Chemical tapering of polymer optical fiber

Similar documents
MANUFACTURE OF FIBER OPTIC SENSORS TO MEASURE THE PH WATER

Enhanced Transmission by Periodic Hole. Arrays in Metal Films

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Chapter 24 Photonics Question 1 Question 2 Question 3 Question 4 Question 5

CHEM 254 EXPERIMENT 7. Phase Diagrams - Liquid Vapour Equilibrium for two component solutions

UNIT 3. By: Ajay Kumar Gautam Asst. Prof. Dev Bhoomi Institute of Technology & Engineering, Dehradun

INVESTIGATING GAS CHROMATOGRAPHY rev 8/12

Concentrations that absorb. Measuring percentage transmittance of solutions at different concentrations

Reminder: These notes are meant to supplement, not replace the laboratory manual. Fractional Distillation notes

International Journal of Science, Environment and Technology, Vol. 6, No 2, 2017,

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

A FEM STUDY ON THE INFLUENCE OF THE GEOMETRIC CHARACTERISTICS OF METALLIC FILMS IRRADIATED BY NANOSECOND LASER PULSES

CHAPTER-VI DISCUSSION. CONCLUSION AND FUTURE SCOPE OF THE PRESENT WORK

Supporting Information for:

TEACHERS GUIDELINES THIN FILM WAVEGUIDES AND SOL-GEL PROCESSING

Ester Synthesis And Analysis: Aspirin and Oil of Wintergreen. Vanessa Jones November 19, 2015 Thursday 8:30 Lab Section Lab Partner: Melissa Blanco

List of figures/tables/symbols/definitions 2. 1 Introduction Acknowledgement Problem and Project Statement 3

CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK

Experiment 3. Condensation Reactions of Ketones and Aldehydes: The Aldol Condensation Reaction.

LIQUID LIGTH GUIDE. Una Pale

Measuring Lysozyme Monomer at 0.1 mg/ml Concentration. Equipment used : Sample Preparation and Measurement :

Preparation of (PS-PMMA) Copolymer and Study The Effect of Sodium Fluoride on Its Optical Properties

#22 Visible Spectrum of Chlorophyll from Spinach

Final Review Graphs and Charts TWO Page 1 of 35

Optical Fiber Signal Degradation

Supporting Information

Electronic Supporting Information (ESI) For

Infrared Spectroscopy

Report AFK0242/18 TABLE OF CONTENTS

Table of Content. Mechanical Removing Techniques. Ultrasonic Machining (USM) Sputtering and Focused Ion Beam Milling (FIB)

Methods of purification

SENSITIVITY ENHANCEMENT OF A D-SHAPE SPR-POF LOW-COST SENSOR USING GRAPHENE

Composite Materials. Fibre-Matrix Interfaces. There is nothing there really except the two of you (or the fiber and matrix).

FINITE-DIFFERENCE FREQUENCY-DOMAIN ANALYSIS OF NOVEL PHOTONIC

Temperature Dependence of a Macrobending Edge Filter Based on a High-bend Loss Fiber

Organic Chemistry Review: Topic 10 & Topic 20

Chemistry SPA Experiment Planning. Scientific Experiments

Formation and Surface Modification of Nanopatterned Thiol-ene Substrates using

ScienceDirect. Primary treatment of dye wastewater using aloe vera-aided aluminium and magnesium hybrid coagulants

Basic Concepts of Chemistry Notes for Students [Chapter 12, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 12 Properties of Solutions

6.1 Rates of Reaction

Technology offer: Environmentally friendly holographic recording material

Coupling of plasticity and damage in glass fibre reinforced polymer composites

Instrumental Technique: Cuvette. Md Rabiul Islam

Propagation of Surface Plasmon Polariton in the Single Interface of Gallium Lanthanum Sulfide and Silver

Method for preparing plastic optical fiber preform

A Macrobending Singlemode Fiber Based Refractometer

Solids / Crystal Structure

Unit 11: Chapters 15 and 16

Magnetic and optic sensing. Magnetic sensors

Interactions Between Surface Treated Ultrafine Mineral Filler and Silicone Rubber Matrix

Laser Supported Detonation in Silica-based Optical Fibers

CHAPTER 2 ATOMS, MOLECULES,

Mode-Field Diameter (MFD)

A NUMERICAL OPTIMAL CONTROL APPROACH TO THE DESIGN OF AN OPTICAL FIBRE-BASED EVANESCENT FIELD SENSOR. Peter M. Dower Peter M. Farrell Brant C.

Laboratory 23: Properties of Aldehydes and Ketones

SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits)

! Fiber!Laser!Intracavity!Absorption! Spectroscopy!(FLICAS)!of!CO/CO2! mixture.!!! This experiment will expose you to tools and approaches, common in

Instruction Manual. HI Refractometer for Sucrose in Wine and Grape Products Measurements

CK-12 FOUNDATION. Separating Mixtures. Say Thanks to the Authors Click (No sign in required)

Rapid RH Portable ph Meter. User's Manual

Physics 313: Laboratory 8 - Polarization of Light Electric Fields

Applications of artificial neural network on signal processing of optical fibre ph sensor based on bromophenol blue doped with sol gel film

Study of electrostatic potential induced by friction

Study of Specific Absorption Rate (SAR) in the human head by metamaterial attachment

A Study of Beer s Law Prelab

A) usually less B) dark colored and rough D) light colored with a smooth surface A) transparency of the atmosphere D) rough, black surface

Ondansetron Hydrochloride Tablets

25. Qualitative Analysis 2

Research Article. A r t i c l e I n f o. Received 11/5/2016. Accepted 5/10/2016

Techniques for the Analysis of Organic Chemicals by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Saveetha Engineering College, Thandalam, Chennai. Department of Physics. First Semester. Ph6151 Engineering Physics I (NOV/DEC 2014)

Advanced Texturing of Si Nanostructures on Low Lifetime Si Wafer

Experiment 1: Thin Layer Chromatography

General A haloalkane is a compound in which one or more H atoms of an alkane are replaced by halogen atoms.

Suggest TWO aspects to show approach II is considered to be a greener method than using approach I.

A RIDGE WAVEGUIDE FOR THERMO-OPTIC APPLICATION

Chemistry 254 Lab Experiment 1: Qualitative Organic Analysis Summer 2004

Absorption of Composite Material Epoxy- Phenol Formaldehyde Hybrid Blend.

Introduction. Photoresist : Type: Structure:

EXPERIMENT 7- SAPONIFICATION RATE OF TERT- BUTYL CHLORIDE

Principles of Thin Layer Chromatography

MP5: Soft Matter: Physics of Liquid Crystals

AIM To verify Beer - Lambert s law and to determine the dissociation constant (Ka) of methyl red, Spectrophotometrically.

Glossary. Analyte - the molecule of interest when performing a quantitative analysis.

AS 101: Day Lab #2 Summer Spectroscopy

This reactivity makes alkenes an important class of organic compounds because they can be used to synthesize a wide variety of other compounds.

STABILITY OF PIGMENT INKJET INKS

Big Idea 1: Structure of Matter Learning Objective Check List

INTRODUCTION The fundamental law of spectrophotometry is known as the Beer-Lambert Law or Beer s Law. It may be stated as: log(po/p) = A

A Method of Lines Approach in the Numerical Solution of 1-Dimensional Schrödinger s Equation

Using a mini-gas Chromatograph (GC): Identifying Unknown Compounds

DEPARTMENT OF ELECTRICAL ENGINEERING DIT UNIVERSITY HIGH VOLTAGE ENGINEERING

Analyses of LiNbO 3 wafer surface etched by ECR plasma of CHF 3 & CF 4

SCIFED. Publishers. Keywords Temperature; Refractive Index; Michelson Interferometer; Up-Taper; Optical Fiber Sensor; All-Fiber Sensor

Light for which the orientation of the electric field is constant although its magnitude and sign vary in time.

(2) Calculate the spring constant, k, for the spring. State an appropriate unit.

Exam Prep Questions. (a) i. State the function of each of the following parts of the flower. Petal - Anther - (2 marks) Develops into a seed,

Experiment 1: Extraction and Thin Layer Chromatography

Supplementary Figure 1. Cross-section SEM image of the polymer scaffold perovskite film using MAI:PbI 2 =1:1 in DMF solvent on the FTO/glass

Transcription:

EPJ Web of Conferences 16, 11 (17) InCAPE17 DOI: 1.11/epjconf/171611 Chemical tapering of polymer optical fiber Affa Rozana Abdul Rashid 1,*, Amna Afiqah Nasution 1, Aisyah Hanim Suranin 1, Nur Athirah Taib 1, Wan Maisarah Mukhtar 1, Karsono Ahmad Dasuki 1, and Abang Annuar Ehsan 1 Faculty of Science and Technology, Universiti Sains Islam Malaysia, 718, Nilai, Negeri Sembilan, Malaysia Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 46 UKM Bangi, Selangor, Malaysia Abstract. Polymer optical fibers (POFs) have significant advantages over numerous sensing applications. The key element in developing sensor is by removing the cladding of the fiber. The use of organic solvent is one of the methods to create tapered POF in order to expose the core region. In this study, the etching chemicals involved is acetone, methyl isobutyl ketone (), and acetone-methanol mixture. The POF is immersed in 1%, 8%, and % of acetone and dilution. In addition, the mixture of acetone and methanol is also used for POF etching by the ratio :1 of the volume. has shown to be the most reactive solvent towards POF due to its fastest etching rate compared to and acetone-methanol mixture. The POF is immersed and lifted from the solution for a specific time, depending on the power loss properties for the purpose of producing unclad POF. In comparison to silica fiber optic, the advantages of POF in terms of its simple technique and easy handling enable it to produce unclad POF without damaging the core region. The surface roughness of the POF is investigated under the microscope after being immersed into different solvent. This method of chemical tapering of POF can be used as the fundamental technique for sensor development. Next, the unclad fiber is immersed into ethanol solutions in order to determine the reaction of unclad POF towards its surrounding. The findings show that this particular sensor is sensitive towards concentration changes ranging between 1 wt% to wt%. 1 Introduction Polymer optical fibres (POFs) also known as plastic optical fibres possess many advantages over conventional silica or glass optical fibre, especially in sensing application. The wide application of POFs in sensor design tends to originate from the development of polymer technology. Their advantages which include low cost or low cost competitive system over the glass or silica optical fibre have initiated a great interest among the scientific community to further explore POF. POF is commonly found in the multi-mode fibres with large diameter, thus allowing the propagation of multiple modes [1, ]. The diameter of POF must be reduced by removing the cladding of the fiber to develop sensor based polymer optical fiber. The etched region of POF becomes more sensitive to the surrounding due to the evanescent wave in the cladding []. Etching refers to the reduction process of localised diameter, which came within any profile from linear and gradual changes to abrupt steps [4]. There are several ways to remove the cladding of POF, in which one of them is described as hot drawing method but this method does not efficiently remove the cladding because the fiber will break before any elongation occurs [4]. Hence, the best way to remove the cladding of POF is by immersing chemical etching in the organic solvent. The penetration depth of the evanescent field and the power proportion were observed to increase within the tapered region as the fiber is immersed in the testing solution. Evanescent wave in fiber optic occurs when a part is light up, whereby the incident between different refractive index of core and cladding is transmitted into the cladding rather than being reflected back which is based on the principle of total internal reflection []. In this particular kind of evanescent wave absorbance sensing phenomena, the measurement is calculated based on the loss of propagating light at the interface of core and cladding medium [6]. The method of etching tapers is performed using acetone,, and acetone-methanol mixture for the purpose of developing step-index POF in this project. Methodology The POF model adopted in this experiment is known as step-index Polyethylene Jacketed Optical. The diameter of cladding and core must be set at 1 µm and 98 µm, respectively. Three types of solution have been used in the etching of polymer optical fiber, namely acetone, and acetone-methanol mixture. 4cm of the jacket of the fiber is removed and placed inside a testing solution. In the first step, the POF is immersed in pure solution of acetone and. Next, the fiber is neutralized with de-ionize water. The experiment is repeated using dilute solution of 8% and % acetone and, respectively. On top of that, the mixture of * Corresponding author: affarozana@usim.edu.my The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4. (http://creativecommons.org/licenses/by/4./).

EPJ Web of Conferences 16, 11 (17) InCAPE17 DOI: 1.11/epjconf/171611 acetone and methanol is also used in the ratio with the volume (:1) [7] in order to study the etching effect of mixture towards the unjacketed POF. The preparation of different solutions which include ethanol should be properly done in order to study the effect of absorbing liquid on the unclad POF. In this process, the dilution of 1wt%, wt%, wt%, 4wt%, and wt% of each ethanol concentration are prepared. Result and Discussions.1 Effect of on Etching Rate 1 1. 1 1. Etching time (min) is capable of removing the cladding of polymer which is composed by fluoropolymer with PMMA as its core. Fig. 1 shows the etching rate of POF that is immersed in acetone without dilution. As can be seen in the figure, it takes around 1 s to reach the core of the POF fiber. Next, the power loss increases abruptly as the acetone reaches and etches the core part after 1 s. Hence, it can be concluded that it only a short time is needed to reach the core but the diameter of the fiber becomes unpredictable and fragile as a result of pure acetone. Fig. and Fig. show the etching rate of the fiber in acetone with concentration percentage of 8% and %. The surrounding environment needs to be controlled which include humidity, temperature, pressure, and others. The fiber breaks and damages at a very short time because the power loss increases rapidly. The time taken to lift the fiber decreases as the concentration increases. For 8% concentration of acetone, it takes around 1 min before the loss of the power output to abruptly increase. Meanwhile, the fiber does not show any abrupt change even though the fiber is immersed in the solution for hours for % concentration of acetone as shown in Fig.. The graph of the power loss slightly increases from 1.1 mw to 1.7 mw with the time recorded at 8 s to 9 s, respectively. However, the power output still fail to show any changes even with hours of immersion. 1 1 Fig.. Graph of power loss vs etching timeof POF in 8% 1.4 1. 1. 1.1 1 11.9 11.8 1 4 6 7 9 1 1 Fig.. Graph of power loss vs etching time of POF in % A more concentrated acetone is more likely to dissolve or affect the surface fiber, which will result in tapered POF. Fig. 4 shows the macroscopic view of POF with 8% of acetone immersion, and the diameter of the fiber is observed to decrease to 99 µm. In Fig., the immersion of % acetone gives a smoother surface compared to higher concentration of acetone. Moreover, the collision molecules of the acetone with the surface of POF become less reactive when the dilution of the acetone increases. This factor seems to result in a smooth and clear surface after it is lifted from the solution. 1 1 Time (s) Fig. 1. Graph of power loss vs etching time of POF in 1% Fig. 4. Microscopic image of POF with immersion of 8%

EPJ Web of Conferences 16, 11 (17) InCAPE17 DOI: 1.11/epjconf/171611 Fig.. Microscopic image of POF with immersion of %. Effect of on Etching Rate is also an organic solvent that is very efficient in removing the cladding of polymer optical fiber such as acetone. Fig. 6 shows that around 1 s is needed to reach the fiber core when the solution for immersion is pure. appears to react faster compared to. These organic solvents can be used in the etching process of POF because it becomes susceptible to brittle stress fracture for a short while. In 8% concentration, the power loss increases after min and it reaches the fibers core around 4. min. Next, the power loss increases abruptly as it reaches and etches the core as shown in Fig. 7. For % of, the time taken to etch POF is longer as the concentration of the solution decreases. The power loss becomes much faster when the fiber is immersed in 8% compared to % of, in which it takes around 1.7 min to reach the fibers core as shown in Fig. 8... 1. 6 1 18 4 Time (s) Fig. 6. Graph of power loss vs etching time of POF in 1% 7 6 4 1.7 1...7 4.. 6 6.7 Fig. 7. Graph of power loss vs etching time of POF in 8% 1 1 1 4 6 7 8 9 1 Fig. 8. Graph of power loss vs etching time of POF in % Fig. 9 shows the microscope image of unclad POF when it is immersed in % of solution. As can be seen, it has a rougher surface compared to when it is immersed in % of acetone. The surface roughness in the immersion of % and 8% of is quite similar. The POF respectively reduce the diameter to 97 µm and 98 µm for % and 8% of. Fig. 9 Microscopic image of POF with immersion of 8%

EPJ Web of Conferences 16, 11 (17) InCAPE17 DOI: 1.11/epjconf/171611. The Effect of -Methanol Mixture on Etching Rate Fig. 1 shows POFs that are etched through the immersion in a mixture of acetone and methanol by ratio (:1). The power output loss stops to increase slowly after minutes of immersion, and no changes can be observed until the two hours of immersion ends at. mw. plays an important role in etching due to its extremely reactive nature towards the polymer. For this particular solution, the mixture of the solution managed to produce tapered POF but with longer time compared to acetone and. Generally, acetone which is ketone can be mixed with any solvent including methanol. The function of methanol in the solution is to enhance the reactivity of the solvent towards the fiber surface. 7 6 4 1 1 4 6 7 8 9 1 11 1.4 Measurements of Ethanol Solution on Unclad POF The initial loss of this sample is fixed at 11.16 dbm when immersed in ethanol concentration. POF sample unclad with 1% of acetone solution is immersed in different concentrations of ethanol solution. Fig. 1 shows the graph of power output reading versus the concentration of ethanol, whereby higher concentration tends to produce lower power output. Moreover, the evanescent absorption coefficient increases when the concentration increases. The evanescent field penetrates into both solution and evanescent wave absorbance occurs when the unclad POF is immersed in ethanol solution, in which it will increase as the concentration of solution increases [8]. The refractive index of the ethanol also increases when the concentration percentage is increased [9]. According to Khijwania and Gupta [1], the increase of penetration depth can result in the increase of absorbance of evanescent field by the absorbing medium, which can lead to the increase of sensitivity of the sensor. Fig. 1 Graph of power loss vs etching time of POF in the mixture of and Methanol (4:) For the surface structure of acetone-methanol mixture, the fiber fails to etch smoothly based on the presence of residue on the surface of POF after being immersed into the solution after hours as shown in Fig. 11. This is in contrast with the microscopic image of acetone shown in Fig. 4, which produces smooth and clean surface after being immersed in % of acetone with the same hours duration as applied in acetonemethanol mixture. Fig. 11. Microscopic image of POF with immersion of mixture of acetone and methanol Fig. 1. Concentration of ethanol versus power output reading 4 Conclusion In the evanescent wave fiber optic sensor, the cladding of the optical fiber is removed and made to be in direct contact with the evanescent wave. Moreover, any materials which are capable of absorbing the particular wavelength of the incoming light inside the optical fiber will take the energy out of the evanescent wave. Hence, the higher the concentration of the acetone and, the faster is the time taken for the fiber to break because the fiber becomes very brittle easily. which acts as the etching solution can give a smoother surface compared to and mixture acetone-methanol. Therefore, it is better for the etching solution to dilute with distilled water even though the etching rate will be longer. Finally, the surface quality will be good for sensing application because the rough surface which is formed on POF will affect the waveguiding process. 4

EPJ Web of Conferences 16, 11 (17) InCAPE17 DOI: 1.11/epjconf/171611 This project was sponsored by the Kementerian Pendidikan Malaysia (KPM) through grant scheme (USIM/RAGS/FST/6/1) and Universiti Sains Islam Malaysia (USIM) through grant schemes (PPP/USG- 11/FST//11). References 1. Kara Peters, Smart Material and Structures, 1, pp. 17 (11). Kuzyk, Mark G., Polymer Fiber Optics: Materials, Physics, and Applications (1st Ed) pp. 7-1 (Florida: CRC Press, 7). Batumalay, M; Lokman, A; Ahmad, F; Arof, H; Ahmad, H; Sulaiman, W.H., Sensor Journal, 1(1), pp 47-47 (1) 4. D.F. Merchant, P.J. Scully, and N.F. Schmitt., Sensor and Actuators, 76: 6-71 (1999). SM John, Evanescent wave fibre optic sensors: theory Shodhganga (11) 6. N. Punjabi, J. Satija, and S. Mukherji, Smart Sensors, Measurement and Instrumentation, pp. - 4 (1) 7. X. Hu, C. F. J. Pun, H. Y. Tam et al., Optics Express. (1) : 1887-18817 (14) 8. P Suresh Kumar, CPG Vallabhan, VPN Nampoori, VN Sivasankara Pillai and Radhakrishnan, Journal of Optics A: Pure and Applied Optics, 4 pp. 47- () 9. J. Nowakowska, The refractive indices of Ethyl Alcohol and Water Mixtures, Loyola University Chicago (199) 1. S.K Khijwania, B. D. Gupta., Optic Communication, 1(4-6), pp. 9-6 (1998)