Introduction to Mobile Robotics

Similar documents
Probabilistic Robotics

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms

Probabilistic Robotics SLAM

Probabilistic Robotics SLAM

Using the Kalman filter Extended Kalman filter

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II

CSE-473. A Gentle Introduction to Particle Filters

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017

Introduction to Mobile Robotics SLAM: Simultaneous Localization and Mapping

Tracking. Many slides adapted from Kristen Grauman, Deva Ramanan

Recursive Bayes Filtering Advanced AI

SEIF, EnKF, EKF SLAM. Pieter Abbeel UC Berkeley EECS

Uncertainty & Localization I

Sequential Importance Resampling (SIR) Particle Filter

Robot Motion Model EKF based Localization EKF SLAM Graph SLAM

Tracking. Many slides adapted from Kristen Grauman, Deva Ramanan

CSE-571 Robotics. Sample-based Localization (sonar) Motivation. Bayes Filter Implementations. Particle filters. Density Approximation

Augmented Reality II - Kalman Filters - Gudrun Klinker May 25, 2004

Announcements. Recap: Filtering. Recap: Reasoning Over Time. Example: State Representations for Robot Localization. Particle Filtering

7630 Autonomous Robotics Probabilistic Localisation

AUTONOMOUS SYSTEMS. Probabilistic Robotics Basics Kalman Filters Particle Filters. Sebastian Thrun

Probabilistic Fundamentals in Robotics

Data Fusion using Kalman Filter. Ioannis Rekleitis

2016 Possible Examination Questions. Robotics CSCE 574

EKF SLAM vs. FastSLAM A Comparison

2.160 System Identification, Estimation, and Learning. Lecture Notes No. 8. March 6, 2006

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

Introduction to Mobile Robotics Summary

Anno accademico 2006/2007. Davide Migliore

CS 4495 Computer Vision Tracking 1- Kalman,Gaussian

Localization and Map Making

Notes on Kalman Filtering

Estimation of Poses with Particle Filters

Linear Gaussian State Space Models

Chapter 14. (Supplementary) Bayesian Filtering for State Estimation of Dynamic Systems

Fundamental Problems In Robotics

Applications in Industry (Extended) Kalman Filter. Week Date Lecture Title

An recursive analytical technique to estimate time dependent physical parameters in the presence of noise processes

Simultaneous Localisation and Mapping. IAR Lecture 10 Barbara Webb

Kalman filtering for maximum likelihood estimation given corrupted observations.

Temporal probability models

Algorithms for Sensor-Based Robotics: Kalman Filters for Mapping and Localization

Probabilistic Robotics The Sparse Extended Information Filter

Improved Rao-Blackwellized H filter based mobile robot SLAM

Financial Econometrics Kalman Filter: some applications to Finance University of Evry - Master 2

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems

Data Assimilation. Alan O Neill National Centre for Earth Observation & University of Reading

Monte Carlo data association for multiple target tracking

Georey E. Hinton. University oftoronto. Technical Report CRG-TR February 22, Abstract

AUV positioning based on Interactive Multiple Model

Look-ahead Proposals for Robust Grid-based SLAM

Object Tracking. Computer Vision Jia-Bin Huang, Virginia Tech. Many slides from D. Hoiem

מקורות לחומר בשיעור ספר הלימוד: Forsyth & Ponce מאמרים שונים חומר באינטרנט! פרק פרק 18

m = 41 members n = 27 (nonfounders), f = 14 (founders) 8 markers from chromosome 19

Tracking. Announcements

Excel-Based Solution Method For The Optimal Policy Of The Hadley And Whittin s Exact Model With Arma Demand

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds

Planning in Information Space for a Quadrotor Helicopter in a GPS-denied Environment

Temporal probability models. Chapter 15, Sections 1 5 1

Open loop vs Closed Loop. Example: Open Loop. Example: Feedforward Control. Advanced Control I

An introduction to the theory of SDDP algorithm

FastSLAM: An Efficient Solution to the Simultaneous Localization And Mapping Problem with Unknown Data Association

Introduction to Mobile Robotics Bayes Filter Kalman Filter

Localization. Mobile robot localization is the problem of determining the pose of a robot relative to a given map of the environment.

Stochastic Signals and Systems

Multi-Robot Simultaneous Localization and Mapping (Multi-SLAM)

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Testing the Random Walk Model. i.i.d. ( ) r

Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T

References are appeared in the last slide. Last update: (1393/08/19)

Speaker Adaptation Techniques For Continuous Speech Using Medium and Small Adaptation Data Sets. Constantinos Boulis

Subway stations energy and air quality management

Computer Vision 2 Lecture 6

Exponential Smoothing

OBJECTIVES OF TIME SERIES ANALYSIS

WATER LEVEL TRACKING WITH CONDENSATION ALGORITHM

Modeling Economic Time Series with Stochastic Linear Difference Equations

A Distributed Multiple-Target Identity Management Algorithm in Sensor Networks

Overview. COMP14112: Artificial Intelligence Fundamentals. Lecture 0 Very Brief Overview. Structure of this course

Fixed-lag Sampling Strategies for Particle Filtering SLAM

A Fast Numerical Fitting Approach to Calculate the Likelihood of Particles in Particle Filters

(1) (2) Differentiation of (1) and then substitution of (3) leads to. Therefore, we will simply consider the second-order linear system given by (4)

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler

Spring Ammar Abu-Hudrouss Islamic University Gaza

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1

Mapping in Dynamic Environments

On Solving the Perturbed Multi- Revolution Lambert Problem: Applications in Enhanced SSA

Monte Carlo Sampling of Non-Gaussian Proposal Distribution in Feature-Based RBPF-SLAM

Speech and Language Processing

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

An EM algorithm for maximum likelihood estimation given corrupted observations. E. E. Holmes, National Marine Fisheries Service

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems.

Efficient Optimization of Information-Theoretic Exploration in SLAM

Ordinary differential equations. Phys 750 Lecture 7

Article from. Predictive Analytics and Futurism. July 2016 Issue 13

Deep Learning: Theory, Techniques & Applications - Recurrent Neural Networks -

Ensamble methods: Bagging and Boosting

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1

Chapter 1 Fundamental Concepts

Recursive Estimation and Identification of Time-Varying Long- Term Fading Channels

Transcription:

Inroducion o Mobile Roboics Bayes Filer Kalman Filer Wolfram Burgard Cyrill Sachniss Giorgio Grisei Maren Bennewiz Chrisian Plagemann

Bayes Filer Reminder Predicion bel p u bel d Correcion bel η p z bel

Gaussians : ~ π e p N p - Univariae / / : ~ e p Ν p d π Mulivariae

~ ~ a b a N Y b ax Y N X Properies of Gaussians ~ ~ ~ N X p X p N X N X

We say in he Gaussian world as long as we sar wih Gaussians and perform only linear ransformaions. ~ ~ A A B A N Y B AX Y N X Mulivariae Gaussians ~ ~ ~ N X p X p N X N X

Discree Kalman Filer Esimaes he sae of a discree-ime conrolled process ha is governed by he linear sochasic difference equaion A B u ε wih a measuremen z C δ 6

Componens of a Kalman Filer A B C ε δ Mari nn ha describes how he sae evolves from o - wihou conrols or noise. Mari nl ha describes how he conrol u changes he sae from o -. Mari kn ha describes how o map he sae o an observaion z. Random variables represening he process and measuremen noise ha are assumed o be independen and normally disribued wih covariance R and Q respecively. 7

Kalman Filer Updaes in D 8

9 Kalman Filer Updaes in D wih Q C C C K K C I C z K bel wih obs K K z K bel

Kalman Filer Updaes in D R A A B u A bel ac a b u a bel

Kalman Filer Updaes

Linear Gaussian Sysems: Iniializaion Iniial belief is normally disribued: bel N ; 0 0 0 0

Dynamics are linear funcion of sae and conrol plus addiive noise: u B A ε Linear Gaussian Sysems: Dynamics R B u A N u p ; ; ~ ; ~ N R B u A N d bel u p bel

Linear Gaussian Sysems: Dynamics R A A B u A bel d B u A R B u A bel N R B u A N d bel u p bel ep ep ; ~ ; ~ η

Observaions are linear funcion of sae plus addiive noise: C z δ Linear Gaussian Sysems: Observaions Q C z N z p ; N Q C z N bel z p bel ; ~ ; ~ η

Linear Gaussian Sysems: Observaions wih ep ep ; ~ ; ~ Q C C C K K C I C z K bel C z Q C z bel N Q C z N bel z p bel η η

Kalman Filer Algorihm. Algorihm Kalman_filer - - u z :. Predicion: 3. A Bu 4. A A R 5. Correcion: 6. K C C C Q 7. K z C 8. I K C 9. Reurn

Kalman Filer Algorihm

Kalman Filer Algorihm Predicion Observaion Maching Correcion

0 he Predicion-Correcion-Cycle R A A u B A bel ac a u b a bel Predicion

he Predicion-Correcion-Cycle Q C C C K C K I C z K bel obs K K z K bel Correcion

he Predicion-Correcion-Cycle Q C C C K C K I C z K bel obs K K z K bel R A A u B A bel ac a u b a bel Correcion Predicion

Kalman Filer Summary Highly efficien: Polynomial in measuremen dimensionaliy k and sae dimensionaliy n: Ok.376 n Opimal for linear Gaussian sysems! Mos roboics sysems are nonlinear!

Nonlinear Dynamic Sysems Mos realisic roboic problems involve nonlinear funcions g u z h

Lineariy Assumpion Revisied

Non-linear Funcion

EKF Linearizaion

EKF Linearizaion

EKF Linearizaion 3

Predicion: Correcion: EKF Linearizaion: Firs Order aylor Series Epansion G u g u g u g u g u g H h h h h h

EKF Algorihm. Eended_Kalman_filer - - u z :. Predicion: 3. 4. 5. Correcion: 6. 7. 8. 9. Reurn u g R G G Q H H H K h z K H K I u g G h H u A B R A A Q C C C K C z K C K I

Localizaion Using sensory informaion o locae he robo in is environmen is he mos fundamenal problem o providing a mobile robo wih auonomous capabiliies. [Co 9] Given Map of he environmen. Sequence of sensor measuremens. Waned Esimae of he robo s posiion. Problem classes Posiion racking Global localizaion Kidnapped robo problem recovery

Landmark-based Localizaion

. EKF_localizaion - - u z m: Predicion:. 3. 4. 5. 6. u g V V M G G θ θ θ θ θ θ ' ' ' ' ' ' ' ' ' y y y y y y u g G v y v y v u u g V ω θ θ ω ω ' ' ' ' ' ' 4 3 0 0 v v M ω α α ω α α Moion noise Jacobian of g w.r. locaion Prediced mean Prediced covariance Jacobian of g w.r. conrol

. EKF_localizaion - - u z m: Correcion:. 3. 4. 5. 6. 7. 8. ˆ z z K H K I θ θ ϕ ϕ ϕ y y r r r m h H θ aan ˆ y y y y m m m m z Q H H S S H K 0 0 r r Q Prediced measuremen mean Pred. measuremen covariance Kalman gain Updaed mean Updaed covariance Jacobian of h w.r. locaion

EKF Predicion Sep

EKF Observaion Predicion Sep

EKF Correcion Sep

Esimaion Sequence

Esimaion Sequence

Comparison o Groundruh

EKF Summary Highly efficien: Polynomial in measuremen dimensionaliy k and sae dimensionaliy n: Ok.376 n No opimal! Can diverge if nonlineariies are large! Works surprisingly well even when all assumpions are violaed!

EKF Localizaion Eample Line and poin landmarks

EKF Localizaion Eample Line and poin landmarks

EKF Localizaion Eample Lines only Swiss Naional Ehibiion Epo.0 Quickime and a MPEG-4 Video decompressor are needed o see his picure.

Linearizaion via Unscened ransform EKF UKF

UKF Sigma-Poin Esimae EKF UKF

UKF Sigma-Poin Esimae 3 EKF UKF

Unscened ransform n i n w w n n w n w i c i m i i c m... for 0 0 0 ± λ λ χ β α λ λ λ λ χ Sigma poins Weighs i i g χ ψ n i i i i c n i i i m w w 0 0 ' ' ψ ψ ψ Pass sigma poins hrough nonlinear funcion Recover mean and covariance

UKF_localizaion - - u z m: Predicion: 4 3 0 0 v v M ω α α ω α α 0 0 r r Q a 0 0 0 0 a Q M 0 0 0 0 0 0 a a a a a a γ γ χ u u g χ χ χ L i i i i w c 0 χ χ L i i i w m 0 χ Moion noise Measuremen noise Augmened sae mean Augmened covariance Sigma poins Predicion of sigma poins Prediced mean Prediced covariance

UKF_localizaion - - u z m: Correcion: Ζ z χ h χ L i zˆ w m S i 0 L w z i 0 L i 0 i c w Ζ i Ζ z Ζ zˆ i c i ˆ i χ Ζ zˆ i i Measuremen sigma poins Prediced measuremen mean Pred. measuremen covariance Cross-covariance K S z K zˆ z Kalman gain Updaed mean K S K Updaed covariance

. EKF_localizaion - - u z m: Correcion:. 3. 4. 5. 6. 7. 8. ˆ z z K H K I θ θ ϕ ϕ ϕ y y r r r m h H θ aan ˆ y y y y m m m m z Q H H S S H K 0 0 r r Q Prediced measuremen mean Pred. measuremen covariance Kalman gain Updaed mean Updaed covariance Jacobian of h w.r. locaion

UKF Predicion Sep

UKF Observaion Predicion Sep

UKF Correcion Sep

EKF Correcion Sep

Esimaion Sequence EKF PF UKF

Esimaion Sequence EKF UKF

Predicion Qualiy EKF UKF

UKF Summary Highly efficien: Same compleiy as EKF wih a consan facor slower in ypical pracical applicaions Beer linearizaion han EKF: Accurae in firs wo erms of aylor epansion EKF only firs erm Derivaive-free: No Jacobians needed Sill no opimal! 60

Kalman Filer-based Sysem [Arras e al. 98]: Laser range-finder and vision High precision <cm accuracy Couresy of K. Arras

Mulihypohesis racking

Localizaion Wih MH Belief is represened by muliple hypoheses Each hypohesis is racked by a Kalman filer Addiional problems: Daa associaion: Which observaion corresponds o which hypohesis? Hypohesis managemen: When o add / delee hypoheses? Huge body of lieraure on arge racking moion correspondence ec.

MH: Implemened Sysem Hypoheses are eraced from LRF scans Each hypohesis has probabiliy of being he correc one: H i ˆ { i i i P H} Hypohesis probabiliy is compued using Bayes rule P Hi s Hypoheses wih low probabiliy are deleed. New candidaes are eraced from LRF scans. C j P s Hi P Hi P s { zj j R} [Jensfel e al. 00]

MH: Implemened Sysem Couresy of P. Jensfel and S. Krisensen

MH: Implemened Sysem 3 Eample run # hypoheses PH bes Map and rajecory #hypoheses vs. ime Couresy of P. Jensfel and S. Krisensen