. The sequence and topology of N. gonorrhoeae MtrF are shown at the top. Conserved residues involved in lining the channel of the inner core of the protein are highlight with green bars. Fig. S2. Stereo view of the electron density maps of MtrF at a resolution of 3.95 Å. Related to Figure 1. (a) The electron density maps are contoured at 1.2 σ. The Cα traces of the MtrF dimer in the asymmetric unit are included. Anomalous signals of the four Ta 6 Br 2+ 12 and six W 6 (µ-o) 6 (µ-cl) 6 Cl 2-6 cluster sites (both contoured at 4 σ) found in the asymmetric unit are colored red and white, respectively. (b) Anomalous maps of the 30 selenium sites (contoured at 4 σ). Two protomers forming a dimer of MtrF are found in the asymmetric unit. Each protomer contributes 15 selenium sites corresponding to the 15 methionines (red). The Cα traces of the two MtrF monomers are colored green and cyan. (c) Representative section of the electron density at the interface of TM2 and TM6 of MtrF. The electron density (colored slate) is contoured at the 1.2 σ level and superimposed with the final refined model (green, carbon; red, oxygen; blue, nitrogen). Fig. S3. Representative gel filtration experiment. Related to Figure 1. The experiment demonstrated that MtrF exists as a dimer in solution. The y axis values were defined as: K av = (V e V 0 )/(V T V 0 ), where V T, V e, and V 0 are the total column volume, elution 1

volume, and void volume of the column, respectively. Standards used were the trimeric E. coli CusC channel (M r 12,400) and monomeric N. gonorrhoeae NorM efflux pump (M r 29,000). The void volume was measured using blue dextran (M r 2,000,000). Fig. S4. Surface representation of a cross section of the MtrF protomer. Related to Figure 2. The channel formed within the outer core of the MtrF protomer is colored purple. Fig. S5. Expression level of the MtrF pumps. Related to Figure 3. An immunoblot against MtrF of crude extracts from 50 µg dry cells of strain BL21(DE3) abgt paba expressing the MtrF wild-type and mutant (D193A, S417A, W420A, P438A, R446A, D449A, and P457A) pumps are shown. Fig. S6. Copy numbers of MtrF in the cell. Related to Figure 3. An immunoblot against MtrF of crude extracts from 1.1 x 10 9 cells of BL21(DE3) abgt paba/pet15bωmtrf (lane 1). 6 ng (lane 2), 12 ng (lane 3), 30 ng (lane 4), 60 ng (lane 5), 120 ng (lane 6) and 300 ng (lane 7) of the purified MtrF protein were used as standards. The program ImageJ (Schneider et al., 2012) suggests that the crude cell extracts contain 21 ng MtrF protein, which should correspond to ~200 copies per cell. Fig. S7. Representative isothermal titration calorimetry for the binding of sulfanilamide to MtrF. Related to Figure 5. (a) Each peak corresponds to the injection of 10 µl of 40 µm monomeric MtrF in buffer containing 20 mm Tris-HCl ph 7.5 and 0.03% DDM into 2

the reaction containing 1.0 mm sulfanilamide in the same buffer. (b) Cumulative heat of reaction is displayed as a function of the injection number. The solid line is the leastsquare fit to the experimental data, giving a K D of 1.14 ± 0.01 µm. 3

Supplemental References Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9, 671-675. 4

TM1a TM1b Figure S1 TM2a NgMtrF -------MSQTDARRSG--------------RFLRTVEWLGNMLPHPVTLFIIFIVLLLIASAVGAYFGLSVPDPRPVGAK---GRADDGL--IHVVSLLDADGLIKILTHTVKNFTGFA 94 EcAbgT -----MSMSSIPSSSQS-------------GKLYGWVERIGNKVPHPFLLFIYLIIVLMVTTAILSAFGVSAKNPTDG---------TP----VVVKNLLSVEGLHWFLPNVIKNFSGFA 89 AbAbgT -----------MTRTH---------------GWLARLEQLGNRLPHPTLLFVWFCLLLLPLTAVLGALDVTATHPLT-DET------------ITAHSLLDADGLRYLFTTLVGNFTGFA 81 NmMtrF -------MSQTDTQRDG--------------RFLRTVEWLGNMLPHPVTLFIIFIVLLLIASAVGAYFGLSVPDPRPVGAK---GRADDGL--IYIVSLLNADGFIKILTHTVKNFTGFA 94 CcAbgT MSDAAPPVSSPPPRQK---------------GLLGVVERLGNLLPEPVMIFVWLILGLMVLSAIGQALGWSASITYAGDEAPQFGELENGVLTYAASSLFSEANLARLFTEMPKTLTSFA 105 SpAbgT ------------------------------MRFLNIVERLGNLLPHPITLFALFCVAVILISGIAGYFELTVADPRPVGSH---GRSADGL--IHVVSLMNAEGLRMIVSNLVTNFTGFT 85 PmMtrF -------MTTTQQQKKGS-------------KFLHTVEWLGNMLPHPVTLFMIFIVLLLITSALGEYFGLAVADPRPEGVK---GRAADGM--IYVVSLLNAEGLSRILTNLVKNFTNFA 95 VcAbgT -------MTRREQMSSSASINQNAPKKPLITRFLDGVEYLGNLLPHPITLFAIFCVVLLVASGIAGYFELSVVDPRPEGAK---GRAADGM--IHVVSLLNADGLELIVTNLVKNFVGFA 108 BhAbgT -MKPAPHVELKPNQRG------------VFVRFLDIIEKYGNKLPDPIMLFVIMAVLILICSAIFSALGTSAVHPGTG---------EE----IEVVNLLNGEGFILILTELVNNFTSFP 94 PdAbgT ------------------------------MRALNVVERAGNKLPDPVTIFLLLCIIVVILSAVISNLGVEEIHPSTK---------EV----VKVVNLLEKEQIQSYLGSIVTNFQSFA 77 SaAbgT -------MTSKHQQKGS-----------IVNRFLNSVEKIGNKLPDPSVLFFLMCVGLAIMTWVISLFNVSVKHPGTH---------QT----IYIKNIISHDGFTMIMNDTIKNFSEFP 89 TdAbgT -------MDKKKNKEVS--------------GFLKGVERIGNKLPHPAMIFLILSIIVIIVSALAEAYGTPVTYFDAK--K---GKEVT----IGAVSLLNLDGLRYILNTATKNFTGFA 90 CdAbgT -----MSTTTPPHKTAP-------------SGFLGKIEQLGNRLPDPFWIFAFLAIIVAISSWIGSAIGMTAVNPQDG---------ST----VEVTNLLTKEGATKMVSEAVNNFVAFP 89 :* ** :*.* :* : : : : :.::..: *. TM2b TM2c HP1a HP1b TM3a TM3b NgMtrF PLGTVLVSLLGVGIAEKSGLISALMRLLLTKSPRKLTTFMVVFTGILSNTASELGYVVLIPLSAVIFHSLGRHPLAGLAAAFAGVSGGYSANLFLGTIDPLLAGITQQAAQIIHPDYVVG 214 EcAbgT PLGAILALVLGAGLAERVGLLPALMVKMASHVNARYASYMVLFIAFFSHISSDAALVIMPPMGALIFLAVGRHPVAGLLAAIAGVGCGFTANLLIVTTDVLLSGISTEAAAAFNPQMHVS 209 AbAbgT PLGVVLVAMLGLGVAEQSGLLSVSLASLVRRSSGGALVFTVAFAGVLSSLTVDAGYVVLIPLAGLVFQLAGRPPIAGIATAFAAVSGGFSANLLVGPVDATLAGLSTEAAHIIDPDRTVA 201 NmMtrF PLGTVLVSLLGVGIAEKSGLISALMRLLLTKSPRKLTTFMVVFTGILSNTASELGYVVLIPLSAIIFHSLGRHPLAGLAAAFAGVSGGYSANLFLGTIDPLLAGITQQAAQIIHPDYVVG 214 CcAbgT PLGLVLVVILGAAVAERSGLFSALIRASLREAPKRILTPLVVIIGMVSHHASDAAYVVFIPLAGLLYAAVGRHPLAGIAAGFAAVSGGFAGNLTPGQFDVVLFGFTQEAARIIDPTWTMN 225 SpAbgT PLGTVLVALLGVGIAERSGLLSAAMRALVMGASKRLVTVTIVFAGIMSNTAAELGYVVLIPMAAMIFHSLGRHPLAGLAAAFAGVSGGYSANLLLGTVDPLLSGITEAAARMIDPDYSVG 205 PmMtrF PLGTVLVALLGVGIAEKAGLLSAVMRLLVTKSPRKLTTFTIVFAGILSNTASELGYVVLIPLAAIIFHSLGRHPLAGLAAAFAGVSGGYSANLLLGTIDPLLAGITQQAAQIIDPTYTVG 215 VcAbgT PLGTVLVAMLGVAIAEHSGLLSAAMRGLVMGASKRMVTFTVVFAGIISNTASELGYVVLIPLAAMLFHSLGRHPLAGLAAAFAGVSGGYSANLLIGTVDPLLSGITETAARMIDPTYSVG 228 BhAbgT PLGLVLVVMLGVGVAESTGLLSALMKTTILNAPRKLILPTIVLVAMLGNAAADAAMVVLPPIVAMIFIALGRHPLAGLAAAYASVAGGFSANLILSMLDPLVAGFTQTGAQMIDPDYVAN 214 PdAbgT PLGLVLVTMLGAGVAEKSGFMEVLMKKGISKVPQKLVTVAIVFAGMLSHTAADVGFIILPPLAALVFLGIGRHPLVGMFAAFAGVAGGFAANVMLSTTDVLLAGFTIPAAQMMDPSYQGN 197 SaAbgT ALGLVLAVMIGIGVAEKTGYFDKLMISVVNRAPRFLILPTIILIGILGSTAGDAATIILPPLAAMLFIKIGYHPIAGLTMAYASAVGGFAANIVVGMQDALVYSFTEPATRIVSDSIKTN 209 TdAbgT PLGTVLVAMLGVGVAEWTGLINTSLKKLLSGVHPRLLTVVVVFAGIMSNVASDAGYVVVIPLGAIVFANAGRHPMAGLAAAFAGVSGGFSANLMLGTIDPLLTGITVEALHNAGMDIAID 210 CdAbgT PLGVIITVMLGVSVAEHSGFISALVRAMVAKVGPKTLTYVVALAGVTGSIASDAVYVILISLGAMSFRALGRSPIVGAMVAFAASSAGFNASLILNITDVLLSGISTSAAQLVDPEYHVS 209.** ::. ::*.:** * : : : :... : : ::..:.: : * *:.*. *. *:..: * :.::. TM4!1 TM5 NgMtrF PEANWFFMAASTFVIALIGYFVTEKIVEPQLGPYQSDLSQEEKDIRHSNE------------------ITPLEYKGLIWAGVVFIALSALLAWSIV-----PADGILRHPET--GLVAGS 309 EcAbgT VIDNWYFMASSVVVLTIVGGLITDKIIEPRLGQWQG-----NSDEKLQT-------------------LTESQRFGLRIAGVVSLLFIAAIALMVI-----PQNGILRDPIN--HTVMPS 298 AbAbgT ATGNYWFIIASTFLVTGLVTLITRTLTEPRLAHANTVADASVDAPQIHS-------------------------RAMKWTGLT-LAILLAGLALLV----LPNDAPLR--HPDTGSVLGS 289 NmMtrF PEANWFFMVASTFVIALIGYFVTEKIVEPQLGPYQSDLSQEEKDIRHSNE------------------ITPLEYKGLIWAGVVFVALSALLAWSIV-----PADGILRHPET--GLVSGS 309 CcAbgT PLGNWWYILAIVVVFTPIAWFLTDKVVEPRLGPWGGQADDALKAELAKSA------------------VTADEKRGLKFAGLAALAIVALFAALSL----IPGFTPLID-ETKTGPAQLT 322 SpAbgT PEVNWYFMFVSTFVITFLGAFVTEKIVEPKLGKYQDGDADETVLQS-MES------------------VSAIEKRGLKWAGLSVLILAIMLALLVV-----PEGAPLRHPDT--GLVSGS 299 PmMtrF PEANWFFMAASTFVIAFIGYFITEKIVEPQLGPYNSHLSQEELDLQHSNE------------------VSPLERKGLRYAGLVFLILCALLAWTVV-----PENGILRDPKT--GLVTGS 310 VcAbgT PEVNWYFMAASTFVIAILGAFVTEKIVEPKLGKYDVSEASDDLSQDKMGS------------------LTALEKKALAYAGLAVVVVSALLAWTIV-----PADGVLRGED---GLVSGS 322 BhAbgT PAMNYYFLVASCLVLVPVAVWVTTKIVEPRLGTYTG-----EVEEITG--------------------VTKEEKKGLRWAGISVVILAVVFLFLTV-----PEQALLRDPETGS--LTVS 302 PdAbgT PAMNLYFAFISAIVLTFAGAFVTEKFIAPRFTKYNDS----TNDKDIQE-------------------LSELENKGIKYALLSLLVVVVVIVALCI-----GDNAFMKDPETGSILSSNA 289 SaAbgT VAMNWYFIAASVVVLLPTILLVTTKLIIPRLGKYDDSLMHDDHEETSSH-------------------ITDKEAHALKWANISFIVTIILLIITAI-----PEHSFLRNAKTGSL-LDDA 304 TdAbgT PTCNWFFMIVSTFILTVVGTFVTEKIVEKNLGTYNGSYKPDNMPIS------------------------DVENKGLKLAGISVLIMAVILIIGLFGLPKLPGLAVLREIDPKTGESSIS 306 CdAbgT TLANYFFVVASFLVLALIITAVTELFVKNRARQLVDHDHIDHSELSFRDDDHPDLGAKTDEELAEEIALHSGEIRALTIAGVAFIGMLAVYFALLF----VPASPFYSE-ES----AMSS 320 * ::.:. :*...: : : :. : TM6 TM7a TM7b TM7c HP2a HP2b NgMtrF PFLKS-IVVFIFLLFALPGIVYGRITRSLRGEREVVNAMAESMSTLGLYLVIIFFAAQFVAFFNWTNIGQYIAVKGAVFLKEVGLAGSVLFIGFILICAFINLMIGSASAQWAVTAPIFV 428 EcAbgT PFIKG-IVPLIILFFFVVSLAYGIATRTIRRQADLPHLMIEPMKEMAGFIVMVFPLAQFVAMFNWSNMGKFIAVGLTDILESSGLSGIPAFVGLALLSSFLCMFIASGSAIWSILAPIFV 417 AbAbgT PFIHG-LVVIVALIAGICGAVYGRVSGQFRNSGAVITAMEVTMASMAGYLVLMFFAAQFVAWFNYSQLGLLLAVKGAAWLGALTVPKVVLLLLFVVLTALINLMIGSASAKWSILAPVFI 408 NmMtrF PFLKS-IVVFIFLLFALPGIVYGRVTRSLRGEQEVVNAMAESMSTLGLYLVIIFFAAQFVAFFNWTNIGQYIAVKGATFLKEVGLGGSVLFIGFILICAFINLMIGSASAQWAVTAPIFV 428 CcAbgT PFYGA-LIAGFMMLFLAGGVAYGVGVGTVKTEGDVVNMMADGVRSVAPYIVFAFFAAHFVAMFNWSRLGPIAAIHGAETLKAMNLPAPLLLVSVLGFSSVLDLFIGSASAKWSALAPVVV 441 SpAbgT PFLKG-IVAFIFICFAIPGFVYGKVVGSINNDRDVINAMSHSMSTMGLYIVLVFFAAQFVAFFNWSNLGAVLAVLGADALQSIGLTGPILFLFFIMLCGFINLMLGSASAQWAITAPIFV 418 PmMtrF PFLKS-IVAFIFILFAIPGTVYGIVTKSIRSEKDVVNAMAEAMSTLGLYLVIIFFASQFVAFFNWTNIGQYIAVKGANFLNEVGLHGGILFMGFILICAFINLMIGSASAQWAVTAPIFV 429 VcAbgT PFLKS-IVAFIFIFFAIPGYVYGRVVGTMKTDRDVINAMAKSMSSMGMYIVLVFFAAQFVAFFSWTKFGQVLAVLGADFLKDIGLTGPMLFFAFILMCGYINLMIGSASAQWAVTAPIFV 441 BhAbgT PFMTG-IVPIMMVFFLVPALVYGFVAKVFTSSKDVADHLAKSMSNMGTYIVIAFVAAQMIAFFNWSQLGPIVAIKGANFLQTIGFTGLPLLLGFIVIAALINLMVASASAKWAILAPVFV 421 PdAbgT PLMKG-IVPIITIIFLTPGLVYGKVSKKIKSDKDLVSMMGSSMSDMGGYIVLAFIASQFINLFNLSNLGTILSITGAKLLAESGIPSYGLIIGFILLSGFINLFVGSASAKWAILAPIFV 408 SaAbgT PLING-VGLIILVVFLVPGLVYGILSKEIKNTKDLGKMFGDAVGSMGTFIVIVFFAAQLLAYLKWSNLGIIAAVKGAKLLEHQ--NGIVLILGIIVLSAMVNMLIGSASAKWGILGPIFV 421 TdAbgT NFMHGGLLPVILLLFLIPGLIYGKKTGKINSSHDLVKGMSQAMSSMGGYLVLSFFAAQFVNYFGKTNLGTIISVNGANFLKSIGFTGLPLIISFVIISAFLNLFMGSASAKWAIMAPIFV 426 CdAbgT PLVKA-VTVPISLMFLGLGVVYGITIKSITSLGDIPAFMAKGLTTLIPMVVLFFMVAQFLAWFQWSNLGIWTAIKGAELLQRWDLPVYVLFAAVVLAVALLNLTITSGSAQWALMAPVIV 439 :. :. :. **. : : : : :*: * :::: : :.:* :: : * :.. : : : *.** *..*:.: TM8a TM8b TM9 NgMtrF PMLMLAGYAPEVIQAAYRIGDSVTNIITPMMSYFGLIMATVMKYKKDAGVGTLISMMLPYSAFFLIAWIALFCIWVFVLGLPVGPGAPTLYPAP----- 522 EcAbgT PMFMLLGFHPAFAQILFRIADSSVLPLAPVSPFVPLFLGFLQRYKPDAKLGTYYSLVLPYPLIFLVVWLLMLLAW-YLVGLPIGPGIYPRLS------- 508 AbAbgT PMLMLLGISPEASQAAYRVGDSSTNIITPLMPYFVLVLGFARRYQPETGIGTLIALMLPYSLTLLLGWSVLLGVW-IGFGWPLGP-------------- 492 NmMtrF PMLMLAGYAPEVIQAAYRIGDSVTNIITPMMSYFGLIMATVIKYKKDAGVGTLISMMLPYSAFFLIAWIALFCIWVFVLGLPVGPGAPTFYPAP----- 522 CcAbgT PMFMLLGISPEMTTAAYRMGDSFTNLMTPLMSYFPLVLAMTRRWDPSMGVGSLLALMLPYALAFMVAGVAMTLAW-VAFDWPLGPAAQVHYTPPGGLLK 539 SpAbgT PMLMLVGYAPETIQAAYRIGDSVTNLVTPMMSYFGLILAVACRYQKNLGIGTLIATMLPYTLVFFVGWTAFFFLWVFGFGLPVGPGAATYYTP------ 511 PmMtrF PMLMLTGYSPEIIQAAYRIGDSVTNIITPMMSYFGLIMATVLKYKKDAGVGTLVSMMLPYSVAFLVAWSAMFFIWVFVLGLPVGPNSPMFYPAQ----- 523 VcAbgT PMLMLVGYAPEVIQAAYRIGDSVTNIITPMMSYFGLILAVATRYMKNLGIGTLIATMLPYSVVFMVGWSLLFYVWVFVLGLPVGPGAATYYTP------ 534 BhAbgT PMFMLLEYSPAFTQAAYRVGDSITNPITPMLPYFAIALTFAKKYDPKIGIGTFMSSLLPYSIAFAVIWIILFTVW-YLLGLPLGPGEYIHLHT------ 513 PdAbgT PMFMLLDFNPALTQIAYRIGDASTNPISPLFPYFPVILAFARRYDKDIGIGTVISNMIPYSVVFTLIEIIILLLF-MGIGIPLGPGGGISYVL------ 500 SaAbgT PMLILIGFHPAFTQVIYRVGDSITNPITPMMPYLPLLLTYAQKYDKRMKLGALLSSLMPYSIALSIVWTVFVIIW-FLLGIPVGPGGPIFVK------- 512 TdAbgT PMMVNLGLSPALTQVAYRIGDSSTNLITPLMSYFAMIVVFMKKYDEDSGLGTLISTMLPYSIAFLLSWIGLMIIW-YIFGLPLGPGAFIHI-------- 516 CdAbgT PMMMYVGISPEVTQMLFRIGDSPTNIITPMSPYFALALTFLQRYYKPAGVGTLVSLALPYSIAMLVGWFVFFIVW-YALGVPLGPGTPMHFQQG----- 532 **:: * :*:.*:. ::*:.:. : : :: :*: : :**. : : : :.. *:**!

Figure S2 a G92 T91 F90 A94 P95 F93 L96 T98 V316 L100 V101 V317 b L319 L103 F318 L104 F320 V106 L321 L322 G107 I108 G92 T91 c A94 T98 V316 F318 V101 V317 L319 F320 L321 L322 F90 F93 P95 L96 L100 L103 L104 V106 G107 I108

Figure S3 0.26 0.24 NorM monomer 0.22 K av 0.20 0.18 0.16 MtrF dimer 0.14 0.12 CusC trimer 4.7 4.8 4.9 5.0 5.1 5.2 Log (M.W.)

Figure S4

Figure S5

1 2 3 4 5 6 7 Figure S6

0.02 0.00 Time (min) 0 20 40 60 80 100 120 140 160 a Figure S7-0.02-0.04 µcal/sec -0.06-0.08-0.10-0.12-0.14 kcal/mole of injectant -0.16 0.02 0.00-0.02-0.04-0.06-0.08-0.10-0.12-0.14 b -0.50.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 Molar Ratio

Table S1. Data collection, phasing and structural refinement statistics. Related to Figure 1. Data set Native MtrF Ta 6 Br 12 2+ W 6 (µ-o) 6 (µ- Cl) 6 Cl 6 2- Se (peak) Data Collection Wavelength (Å) 0.98 1.25 1.02 0.98 Space group P6 5 P6 5 P6 5 P6 5 Resolution (Å) 50 3.95 50 6.53 50 5.70 50 4.60 (4.11 3.95) (6.74 6.53) (5.93 5.70) (4.76 4.60) Cell constants (Å) a 120.77 120.57 120.51 116.37 b 120.77 120.57 120.51 116.37 c 233.90 231.33 231.75 224.88 α, β, γ ( ) 90, 90, 120 90, 90, 120 90, 90, 120 90, 90, 120 Molecules in ASU 2 2 2 2 Redundancy 4.7 (4.0) 5.7 (5.8) 5.6 (6.5) 4.4 (3.8) Total reflections 868,348 28,1275 189,1056 1796,647 Unique reflections 16,832 3814 5533 9712 Completeness (%) 98.2 (92.8) 99.9 (99.9) 99.7 (99.0) 99.9 (100) R merge (%) 5.8 (46.8) 5.3 (49.5) 8.6 (48.7) 9.4 (59.0) I / σ 29.65 (0.88) 45.42 (2.60) 34.14 (1.7) 19.35 (1.95) Phasing Number of sites 4 6 30 Phasing power (acentric/centric) 1.71/0.99 Figure of merit 0.59 Refinement MtrF Resolution (Å) 50 3.95 R work (%) 29.9 R free (%) 33.6 RMSD bond lengths (Å) 0.009 RMSD bond angles ( ) 1.52 Ramachandran plot most favoured (%) 89.0 additional allowed (%) 10.0 generously allowed (%) 1.0 disallowed (%) 0.0

Table S2. Primers for site-directed mutagenesis. Related to Figure 3. Primer D193A-forward D193A-reverse S417A-forward S417A-reverse W420A-forward W420A-reverse P438A-forward P438A-reverse R446A-forward R446A-reverse D449A-forward D449A-reverse P457A-forward P457A-reverse Sequence 5ʹ -CTGTTCCTGGGCACCATTGCTCCGCTGCTGGCCGGTATC-3ʹ 5ʹ -GATACCGGCCAGCAGCGGAGCAATGGTGCCCAGGAACAG-3ʹ 5ʹ -GGTAGTGCTGCCGCACAATGGGCAGTGACCGCACCGATCT-3ʹ 5ʹ -CCATTGTGCGGCAGCACTACCGATCATCAGGTTAATAAA-3ʹ 5ʹ -CGCACAAGCGGCAGTGACCGCACCGATCTTCGTTCCG-3ʹ 5ʹ -GGTCACTGCCGCTTGTGCGGAAGCACTACCGATCATCAG-3ʹ 5ʹ -GGCTATGCTGCGGAAGTCATTCAGGCCGCATACCGC-3ʹ 5ʹ -GACTTCCGCAGCATAGCCTGCCAGCATCAGCATCGG-3ʹ 5ʹ -GTCATTCAGGCCGCATACGCCATCGGTGATTCAGTTACC-3ʹ 5ʹ -GGTAACTGAATCACCGATGGCGTATGCGGCCTGAATGAC-3ʹ 5ʹ -GCCGCATACCGCATCGGTGCTTCAGTTACCAATATTATC-3ʹ 5ʹ -GATAATATTGGTAACTGAAGCACCGATGCGGTATGCGGC-3ʹ 5ʹ -ATCACGGCGATGATGTCGTATTTTGGTCTGATTATG-3ʹ 5ʹ -CGACATCATCGCCGTGATAATATTGGTAACTGAATC-3ʹ

Table S3. MICs of sulfamethazine, sulfadiazine, sulfathiazole and sulfanilamide for different MtrF variants expressed in E. coli BL21(DE3) abgt paba. Related to Figure 5. Gene in BL21(DE3) abgt paba Sulfamethazine (µg/ml) Sulfadiazine (µg/ml) Sulfathiazole (µg/ml) Sulfanilamide (µg/ml) Empty vector 62.5 31.25 62.5 500 mtrf (wild-type) 2000 >250 >500 4000 mtrf (D193A) 1000 31.25 62.5 2000 mtrf (S417A) 125 31.25 125 2000 mtrf (W420A) 125 31.25 62.5 2000 mtrf (P438A) 62.5 31.25 62.5 1000 mtrf (R446A) 1000 >250 >500 2000 mtrf (D449A) 62.5 31.25 62.5 1000 mtrf (P457A) 62.5 62.5 125 1000

Table S4. Binding of sulfamethazine, sulfadiazine, sulfathiazole, sulfanilamide and p- aminobenzoic acid by MtrF. Related to Figure 5. K D (µm) H (kcal mol -1 ) S (cal mol deg -1 ) Sulfamethazine 0.33 ± 0.02-580.2 ± 5.9 27.7 Sulfadiazine 12.74 ± 0.62-1900.0 ± 131.8 16.0 Sulfathiazole 1.52 ± 0.07-267.3 ± 8.0 25.7 Sulfanilamide 1.14 ± 0.01-135.2 ± 1.1 26.7 PABA 0.54 ± 0.02-319.2 ± 8.6 27.6

Table S5. Binding of sulfamethazine, sulfadiazine, sulfathiazole, sulfanilamide and p- aminobenzoic acid by the W420A mutant. Related to Figure 5. K D (µm) H (kcal mol -1 ) S (cal mol deg -1 ) Sulfamethazine 10.78 ± 1.17-233.4 ± 10.7 21.9 Sulfadiazine 105.82 ± 25.6-41103 ± 2065.0 4.4 Sulfathiazole 50.76 ± 8.9-713.5 ± 28.4 17.3 Sulfanilamide 6.80 ± 1.5-63.1 ± 3.0 23.4 PABA 41.15 ± 8.5-425.3 ± 18.7 18.6