Bio 1B Lecture Outline (please print and bring along) Fall, 2008

Similar documents
Bio 1B Lecture Outline (please print and bring along) Fall, 2007

Geologic Time. What is Age? Absolute Age The number of years since the rock formed. (150 million years old, 10 thousand years old.

The Significance of the Fossil Record ( Susan Matthews and Graeme Lindbeck)

Study Guide. Section 1: Fossil Evidence of Change CHAPTER 14

Earth s History. The principle of states that geologic processes that happened in the past can be explained by current geologic processes.

17-1 The Fossil Record Slide 2 of 40

The Environment and Change Over Time

Fossils provide evidence of the change in organisms over time.

Fossils. Name Date Class. A Trip Through Geologic Time Section Summary

17-1 The Fossil Record Slide 1 of 40

Earth History. What is the Earth s time scale? Geological time Scale. Pre-Cambrian. FOUR Eras

Outline. Origin and History of Life

Topic 7: Historical Geology

The History of Life. Before You Read. Read to Learn

NOTES 1. Fossils. The BIG Idea Rocks, fossils, and other types of natural evidence tell Earth s story.

EARTH S HISTORY. What is Geology? logy: science. Geology is the scientific study of the Earth, including its:

UNIT 4: EVOLUTION Chapter 12: The History of Life. I. The Fossil Record (12.1) A. Fossils can form in several ways

UNIT 4: History Of Biological Diversity

Biology. Slide 1 of 40. End Show. Copyright Pearson Prentice Hall

Chapter 3 Time and Geology

Fossils Biology 2 Thursday, January 31, 2013

Earth s Formation: 4.6 Billion Years ago

Clues to Earth s Past. Fossils and Geologic Time

1. What is the definition of uniformitarianism? 2. What is the definition of organic? 4. What is the definition of inorganic?

Module 9: Earth's History Topic 3 Content: A Tour of Geologic Time Notes

1 The origin of life (pp )

Fossils. Presented by Kesler Science

Unit 6: Interpreting Earth s History

Age of Earth/Geologic Time. Vocabulary

Fossils & The Geologic Time Scale

How do we learn about ancient life? Fossil- a trace or imprint of a living thing that is preserved by geological processes.

Geological Time How old is the Earth

Earth s history can be broken up into 4 time periods: Precambrian Paleozoic Era Mesozoic Era Cenozoic Era

Section 1: How Did Life Begin? Chapter 19: History of Life on Earth. Section 2: The Age of Earth

Objectives: Define Relative Age, Absolute Age

What is the Earth s time scale?

HISTORICAL GEOLOGY. Relative & Absolute age, fossils and geologic time

5 Time Marches On. TAKE A LOOK 1. Identify What kinds of organisms formed the fossils in the picture?

I. History of Life on Earth

GEOLOGY 12 CHAPTER 8 WS #3 GEOLOGIC TIME & THE FOSSIL RECORD

Chapter 14 The History of Life

Lecture Outlines PowerPoint. Chapter 12 Earth Science 11e Tarbuck/Lutgens

4) Outline the major developments that allowed life to exist on Earth.

Geological Time Scale UG Hons.1 st Year) DR. CHANDAN SURABHI DAS ASST. PROF. IN GEOGRAPHY BARASAT GOVT. COLLEGE

Chapter: Clues to Earth s Past

11/5/2015. Creating a Time Scale - Relative Dating Principles. Creating a Time Scale - Relative Dating Principles. The Geologic Time Scale

Page 143: Geologic Time

The History of Life. Fossils and Ancient Life (page 417) How Fossils Form (page 418) Interpreting Fossil Evidence (pages ) Chapter 17

Tales of the Past. Source: Sci-ber Text with the Utah State Office of Education

Section 17 1 The Fossil Record (pages )

12.1. KEY CONCEPT Fossils are a record of life that existed in the past. 68 Reinforcement Unit 4 Resource Book

Objectives. Vocabulary. Describe the geologic time scale. Distinguish among the following geologic time scale divisions: eon, era, period, and epoch.

THE HISTORY OF THE EARTH EARTH SCIENCE

Rock cycle diagram. Principle of Original Horizontality. Sediment is deposited horizontally

Fossils: evidence of past life

Name Class Date. Crossword Puzzle Use the clues below to complete the puzzle.

GO ON. Directions: Use the diagram below to answer question 1.

FOSSILS. Book G Chapter 4 Section 1

Directed Reading. Section: Precambrian Time and the Paleozoic Era EVOLUTION. beginning of life is called. to. PRECAMBRIAN TIME.

Station Look at the fossil labeled # 16. Identify each of the following: a. Kingdom b. Phylum c. Class d. Genus

Section 17 1 The Fossil Record (pages )

TOPIC 1: RELATIVE DATING ESSENTIAL QUESTION: HOW DO WE DETERMINE A ROCK S AGE BY THE SURROUNDING ROCKS?

The Phanerozoic Eon. 542 mya Present. Divided into 3 Eras The Paleozoic, Mesozoic, and Cenozoic Eras

FOSSILS Uncovering Clues to the Earth s Past

Chapter 3 Time and Geology

2 Eras of the Geologic Time Scale

Lecture Outline Friday Feb. 21 Wednesday Feb. 28, 2018

What we will learn about Fossils?

A Trip Through Geologic Time

The History of Life. Section 3-2. The Fossil Record

Spring th Grade

Name Date EARTH S HISTORY VOCABULARY

TIME. Does not give the. Places events in sequencee 1 st, 2 nd, 3 rd. Gives a. exact date of an event. event. Radioactive Dating.

Remains or traces of prehistoric life

Earth s s Geologic History

Chapter Study Guide Section 17-1 The Fossil Record (pages )

Geologic Time. Decoding the Age of our Planet & North Carolina

Summary The Fossil Record Earth s Early History. Name Class Date

The History of Life KEY CONCEPTS The Fossil Record Fossils are a record of life that existed in the past.

Visualizing Earth Science. Chapter Overview. The Ever-Changing Earth. Early Life. Evolution and the Fossil Record. Life in the Phanerozoic Eon

6/30/2018. Geologic Time. Earth, Chapter 9 Chapter 9 Geologic Time

Name: Date: Period: Page 1

.Biology Chapter 14 Test: The History of Life

Clues to the Past. Grades 6-8 Educational Program Guide

Geologic Time. Geologic Events

Evidence for Evolution Notes:

test date Name date Review: Geologic Time & Geologic Procesess-: You will record 1-38 answers on the scan sheet! These are worth 1.

First, an supershort History of the Earth by Eon

Fossils, Geologic Time, Absolute & Relative Dating, and Natural Resources. Chapters 5 & 6

UNIT 4: EVOLUTION Chapter 12: The History of Life

Section 1 Darwin s theory

Rock cycle diagram. Relative dating. Placing rocks and events in proper sequence of formation Deciphering Earth s history from clues in the rocks

B. Phylogeny and Systematics:

Relative Dating. How do we determine a rocks age by the surrounding rocks?

1. The timeline below represents time on Earth from the beginning of the Paleozoic Era Ato the present B.

Chapter 25: The Origin and Evolutionary History of Life on Earth

Warm Up Name the 5 different types of fossils

TRACE FOSSIL FOSSIL ICE CORE RELATIVE DATING SUPERPOSITION ABSOLUTE DATING GEOLOGIC COLUMN UNIFORMITARIANISM HALF-LIFE RADIOACTIVE DECAY

History of Life on Earth The Geological Time- Scale

Geologic History. Earth is very, very old

Transcription:

Bio 1B Lecture Outline (please print and bring along) Fall, 2008 B.D. Mishler, Dept. of Integrative Biology 2-6810, bmishler@berkeley.edu Evolution lecture #7 -- Early earth, continental drift, early life -- Nov. 17 th, 2008 507-520 (ch. 25) 8th; 492-493, 512-533 (ch. 26) 7th Summary of topics Early Earth Origin of life Fossils -- their kinds & how they are made Division of eras into periods and epochs Continental drift (plate tectonics) Early Earth (movies) Solar System: Our sun formed from the collapse of a cloud of gas and dust in the outskirts of the Milky Way Galaxy about 4.6 BYA. This cloud began to rotate, and lumps in it began to stick together, eventually forming planets (which continued collecting debris) Impacts: were a major feature of early earth; they became less frequent about 4.0-3.8 BYA as the extra matter in the solar system was mostly collected into the planets. Appearance of life: definitely present 3.5 BYA; perhaps as early as 3.9 BYA. Definitive evidence is presence of fossil cells of bacteria. Suggestive evidence of a slightly earlier origin in the isotopic signal of life in the rocks (carbon-12 enrichment, more later). Early Earth had no atmosphere, the first real atmosphere developed along with the first ocean about 4.0-3.8 BYA and was composed of CO 2 and many other compounds such as hydrogen, nitrogen, methane, hydrogen sulfide, and ammonia (some serious greenhouse gases -- temperature at the surface was around 85 0 C! ). Origin of life Stanley Miller: studied chemical reactions simulating those of early earth (1950's). early atmosphere of earth: as described above, plenty of organic compounds and water vapor, but no free oxygen was present. Much volcanism, lightening, and UV radiation. Evolution #7, pg. 1

Miller's experimental results: Within a few hours the system contained numerous simple organic compounds. In water these were rapidly converted into amino acids, simple acids and other compounds, and because these molecules are relatively stable, they quickly accumulate in solution. Comparable results are obtained, including production of DNA and RNA, under a variety of conditions, provided that free oxygen is absent. Thus, once earth cooled enough for water to condense and form oceans, molecules of many kinds formed spontaneously, and they probably accumulated until they reached relatively high concentrations. Life may have emerged from non-life in such an anaerobic "primordial soup", and non-living materials became ordered into molecular aggregates that were eventually capable of replication and metabolism. Because of the presence of oxygen in our atmosphere now life cannot spontaneously occur. And even if it did, something now living would probably eat it! Life may also have evolved around deep-sea vents, or it may have resulted from extraterrestrial sources. Fossils fossil: any remains, impressions or trace of a living thing of a former geologic age, as a skeleton, footprint etc. (Fig. 25.4 (8 & 7th)). Most species that have ever lived left no fossils. Most fossils that have formed have been destroyed. Only a minute fraction of existing fossils have been discovered. Most fossils are formed from the hard parts of animals and plants, such as shells, bones, teeth, or wood. Fossilization is a very chancy process and happens rarely. The burial process is usually by sand or mud washed down by water, or in a desert sandstorm. Most fossils occur in sedimentary rocks sandstone, clays, shales, chalk. Animals and plants have also been preserved in peat and coal (swampy plants), oil (tiny plankton plants), tar, ice, and amber (the resin of ancient trees), and may still have DNA. Fossils may be virtually unchanged from the originals (rare), or they may be mineral replacements, casts or molds (impressions), "mummies", or impressions of the skin, feathers, and some soft tissues may be preserved. Evolution #7, pg. 2

Eggs, footprints, and burrows can be fossilized. Some animals are more likely to be fossilized than others, e.g., those with shells. Four types of Fossils Intact - The pollen was preserved intact because no decomposition occurred. Compression - Sediments accumulated on top of the leaf and compressed it into a thin carbon-rich film. Cast - The branch decomposed after it was buried. This left a hole that filled with dissolved minerals, faithfully creating a cast of the original. Permineralized - The wood decayed very slowly, allowing dissolved minerals to gradually infiltrate the cells and then harden into stone. What do fossils tell us? bones: size and shape of animal, muscle attachment sites and size; defense mechanisms: horns, claws, etc.; teeth: diet; footprints: movement of animals, speed, whether or not they lived in herds, etc.; eggs: fossil eggs can reveal evidence of nesting and parental behavior in animals; skin: type of skin, armor plates in dinosaurs, etc. Principle of Superposition, Steno's Law: in an undisturbed sequence of rocks, the oldest layer is at the bottom and the youngest is at the top. index fossils: the rock strata at one location can often be correlated with strata at another location by the presence of similar fossils. (William Smith, 1769-1839, geology of England) radioactive dating: a method of determining the age of fossils and rocks using half-lives of radioactive isotopes (Fig. 25.5 (8th), Fig. 26.7 (7th)). When molten rock cools, forming what are called igneous rocks, radioactive atoms are trapped inside. Afterwards, they decay at a predictable rate. By measuring the quantity of unstable atoms left in a rock and comparing it to the quantity of stable atoms in the rock, scientists can estimate the amount of time that has passed since that rock formed. bracketing the fossils: fossils are generally found in sedimentary rock, not igneous rock. Sedimentary rocks can be dated using radioactive carbon, but because carbon decays relatively quickly, this only works for rocks younger than about 50 thousand years. In order to date most older fossils, scientists look for layers of igneous rock or volcanic ash above and below the fossil. Scientists date igneous rock using elements slower to decay, such as Evolution #7, pg. 3

uranium and potassium. By dating these surrounding layers, they can figure out the youngest and oldest that the fossil might be; this is known as bracketing the age of the sedimentary layer in which the fossils occur. Half-life of 13 N is 10 minutes Half-life of 238 U is 4.5 billion years Half-life of 14 C is 5600 years Since half-life of 14 C is 5600 years, And living material has 16 units of radioactivity per gram of carbon Calculate these ages: Human hair from a cemetery in pre-dynastic Egypt has 8 units left and is therefore yrs old Charcoal from the Lascaux Caves in France has 2 units left and is therefore yrs old. Division of eras into periods and epochs Eras: See Table 25.1 (8th), Table 26.1 (7th) Precambrian (4.6 billion to 542 Myr) Paleozoic (542 to 251 Myr) Mesozoic (251 to 65 Myr), Cenozoic (65 Myr to present). These eras are not evenly spaced time intervals - but are based on major changes in the fossil record: the beginning of an abundant fossil record at the start of the Paleozoic, and very major extinction events at the end of the Paleozoic and Mesozoic eras Fig. 25.14 (8th), Fig. 28.6 (7th). Mass extinctions: are relatively sudden events where a large fraction of biodiversity is lost. At least some of these (maybe all?) are linked to impacts with asteroids. Other factors to keep in mind that have affected patterns of biodiversity: climate and sea levels have changed dramatically, and the positions of the continents on earth with respect to each other has changed. Evolution #7, pg. 4

Time periods in earth history to know for this class: Era Period Epochs Paleozoic Cambrian Ordovician Silurian Devonian Carboniferous: Mississippian, Pennsylvanian Permian Mesozoic Triassic Jurassic Cretaceous Cenozoic Paleogene: Paleocene, Eocene, Oligocene, Neogene: Miocene, Pliocene, Pleistocene (1.8 Myr), Holocene (Recent) (10,000 yrs) Summary of Eras (more next two lectures) Precambrian Era Earth is 4.6 billion years old Life began about 3.5 billion years ago By end of era there are pro- and eukaryotes and multicellular marine invertebrates Paleozoic Era Begins and ends with marine invert. radiation and extinction. Movement onto land by plants and animals Vertebrates appear Mesozoic Era Rise and fall of the dinosaurs Origin of mammals, birds and flowers Cenozoic Era Pollinating insects diversify Appearance of Homo sapiens Memory games: 1. Camels Ordinarily Sit Down Carefully, Perhaps Their Joints Creak, Possibly Early Oiling Might Prevent Premature Rusting. 2. Campbell's Ordinary Soup Does Make Peter Pale, Trial by Jury in the Cretaceous, P E O M P P H. Evolution #7, pg. 5

Continental drift (plate tectonics) continental drift: changing of the positions of the continents. Gondwanaland: Africa, South America, India, Antarctica, Australasia. Pangaea: all the world's continents united in one land mass. Wegener: proposed theory of continental drift in 1915. plate tectonics: the earth's crust is divided into seven enormous plates and several smaller ones: the theory that explains the movement of continents is called plate tectonics (Fig. 25.12 (8th), Fig. 26.18 (7th)). geological consequences of plate tectonics: Many important geological phenomena, including mountain building, volcanic eruptions and earthquakes, happen at plate boundaries, e.g., the San Andreas fault is part of a border where two plates slide past each other. CONTINENTAL DRIFT (major features) (Fig. 25.13 (8th), Fig. 26.20 (7th)) Cambrian Gondwanaland forms Permian - Pangaea forms Cretaceous - Major breakup of Pangaea Eocene - Australia, Antarctica, India, S. America, Africa all "island" continents. Miocene - Similar to present day Pliocene - Connection of N. and S. America Paleontological evidence of continental drift: 1. The Carboniferous rocks both of North America and Europe have yielded virtually the same fossil floras and faunas, associated with coal swamps and an equatorial climate. 2. The late Carboniferous and early Permian rocks of the southern continents (South America, Africa, India, Australia and Antarctica) on the other hand, all show evidence of extensive glaciation. 3. Triassic reptiles of S. America and Africa match. Evolution #7, pg. 6

Introduction to some biogeographic terms: endemic: A group of indigenous species which is restricted to, and native to, a particular geographic area. vicariance: separation of a continuously distributed ancestral population or species into separate populations, due to the development of a topographic or ecological barrier. (more later). Questions relating to lecture on Early earth, continental drift, early life 1. Do self-quiz questions #'s 1-3, 6 and 8 on pages 532-533 of the textbook (8th edition), or: Do self-quiz questions #'s 1, 5-7, and 9 on pages 532-533 of the textbook (7th edition) 2. What are the conditions of early earth that made origin of life possible? 3. Why couldn't it happen again now? 4. Discuss why some scientists believe life began at deep-sea vents. Evolution #7, pg. 7