Gaseous debris discs around white dwarfs

Similar documents
Boris Gänsicke. Ancient planetary systems around white dwarfs

Of serendipitous discoveries. Boris Gänsicke

The chemistry of exo-terrestrial material in evolved planetary systems. Boris Gänsicke

Galactic, stellar (and planetary) archaeology with Gaia: The galactic white dwarf population

WHITE DWARFS FROM LAMOST AND A CANDIDATE DEBRIS DISK AROUND WD FROM SDSS

White Dwarfs in the Galactic Plane

Doppler imaging of the planetary debris disc at the white dwarf SDSS J

arxiv: v2 [astro-ph.ep] 3 Feb 2011

Comparing asteroids, comets, moons & planets as WD pollution progenitors

AUTHOR: Timothy Kinnear. DEGREE: M.Sc. TITLE: Irradiated Gaseous Discs Around White Dwarfs DATE OF DEPOSIT:...

arxiv: v2 [astro-ph.ep] 10 Feb 2015

White dwarfs, brown dwarfs and debris disks with UKIDSS

The Connection between Planets and White Dwarfs. Gilles Fontaine Université de Montréal

arxiv: v1 [astro-ph.ep] 18 Nov 2014

Astrophysical Quantities

NIR Silicate features and Statistics from IRAS data

Characterizing the Chemistry of Planetary Materials Around White Dwarf Stars

White Dwarfs in Binary Systems

Exoplanets: a dynamic field

DEPARTMENT OF PHYSICS AND ASTRONOMY. Planets around white dwarfs Matt Burleigh

Six White Dwarfs with Circumstellar Silicates

Evidence for Terrestrial Planetary System Remnants at White Dwarfs

Boris Gänsicke. Eclipsing binaries, something different. York 2014 To commemorate the 250th anniversary of the birth of John Goodricke

Dust in white dwarfs and cataclysmic variables

Early time optical spectroscopy of supernova SN 1998S

Hot Dust Around Young Stars and Evolved Stars

The SWARMS Survey: Unveiling the Galactic population of Compact White Dwarf Binaries

AG Draconis. A high density plasma laboratory. Dr Peter Young Collaborators A.K. Dupree S.J. Kenyon B. Espey T.B.

arxiv: v2 [astro-ph.ep] 10 Mar 2009 ABSTRACT

The properties and origin of magnetic fields in white dwarfs

arxiv: v1 [astro-ph.ep] 23 Jan 2013

Galactic-Scale Winds. J. Xavier Prochaska Inster(stellar+galactic) Medium Program of Studies [IMPS] UCO, UC Santa Cruz.

Summary: Nuclear burning in stars

Multi-wavelength Surveys for AGN & AGN Variability. Vicki Sarajedini University of Florida

Interstellar Dust and Extinction

OPTICAL/INFRARED COUNTERPARTS OF ULXS

Dust Production and Depletion in Evolved Planetary Systems

Science Drivers for the European Extremely Large Telescope

Interpreting Galaxies across Cosmic Time with Binary Population Synthesis Models

White dwarfs with unresolved substellar companions and debris disks in the UKIDSS Survey

EUCLID Legacy with Spectroscopy

Transit detection limits for sub-stellar and terrestrial companions to white dwarfs

The VLT/X-shooter spectral library of M subdwarfs

Accretion of a Terrestrial-Like Minor Planet by a White Dwarf

Classification of nova spectra

Discovering Exoplanets Transiting Bright and Unusual Stars with K2

The incidence of magnetic fields in cool DZ white dwarfs

arxiv:astro-ph/ v1 28 Oct 2006

Active Galactic Nuclei research with SOAR: present and upcoming capabilities

Characteristic temperatures

ASTR2050: Introductory Astronomy and Astrophysics Syllabus for Spring 1999 January 4, 1999

QSO ABSORPTION LINE STUDIES with the HUBBLE SPACE TELESCOPE

DLAs Probing Quasar Host Galaxies. Hayley Finley P. Petitjean, P. Noterdaeme, I. Pâris + SDSS III BOSS Collaboration 2013 A&A

Formation and evolution of white dwarf binaries

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Earth, Atmospheric, and Planetary Sciences Department. Final Exam

Solar abundances of rock-forming elements, extreme oxygen and hydrogen in a young polluted white dwarf

Planet-like Companion to a Brown Dwarf

Gas and stellar 2D kinematics in early-type galaxies

White dwarf populations. Gijs Nelemans Radboud University Nijmegen

arxiv:astro-ph/ v1 10 Jul 2001

Gaia and white dwarf - brown dwarf binaries

AY230 Solutions #4 (1) The optical depth for an absorption line is related to the column density of gas N by:

CHITALS: Cold HI 21-cm Absorption Line Survey

arxiv: v2 [astro-ph.ep] 14 Apr 2016

Near-infrared spectroscopy of the very low mass companion to the hot DA white dwarf PG

University of Central Florida Department of Physics, PSB 132, 4000 University Blvd., Orlando, FL, USA

Midterm Results. The Milky Way in the Infrared. The Milk Way from Above (artist conception) 3/2/10

Observingwith a LISA spectrograph. David Boyd BAAVSS, AAVSO, CBA

Searching for Other Worlds

AST4930: Star and Planet Formation. Syllabus. AST4930: Star and Planet Formation, Spring 2014

Automated Classification of HETDEX Spectra. Ted von Hippel (U Texas, Siena, ERAU)

arxiv: v3 [astro-ph.ep] 15 Dec 2017

arxiv: v1 [astro-ph.sr] 2 May 2011

Galaxies 626. Lecture 9 Metals (2) and the history of star formation from optical/uv observations

Evidence for an external origin of heavy elements in hot DA white dwarfs

A100H Exploring the Universe: Discovering Galaxies. Martin D. Weinberg UMass Astronomy

Frequency of Seyfert Type Transitions in a Sample of 102 Local Active Galactic Nuclei

arxiv:astro-ph/ v1 20 May 2002

Foundations of Astrophysics

ACTIVE GALACTIC NUCLEI: optical spectroscopy. From AGN classification to Black Hole mass estimation

Illuminating the Dark Ages: Luminous Quasars in the Epoch of Reionisation. Bram Venemans MPIA Heidelberg

The dying sun/ creation of elements

High Redshift Universe

The UV Properties of Post-Starburst Quasars

Raman Spectroscopy in Symbiotic Stars. Jeong-Eun Heo Sejong University, Korea Gemini Observatory, Chile

Black Holes and Active Galactic Nuclei

How Common Are Planets Around Other Stars? Transiting Exoplanets. Kailash C. Sahu Space Tel. Sci. Institute

AST Section 2: Test 2

Mass Loss from Red Giants

Benjamin Weiner Steward Observatory November 15, 2009 Research Interests

Mapping the oxygen abundance in an elliptical galaxy (NGC 5128)

Centers of Galaxies. = Black Holes and Quasars

arxiv: v1 [astro-ph.sr] 22 Mar 2013

Figure 1: Left: Apparent radial velocities of Capella measured with the Chandra/HETGS. The dotted line shows the calculated apparent radial motion of

The King's University College Astronomy 201 Mid-Term Exam Solutions

X-ray Spectroscopy of Classical Novae

arxiv:astro-ph/ v1 21 Sep 2006

Forming habitable planets on the computer

2019 Astronomy Team Selection Test

arxiv:astro-ph/ v1 23 Oct 2002

Transcription:

Gaseous debris discs around white dwarfs Christopher J. Manser Collaborators: Boris Gänsicke, Tom Marsh, Detlev Koester, Dimitri Veras, Nicola Pietro Gentile Fusillo C.Manser@Warwick.ac.uk Saturn to scale Artists impression of SDSS J1228+14 by Mark Garlick. Image of Saturn from NASA s Cassini mission, NASA image saturn_malmercassini_5m.jpg

Talk Outline One - The gaseous debris disc around SDSS J1228+14 Few - Common variability of gaseous debris discs Many - Frequency of gaseous debris discs around white dwarfs

Remnant Planetary Systems SDSS J1228+14 Observable He atom Heavy atom HST/COS Jura & Young, 214, Annu. Rev. Earth Planet. Sci., 42, 45 JWST/MIRI Planetary debris White C and dwarf O C and O Roche limit JWST/MIRI Dust sublimation Photospheric absorption Gänsicke et. al. 212, MNRAS, 424, 333

Remnant Planetary Systems SDSS J1228+14 Observable He atom Heavy atom HST/COS Jura & Young, 214, Annu. Rev. Earth Planet. Sci., 42, 45 JWST/MIRI Planetary debris White C and dwarf O C and O Roche limit JWST/MIRI Dust sublimation Photospheric absorption Dust Brinkworth et. al. 29, ApJ, 696, 142 Gänsicke et. al. 212, MNRAS, 424, 333

Remnant Planetary Systems SDSS J1228+14 Observable Observable He atom Heavy atom He atom Heavy atom HST/COS HST/COS Jura & Young, 214, Annu. Rev. Earth Planet. Sci., 42, 45 Norm Flux 3. 2.5 2. 1.5 1..5 Ca ii triplet Gas JWST/MIRI 845 85 855 86 865 87 875 Roche limit Roche limit Planetary debris Planetary debris JWST/MIRI JWST/MIRI Dust sublimation Dust sublimation White C and dwarf O C and O Photospheric absorption Dust Brinkworth et. al. 29, ApJ, 696, 142 Gänsicke et. al. 212, MNRAS, 424, 333

The gaseous component of the debris disc 25 3. Ca ii triplet 2.5 Fλ [1 16 erg cm 2 s 1 Å 1 ] 2 15 1 Norm Flux 2. 1.5 1..5 845 85 855 86 865 87 875 5 SDSS J1228+14 4 5 6 7 8 9 Gänsicke et. al. 26, Science, 314, 198

Accretion disc in a binary

Accretion disc in a binary

The gaseous component of the debris disc 25 3. Ca ii triplet 2.5 Fλ [1 16 erg cm 2 s 1 Å 1 ] 2 15 1 Norm Flux 2. 1.5 1..5 845 85 855 86 865 87 875 5 SDSS J1228+14 4 5 6 7 8 9 Gänsicke et. al. 26, Science, 314, 198

1 out of 18 18 23-3 23-3 21-4 21-4 16 14 26-7 26-7 211-1 211-1 12 1 8 27-7 27-7 212-3 212-3 6 28-7 28-7 214-3 214-3 4 2 29-2 29-2 215-5 215-5 85 86 87 85 86 87

Doppler Tomography Marsh & Horne, 1988, MNRAS, 235, 269

Doppler Tomography 216 12 }{{} 18 23-3 75 215-5 215-6 16 5 212-3 14 27-7 27-7 25 12 vy [km s 1 ] -25 29-4 2. R.2 R 1 8 211-1 211-4 -5 26-7 6 214-3 214-3 -75 23-3 4 75 5 25-25 -5-75 v x [km s 1 ] Manser et. al. 216, MNRAS, 455, 4467 2 215-5 215-5 85 86 87

Doppler Tomography 216 12 }{{} 18 23-3 75 215-5 215-6 16 5 212-3 14 27-7 27-7 25 12 vy [km s 1 ] -25 29-4 2. R.2 R 1 8 211-1 211-4 -5 26-7 6 214-3 214-3 -75 23-3 4 75 5 25-25 -5-75 v x [km s 1 ] Manser et. al. 216, MNRAS, 455, 4467 2 215-5 215-5 85 86 87

Doppler Tomography v y [km s 1 ] 25 5 75-75 75 5 25-25 -5-75 v x [km s 1 ] -5-25 29-4 212-3 Red 211-1 26-7 215-5 215-6 216 12 }{{} 23-3 2. R.2 R Manser et. al. 216, MNRAS, 455, 4467

Doppler Tomography v y [km s 1 ] 25 5 75-75 75 5 25-25 -5-75 v x [km s 1 ] -5-25 29-4 212-3 Red 211-1 26-7 215-5 215-6 216 12 }{{} 23-3 2. R.2 R Manser et. al. 216, MNRAS, 455, 4467

Doppler Tomography 216 12 }{{} 18 23-3 75 215-5 215-6 16 5 212-3 14 27-7 27-7 25 12 vy [km s 1 ] -25 29-4 2. R.2 R 1 8 211-1 211-4 -5 26-7 6 214-3 214-3 -75 23-3 4 75 5 25-25 -5-75 v x [km s 1 ] Manser et. al. 216, MNRAS, 455, 4467 2 215-5 215-5 85 86 87

New observations in March and May 18 23-3 2.5 2. 216 March 16 14 27-7 27-7 1.5 1..5 12 1 8 6 4 2 211-1 211-4 214-3 214-3 215-5 215-5. 845 85 855 86 865 87 2.5 2. 1.5 1..5. 216 May 85 86 87 845 85 855 86 865 87

A Whole New Map 75 5 212-3 216 12 }{{} 22 23-3 23-3 215-5 2 18 16 27-7 27-7 vy [km s 1 ] 25-25 -5-75 29-4 26-7 23-3 2. R.2 R 75 5 25-25 -5-75 v x [km s 1 ] Manser et. al. in prep. 14 12 1 8 6 4 2 211-1 211-4 214-3 214-3 215-5 215-5 216-3 216-3 85 86 87

Some more comparing 75 215-5 216 12 }{{} 75 215-5 215-6 216 12 }{{} 5 5 25 212-3 25 212-3 vy [km s 1 ] 29-4 2. R.2 R vy [km s 1 ] 29-4 2. R.2 R -25-25 -5 26-7 -5 26-7 -75 23-3 -75 23-3 75 5 25-25 -5-75 v x [km s 1 ] Manser et. al. in prep. New (2 epochs) 75 5 25-25 -5-75 v x [km s 1 ] Old (18 epochs)

Spiral? 216 12 }{{} 75 215-5 5 25 212-3 vy [km s 1 ] 29-4 2. R.2 R -25-5 -75 26-7 23-3 75 5 25-25 -5-75 v x [km s 1 ]

Even newer data! 2.5 2. 216 May 1.5 1..5. 845 85 855 86 865 87 2.5 2. 217 March 1 1.5 1..5. 845 85 855 86 865 87

Reached half way? 3.5 3. 26 Flipped 217 2.5 2. 1.5 1..5-12 -8-4 4 8 12 Velocity [km/s]

Coadded X-Shooter spectrum 1.2 1.5 3. 2. Ca ii 8498 ; 8542; 8662 Å O i 8446 Å 1.1 1. Ca K 3934 Å CaH 3969Å 1.25 1. Mg ii 4481 Å 1..975 84 85 86 87 392 394 396 398 444 447 45 1.1 1.5 1. Fe ii 4924 Å Feii 518 Å Fe ii 5169 ; 5198 Å Feii 5235 ; 5276 ; 5317 Å Si ii 541 ; 556 Å 1.3 49 5 51 52 53 54 O i 7772 ; 7774 ; 7775 Å O i 8446 Å Mg i 886 ; O i 882 Å O i &Mgii blend 1.2 1.1 1. Mg ii 7877 ; 7896 Å O i blend Ca ii 8912 ; 8927 Å.9 775 8 825 85 875 9 925

April 21 Hubble Spectrum 1.2. 115 1155 116 125 1255 126 1265 1.2 21 1295 13 135 131 1334 1336 137 1375 138 1385 1395 14 145 141 1415 Gänsicke et. al. 212, MNRAS, 424, 333

March 216 Hubble Spectrum 1.2 115 1155 116 1.2 1295 13 135 131 1334 1336. 125 1255 126 1265 216 137 1375 138 1385 1395 14 145 141 1415 Manser et. al. in prep.

Comparing the two 1.2 115 1155 116 1.2 1295 13 135 131 1334 1336. 125 1255 126 1265 21 216 137 1375 138 1385 1395 14 145 141 1415 Manser et. al. in prep.

Circumstellar gas 1.2 115 1155 116 1.2 1295 13 135 131 1334 1336. 125 1255 126 1265 21 216 137 1375 138 1385 Si IV 1395 14 145 141 1415 Manser et. al. in prep.

Circumstellar gas 1.2 75 215-5 216 12 }{{} 5 212-3 25 115 1155 116 1.2 vy [km s 1 ] -25-5 -75 29-4 26-7 1295 13 135 131 23-3 2. R.2 R 75 5 25-25 -5-75 v x [km s 1 ] 1334 1336. 125 1255 126 1265 21 216 137 1375 138 1385 Si IV 1395 14 145 141 1415 Manser et. al. in prep.

Other variable gas discs SDSS J1228+14 22 23-3 2 18 27-7 16 14 12 1 211-1 214-3 8 6 215-5 4 2 216-3 85 86 87 Manser et. al. 216, MNRAS, 455, 4467

Morphologically variable SDSS J845+2257 SDSS J1228+14 SDSS 24 WHT 28 22 23-3 2 UVES 28 18 27-7 UVES Gemini S 29 21 16 14 12 1 211-1 214-3 X-shooter 211 8 6 215-5 X-shooter 214 4 2 216-3 85 855 86 865 Wavelength (Å) 85 86 87 Wilson et. al. 214, MNRAS, 451, 3237 Manser et. al. 216, MNRAS, 455, 4467

Morphologically variable SDSS J845+2257 SDSS J1228+14 SDSS J143+855 SDSS 24 7.5 7. 23-4 SDSS 6.5 WHT 28 22 23-3 6. UVES 28 2 5.5 27-2 WHT 18 27-7 5. UVES Gemini S X-shooter 29 21 211 16 14 12 1 8 211-1 214-3 4.5 4. 3.5 3. 2.5 29-2 WHT 21-4 WHT 211-1 X-Shooter X-shooter 214 6 4 215-5 2. 1.5 211-5 X-Shooter 85 855 86 865 Wavelength (Å) 2 85 86 87 1..5 212-1 SDSS 845 85 855 86 865 87 Wavelength (Å) Wilson et. al. 215, MNRAS, 451, 3237 Manser et. al. 216, MNRAS, 455, 4467 Manser et. al. 216, MNRAS, 462 1461 216-3

Variable strength SDSS J1617+162 Wilson et. al. 214, MNRAS, 445, 1878

Variable strength SDSS J1617+162 SDSS J1228+14 22 23-3 2 18 27-7 16 14 12 1 211-1 214-3 8 6 215-5 4 2 216-3 Wilson et. al. 214, MNRAS, 445, 1878 85 86 87 Manser et. al. 216, MNRAS, 455, 4467

Variability e - Gaseous emission Name Type ) Features a - Gaseous absorption SDSS J738+1835 SDSS J845+2257 SDSS J959 2 SDSS J143+855 WD 1144+529 SDSS J1228+14 HE 1349 235 SDSS J1617+162 DB DB DA DA DA DA DBA DA e e, v e, v e, v e e, a, v e e, v v - Spectroscopic or photometric Variability Wilson et. al. 214, MNRAS, 445, 1878

Variability 6.5 7. 23-4 SDSS 6. 27-2 WHT 5.5 SDSS 24 5. 29-2 WHT Name SDSS J738+1835 SDSS J845+2257 SDSS J959 2 SDSS J143+855 WD 1144+529 SDSS J1228+14 HE 1349 235 SDSS J1617+162 Type DB DB DA DA DA DA DBA DA ) Features e e, v e, v e, v e e, a, v e e, v 4.5 4. 3.5 3. 2.5 2. 1.5 Normalized Flux 1..5 1.3 1.2 1.1 1. 21-4 WHT 211-1 X-Shooter 211-5 X-Shooter 212-1 SDSS.9 Wavelength (Å) 845 85 855 86 865 87 Wavelength (Å) of HE 1349 235. The MagE data have been smoothed with a 5 pixel boxcar th Melis et. al. 212, ApJL, 715, L4 8 2 214-3 845 85 855 86 865 87

Detected Remnant Planetary System statistics Metal pollution Koester et. al. 214 25-5 %

Detected Remnant Planetary System statistics Metal pollution Koester et. al. 214 25-5 % Dusty disc Farihi et al. 29; Rocchetto et al. 215 1-3 %

Detected Remnant Planetary System statistics Metal pollution Koester et. al. 214 25-5 % Dusty disc Farihi et al. 29; Rocchetto et al. 215 1-3 % Gaseous component??? %

The sample Figure 2. Colour colour diagrams illustrating the location of the 27 639 DR7 spectroscopic objects that we used as training sample for our selection method. DA white dwarfs, non-da white dwarfs, NLHS and quasars are shown as blue, yellow, red and green dots, respectively. The colour cuts that define our initial broad selection from Table 2 are overlaid as red lines. Objects outside this selection were not classified and are therefore plotted as grey dots. Gentile Fusillo et. al. 215, MNRAS, 448, 226

The sample s searching for Ca ii bris disc. We also list but no observation of -.5 Exposure time [s] 45 66 45 42 27 36 3 27 36 27 18 18 18 u g u g 12-7 12-7 12-6 12-7 12-7 12-6 12-8 12-7 12-7 7-24 1-29 1-29 1-29 DA DB DAB Other..5 -.6 - SDSS J1228+14 SDSS J1617+162 SDSS J845+2257 SDSS J143+855 SDSS J738+1835 SDSS J1144+529 SDSS J959 2 - -.2..2 g g rr Figure 1. u g, g r magnitude plot of the magnitude/colour

The frequency of gaseous discs 4 35 3. 2.5 Ca ii triplet 979 single white dwarfs Fλ [1 16 erg cm 2 s 1 Å 1 ] 3 25 2 15 Norm Flux 2. 1.5 1..5 845 85 855 86 865 87 875 1 5 4 5 6 7 8 9

The frequency of gaseous discs 4 35 3. 2.5 Ca ii triplet 979 single white dwarfs Fλ [1 16 erg cm 2 s 1 Å 1 ] 3 25 2 15 Norm Flux 2. 1.5 1..5 845 85 855 86 865 87 875 1 6 Gasesous components 4 5 5 6 7 8 9

The frequency of gaseous discs 4 35 3. 2.5 Ca ii triplet 979 single white dwarfs Fλ [1 16 erg cm 2 s 1 Å 1 ] 3 25 2 15 Norm Flux 2. 1.5 1..5 845 85 855 86 865 87 875 1 6 Gasesous components 4 5 5 6 7 8 9 Frequency of observable gaseous debris discs at white dwarfs.7 +.3 % -.2

Detected Remnant Planetary System statistics Metal pollution Koester et. al. 214 25-5 % Dusty disc Farihi et al. 29; Rocchetto et al. 215 1-3 % Gaseous component.7 %

Detected Remnant Planetary System statistics Metal pollution Koester et. al. 214 25-5 % Dusty disc Farihi et al. 29; Rocchetto et al. 215 1-3 % Gaseous component.7 % Debris discs with a gaseous component 2-1 %

Summary SDSS J1228+14 is well studied, but still many unanswered questions. An observable gaseous component appears to be linked with variability Determined the frequency of a gaseous component to a debris disc at a white dwarf.

Summary SDSS J1228+14 is well studied, but still many unanswered questions. An observable gaseous component appears to be linked with variability Determined the frequency of a gaseous component to a debris disc at a white dwarf. Thanks for listening! C.Manser@Warwick.ac.uk