DIFFRACTION GRATING. OBJECTIVE: To use the diffraction grating in the formation of spectra and in the measurement of wavelengths.

Similar documents
THE DIFFRACTION GRATING SPECTROMETER

PHYS General Physics II Lab The Balmer Series for Hydrogen Source. c = speed of light = 3 x 10 8 m/s

Emission Spectrum of Atomic Gases. Prelab Questions

Ph 3455/MSE 3255 Experiment 2: Atomic Spectra

The Spectrophotometer and Atomic Spectra of Hydrogen Physics 246

Atomic Spectra. d sin θ = mλ (1)

ATOMIC SPECTRA. To identify elements through their emission spectra. Apparatus: spectrometer, spectral tubes, power supply, incandescent lamp.

Pre-lab Quiz/PHYS 224. Your name Lab section

The Quantum Model of the Hydrogen Atom

Experiment 24: Spectroscopy

Pre-Lab Exercises Lab 2: Spectroscopy

APAS Laboratory { PAGE } Spectroscopy SPECTROSCOPY

Laboratory #29: Spectrometer

Laboratory Exercise. Atomic Spectra A Kirchoff Potpourri

Atomic Emission Spectra

The Grating Spectrometer and Atomic Spectra

Physics 1CL OPTICAL SPECTROSCOPY Spring 2010

The Grating Spectrometer and Atomic Spectra

The Emission Spectra of Light

Physics 1C OPTICAL SPECTROSCOPY Rev. 2-AH. Introduction

Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope

Introduction. Procedure and Data

EXPERIMENT 17: Atomic Emission

Lab 5: Spectroscopy & the Hydrogen Atom Phy248 Spring 2009

high energy state for the electron in the atom low energy state for the electron in the atom

Atomic Spectra HISTORY AND THEORY

Visible spectrum 1. Spectroscope. Name:

Instructor Resources

Note: Common units for visible light wavelengths are the Angstrom (Å) and the nanometer (nm).

10. Wavelength measurement using prism spectroscopy

AS 101: Day Lab #2 Summer Spectroscopy

Atomic emission spectra experiment

ATOMIC SPECTRA. Objective:

PHYSICS 116 SPECTROSCOPY: DETERMINATION OF THE WAVELENGTH OF LIGHT

Pizza Box Spectrometer Data & Report

Lab 10: Spectroscopy & the Hydrogen Atom Phy208 Fall 2008


NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #9: Diffraction Spectroscopy

EXPERIMENT 12 THE GRATING SPECTROMETER AND ATOMIC SPECTRA

You Are the Spectrometer! A Look Inside Astronomy's Essential Instrument (Robert B. Friedman & Matthew K. Sharp)

EXPERIMENT 5:Determination of the refractive index (µ) of the material of a prism using sprectometer

Using the Spectrometer

Name: Partner(s): 1102 or 3311: Desk # Date: Spectroscopy Part I

PC1144 Physics IV. Atomic Spectra

UNIT-5 EM WAVES UNIT-6 RAY OPTICS

Analyzing Line Emission Spectra viewed through a Spectroscope using a Smartphone

Experiment 9. Emission Spectra. measure the emission spectrum of a source of light using the digital spectrometer.

Chapter 35 Diffraction and Polarization. Copyright 2009 Pearson Education, Inc.

Chapter 35 Diffraction and Polarization

Fingerprinting the Stars Lab

Using the spectrometer

Earlier we learned that hot, opaque objects produce continuous spectra of radiation of different wavelengths.

Exam 4. P202 Spring 2004 Instructor: Prof. Sinova

Optics. Measuring the line spectra of inert gases and metal vapors using a prism spectrometer. LD Physics Leaflets P

ACTIVITY 2 Exploring Light Patterns

Electricity & Optics

A) n L < 1.0 B) n L > 1.1 C) n L > 1.3 D) n L < 1.1 E) n L < 1.3

Indicate whether each statement is true or false by circling your answer. No explanation for your choice is required. Each answer is worth 3 points.

Atomic Theory C &03

Preview from Notesale.co.uk Page 1 of 38

Experiment 3 Electromagnetic Radiation and Atom Interaction

Experiment 7: Spectrum of the Hydrogen Atom

LAB 12 ATOMIC SPECTRA

PARTICLES AND WAVES CHAPTER 29 CONCEPTUAL QUESTIONS

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 FRAUNHOFER DIFFRACTION

Quantum Physics Objective: Apparatus:

Observation of Atomic Spectra

Atomic Spectra 1. Name Date Partners ATOMIC SPECTRA

DAY LABORATORY EXERCISE: SPECTROSCOPY

DISPERSION OF A GLASS PRISM

Physics 1CL OPTICAL SPECTROSCOPY Spring 2009

EXPERIMENT 12 THE WAVELENGTH OF LIGHT; THE DIFFRACTION GRATING

where c m s (1)

Core Concept. PowerPoint Lectures to accompany Physical Science, 8e. Chapter 7 Light. New Symbols for this Chapter 3/29/2011

Revision Guide. Chapter 7 Quantum Behaviour

2. Discrete means unique, that other states don t overlap it. 3. Electrons in the outer electron shells have greater potential energy.

Atomic Spectra. Eric Reichwein David Steinberg Department of Physics University of California, Santa Cruz. August 30, 2012

Spectrum of Hydrogen. Physics 227 Lab

Physics 24, Spring 2007 Lab 2 - Complex Spectra

4. Dispersion. The index of refraction of the prism at the input wavelength can be calculated using

Chapter 8. Spectroscopy. 8.1 Purpose. 8.2 Introduction

4. Dispersion. The index of refraction of the prism at the input wavelength can be calculated using

Chapter 4. Dispersion of Glass. 4.1 Introduction. 4.2 Apparatus

PHYSICS 122/124 Lab EXPERIMENT NO. 9 ATOMIC SPECTRA

Engineering Physics 1 Prof. G.D. Vermaa Department of Physics Indian Institute of Technology-Roorkee

Rydberg constant from atomic spectra of gases

Any first year text, sections on atomic structure, spectral lines and spectrometers

Michelson Interferometer

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 5

Chapter 4 Spectroscopy

A refl = R A inc, A trans = T A inc.

Higher -o-o-o- Past Paper questions o-o-o- 3.4 Spectra

Experiment 4 Radiation in the Visible Spectrum

Unit 2 - Particles and Waves - Part 2

Chemistry 212 ATOMIC SPECTROSCOPY

Astronomy 101 Lab: Spectra

Building your own Pizza-Box Spectroscope. *You will need to bring in a medium- sized sturdy cardboard pizza box, shoe box, or similar from home.

Atomic Spectra & Electron Energy Levels

PHSY133 Lab 5 Atomic Spectra

2) The number of cycles that pass through a stationary point is called A) wavelength. B) amplitude. C) frequency. D) area. E) median.

Transcription:

DIFFRACTION GRATING OBJECTIVE: To use the diffraction grating in the formation of spectra and in the measurement of wavelengths. THEORY: The operation of the grating is depicted in Fig. 1 on page Lens 1 produces a parallel beam of light from the single slit source A to the diffraction grating. The grating itself consists of a large number of very narrow transparent slits equally spaced with a distance D between adjacent slits. The light rays numbered 1, 2, 3, etc. represent those rays which are diffracted at an angle by the grating. Lens 2 is used to focus these rays to a line image at B. Notice that ray 2 travels a distance x = D sin more than 1, ray 3 travels x more than 2, etc. When the extra distance traveled is one wavelength, two wavelengths, or N wavelengths, constructive interference occurs. Thus, bright images of a monochromatic (single color) source of wavelength will occur at position B at a diffraction angle if Sin( N ) = N / D where N = 0, 1, 2, 3,... (1) The images generally are brightest for N=0 ( 0 = 0), and become corresponding less bright for higher N. Since, for a given value of N, the angle at which constructive interference occurs depends on, a polychromatic light source will produce a SERIES of single color bright images. There will be an image for each wavelength radiated by the source. Each image will have a color corresponding to its wavelength, and each image will be formed at a different angle. In this manner a spectrum of the light source is formed by the grating. If the grating constant D is known, then a measurement of the angle 1 for each color allows the wavelength of each color in the spectrum to be determined with the above equation. In this experiment, the first order spectrum (N = 1), will be used so that Eq. (1) becomes PROCEDURE: = D sin. (2) Your lab instructor will tell you how to focus the various lenses on the grating spectrometer. Make the adjustments according to the instructions. In the following steps, the spectra of five different sources will be formed and the angle at which each color is diffracted will be measured. A first order spectrum can be observed on both sides of the zero order spectrum. In order to correct for misalignment of the spectrometer, record the angular positions of each color in both first order spectra and use the average value of in Eq. (2) to calculate the wavelength. The three parts below may be performed in any order, depending on which light source is available.

Part 1: Calibration: Determining D with a Sodium light Using the sodium light source, measure the angles for the first order spectral line for the yellow color (the only color!). Record your data in the table on the last page. With the information that the sodium yellow light has a wavelength of 589.3 nm, calculate the grating constant D. The manufacturer of the grating says that there are 600 lines per millimeter. (The number of slits or lines per length is called the grating constant.) Thus, the distance D between lines should be (1/600)mm = 1,667 nm. Compare your value of D with that derived from the manufacturer's information of 1,667 nm. Part 2: Determining Wavelengths for Hydrogen, Helium and Mercury Using the hydrogen light source, measure the angles for the first order spectral lines for the three brightest colors in the spectrum that you see. Record your data in the table. Using the helium light source, do the same for at least five colors in the spectrum. Using the mercury light source, do the same for at least four colors in the spectrum. Using your experimental value for D, calculate the wavelength for each color observed for Hydrogen, Helium and Mercury. Compare your results with the standard values listed on the last page and compute a percent error. Part 3: White Light and Range for Visible Wavelengths The white light source is an ordinary incandescent bulb. A tungsten filament is heated by sending a current through it. The tungsten gets so hot and the electrons on its surface vibrate with so much energy that they emit visible light. This light does NOT come from transitions between atomic energy levels, but from the energetic electrons. This type of light is called thermal radiation. Instead of having only certain wavelengths in the light, the light from thermal radiation has a continuous distribution of wavelengths. Its spectrum is said to be continuous instead of discrete. Measure the angles of the far ends (far red and far violet) of the visible spectrum and calculate the shortest and longest wavelength of light that you can see. Calculate the wavelengths of the ends of the visible light.

OVERALL What is a generally stated range of wavelengths for visible light? Do all your wavelengths (from Parts 1,2,3) fall within this range? Are your wavelengths for the same colors about the same? Is your D close to the manufacturer's D (Part 1)? The Diffraction Spectrometer A L 1 5 4 3 2 L 2 1 D x B Fig. 1 In the above figure, point A indicates a point source. (Actually A is usually a line source where the line is directed out of the page. This is accomplished with a slit.) L 1 is a lens to make the diverging rays from the slit become parallel. D is the distance between adjacent lines in the diffraction grating. The distance x is the extra distance each beam of light goes from its neighbor. This extra distance depends both on D and on the angle [ x = D sin ]. The angle can be measured on the spectrometer (actually it is the angle between the straight-through direction and the direction of the telescope arm of the spectrometer). L 2 is a lens used to focus the parallel light coming from the diffraction grating to a point (e.g., the lens of the eye focusing the light to a point on the retina, or the lens of a camera focusing the light onto film). In our case, L 2 is the first of two lenses used as a telescope to capture more of the light. It is followed by a cross-hair (mounted on a plate of glass) and the second lens of the telescope. Both L 2 and the third lens as well as the cross-hairs are mounted on the movable arm of the spectrometer. A bright image is seen at point B only if x = N, the condition for constructive interference. A

measurement of, then, allows for the determination of the wavelength. By moving the arm, the angle changes, which causes the distance x to change, which allows for the measurement of different wavelengths, i.e. a measurement of the wavelength spectrum. DATA TABLE note: -ave = left - right / 2 color left right -ave D-calc D-manufacturer % diff Sodium yellow 1,667 nm color left right -ave -calc -standard % diff Hydrogen Helium 4. 5. Mercury 4. Visible violet red

Spectrum Information: color HYDROGEN MERCURY HELIUM deep violet 411 nm 406 nm 403 nm blue/violet 435 nm 436 nm 439 nm, 447 nm green/blue 487 nm 492 nm 471 nm, 492 nm, 505 nm yellow /green none 546 nm, 578 nm 588 nm red/orange 658 nm 623 nm 668 nm, 706 nm *Note: Color names are somewhat subjective; choose your wavelengths based on which are closest to your values, and then comment on your names for these colors.