Combinatorial and Sequential CMOS Circuits Dr. Lynn Fuller Webpage:

Similar documents
Transfer Gate and Dynamic Logic Dr. Lynn Fuller Webpage:

MOS Amplifiers Dr. Lynn Fuller Webpage:

High Speed Logic Circuits Dr. Lynn Fuller Webpage:

MOSFET Internal Capacitance Dr. Lynn Fuller Webpage:

Introduction to VLSI Dr. Lynn Fuller

Low Power CMOS Dr. Lynn Fuller Webpage:

EE141Microelettronica. CMOS Logic

Sequential Logic. Rab Nawaz Khan Jadoon DCS. Lecturer COMSATS Lahore Pakistan. Department of Computer Science

Digital Integrated Circuits A Design Perspective

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

ECE 546 Lecture 10 MOS Transistors

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D.

Circuit A. Circuit B

LOGIC CIRCUITS. Basic Experiment and Design of Electronics

GMU, ECE 680 Physical VLSI Design

Lecture 4: Implementing Logic in CMOS

Gates and Flip-Flops

S No. Questions Bloom s Taxonomy Level UNIT-I

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: 1st Order RC Delay Models. Review: Two-Input NOR Gate (NOR2)

9/18/2008 GMU, ECE 680 Physical VLSI Design

Digital Integrated Circuits A Design Perspective

CMPEN 411. Spring Lecture 18: Static Sequential Circuits

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Topic 4. The CMOS Inverter

Floating Point Representation and Digital Logic. Lecture 11 CS301

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Digital Integrated Circuits A Design Perspective

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. November Digital Integrated Circuits 2nd Sequential Circuits

XI STANDARD [ COMPUTER SCIENCE ] 5 MARKS STUDY MATERIAL.

Chapter 5 CMOS Logic Gate Design

S.Y. Diploma : Sem. III [CO/CM/IF/CD/CW] Digital Techniques

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

Topics. CMOS Design Multi-input delay analysis. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

Hold Time Illustrations

ECE 342 Electronic Circuits. Lecture 34 CMOS Logic

Sample Test Paper - I

Integrated Circuits & Systems

MOSIS REPORT. Spring MOSIS Report 1. MOSIS Report 2. MOSIS Report 3

Lecture 5: DC & Transient Response

Appendix A: Digital Logic. Principles of Computer Architecture. Principles of Computer Architecture by M. Murdocca and V. Heuring

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Total Power. Energy and Power Optimization. Worksheet Problem 1

S.Y. Diploma : Sem. III [DE/ED/EI/EJ/EN/ET/EV/EX/IC/IE/IS/IU/MU] Principles of Digital Techniques

CMOS Inverter (static view)

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

PRESIDENCY UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING EE 310: VLSI System Laboratory. Contents

Lecture 4: DC & Transient Response


Lab 3 Revisited. Zener diodes IAP 2008 Lecture 4 1

MOSFET and CMOS Gate. Copy Right by Wentai Liu

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified)

on candidate s understanding. 7) For programming language papers, credit may be given to any other program based on equivalent concept.

EECS 312: Digital Integrated Circuits Midterm Exam 2 December 2010

Philadelphia University Student Name: Student Number:

Digital Circuits. 1. Inputs & Outputs are quantized at two levels. 2. Binary arithmetic, only digits are 0 & 1. Position indicates power of 2.

Digital Integrated Circuits A Design Perspective

Study of MOSFET circuit

Integrated Circuits & Systems

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EE141- Spring 2007 Digital Integrated Circuits

DIGITAL LOGIC CIRCUITS

Lecture 7: Logic design. Combinational logic circuits

Sequential Logic Circuits

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

ECE 342 Solid State Devices & Circuits 4. CMOS

Lecture 6: DC & Transient Response

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Fundamentals of Digital Design

L2: Combinational Logic Design (Construction and Boolean Algebra)

ELCT201: DIGITAL LOGIC DESIGN

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2017

CMOS Logic Gates. University of Connecticut 172

Simulation of Logic Primitives and Dynamic D-latch with Verilog-XL

Number System. Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

Spiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp

Power Dissipation. Where Does Power Go in CMOS?

Micro Spectro Photometer ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING. Dr. Lynn Fuller. Webpage:

UNIT 8A Computer Circuitry: Layers of Abstraction. Boolean Logic & Truth Tables

EE5780 Advanced VLSI CAD

THE INVERTER. Inverter

Vidyalankar S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution

Dynamic Combinational Circuits. Dynamic Logic

ENGR4300 Fall 2005 Test 3A. Name. Section. Question 1 (25 points) Question 2 (25 points) Question 3 (25 points) Question 4 (25 points)

Chapter 13. Clocked Circuits SEQUENTIAL VS. COMBINATIONAL CMOS TG LATCHES, FLIP FLOPS. Baker Ch. 13 Clocked Circuits. Introduction to VLSI

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

Memory, Latches, & Registers

KUMARAGURU COLLEGE OF TECHNOLOGY COIMBATORE

University of Toronto Faculty of Applied Science and Engineering Edward S. Rogers Sr. Department of Electrical and Computer Engineering

CSE140: Components and Design Techniques for Digital Systems. Logic minimization algorithm summary. Instructor: Mohsen Imani UC San Diego

Topics to be Covered. capacitance inductance transmission lines

Lecture 9: Digital Electronics

Chapter 4. Sequential Logic Circuits

EE 330 Homework 5 Spring 2017 (This assignment will not be collected or graded)

CMPEN 411 VLSI Digital Circuits Spring Lecture 14: Designing for Low Power

MODULE 5 Chapter 7. Clocked Storage Elements

ECE 2300 Digital Logic & Computer Organization

Static CMOS Circuits. Example 1

ECE 407 Computer Aided Design for Electronic Systems. Simulation. Instructor: Maria K. Michael. Overview

Transcription:

ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Combinatorial and Sequential CMOS Circuits Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041 Email: Lynn.Fuller@rit.edu Department webpage: http://www.microe.rit.edu 10-31-2014 Combinational_Sequential_Circuits.ppt Page 1

ADOBE PRESENTER This PowerPoint module has been published using Adobe Presenter. Please click on the Notes tab in the left panel to read the instructors comments for each slide. Manually advance the slide by clicking on the play arrow or pressing the page down key. Page 2

OUTLINE Inntroduction VTC of NAND and NOR CMOS AND-OR-INVERT Gate XOR and XNOR Encoder, Decoder, Multiplexer, Demultiplexer Set-Reset Latch Flip-Flop Power Dissipation Energy and Delay References Homework Page 3

INTRODUCTION In this module we want to look at combining transistors to make CMOS logic gates. In general we want the logic gate to function correctly for static operation, we want the noise margin to be similar to that of the CMOS inverter and the speed at which the gate operates to be similar to that of the CMOS inverter. Page 4

CMOS NOR AND NAND The design guideline is that the logic gate under consideration should have the same rise time and fall time as the inverter (after we adjusted the inverter for equal rise time and fall time. Assume L s are the same. (W/L) pullup = ~ 1.5 (W/L) pulldown based on mobility only VA VB VOUT 3W +V VA VB NOR NAND 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 1.5W +V VA VB 1.5W VOUT W VA 3W NOR W VB VA 2W 2W NAND VB Page 5

VTC FOR CMOS NOR AND NAND Vout4 Vout3 Vout1 Vout2 NMOS L=2u W=2u Vout1 PMOS L=2u, W=3u, VA Sweep 0 to 5, VB=zero Vout1 PMOS L=2u, W=3u, VA Sweep 0 to 5, VB=VA Vout1 Microelectronic PMOS Engineering L=2u, W=2u, VA Sweep 0 to 5, VB=zero Vout1 PMOS L=2u, W=2u, VA Sweep 0 to 5, VB=VA Page 6

VTC FOR 3-INPUT NAND The three NMOS transistors each have different source to substrate voltages which will change the threshold voltage of those transistors and as a result will change the VTC depending on which transistors are switching. This causes a horizontal shift in the VTC. VA VB VC NAND +V 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 VA M2 M3 M1 VOUT VB VC VA VB NAND VOUT Page 7

3-INPUT NAND Vout2 Vout1 +V VA M2 M3 M1 VOUT VB VC Vout1 has M2 and M3 NMOS on and M1 NMOS switching Vout2 has M1 Rochester and Institute M2 of Technology NMOS on and M3 NMOS switching Other combinations are also possible. Page 8

FAN IN AND FAN OUT CONSIDERATIONS Fan in refers to the number of inputs to a gate. It is common to have up to 8 inputs. In CMOS this implies that there are 8 transistors in parallel and 8 transistors in series. The 8 in parallel is not necessarily a problem but the 8 in series is because of the body effect on the threshold voltage of some of the transistors if they are all in the same well (at Vss or Vdd for p-well or n-well respectively) Fan-In = 6 Page 9

FAN OUT CONSIDERATIONS Fan out refers to the number of gates connected to the output of a gate. Each gate adds more capacitance to be charged or discharged during switching which has implications on rise time, fall time and gate delay. The size (W and L) of the MOSFETS can be made to keep the gate delay small. Fan-Out = 6 Page 10

PSEUDO CMOS There are situations where we want a large number of inputs. Rather than have CMOS where there will be many transistors in series (which will not work) we can use a single PMOS/NMOS transistor that is always on. +V Idd +V Idd +V Idd VIN VO VIN VO VA VO VB VC VD CMOS Pseudo NMOS Inverter 4 Input NOR Page 11

OTHER BASIC LOGIC GATES AND OR 3 INPUT AND 3 INPUT OR VA VB VA VB VOUT VOUT 0 0 0 0 1 0 1 0 0 1 1 1 VA VB VA VB VOUT VOUT 0 0 0 0 1 1 1 0 1 1 1 1 VA VB VC VOUT VA VB VC VOUT 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 VA VB VC VOUT VA VB VC VOUT 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 Page 12

OTHER BASIC LOGIC GATE REALIZATIONS Enhancement Load V++ Gate Enhancement Load Depletion Load Pseudo CMOS NAND, NOR CMOS AND-OR-INVERT Gate Generalized Complex CMOS Gate More Complex Gates, XOR, MUX, Encoder, Decoder, etc. Page 13

CMOS AND-OR-INVERT GATE +V VOUT = (VA VB)+VC VA VB VC Page 14

GENERALIZED COMPLEX GATE +V A B C.. A B C.. F = (VA+VB) VC Design a gate that provides this output Page 15

EXCLUSIVE OR (XOR) DESIGN EXAMPLE Functional Description This digital logic circuit returns a true (high) value when one of two inputs is high and returns a false (zero) otherwise. Truth Table Exclusive OR XOR VA VB VOUT 0 0 0 0 1 1 1 0 1 1 1 0 Gate Level Design COUT A B Page 16

GATE LEVEL SIMULATION OF XOR AND/OR Page 17

NOR CIRCUIT REALIZATION FOR XOR A B OUT Exclusive OR XOR VA VB VOUT 0 0 0 0 1 1 1 0 1 1 1 0 Page 18

GATE LEVEL SIMULATION OF XOR ALL/NOR Page 19

TRANSISTOR LEVEL SIMULATION OF XOR ALL/NOR Page 20

BASIC CELL XOR Input A Port in Input B A B A B XOR Port out Port in A AB XOR = A B+AB B XOR Page 21

LAYOUT FOR XOR Page 22

BASIC DIGITAL CELLS WITH PADS Decoder Multiplexer XOR Full Adder Encoder Decoder Demux Edge Triggered D FF JK FF Page 23

4 TO 1 MULTIPLEXER I 0 A I 1 I 2 Q B I 3 Page 24

4 TO 1 MUX - GATE LEVEL SIMULATION Page 25

ADDITION IN BINARY IN BASE 10 7 +2 9 IN BINARY 11 CARRY 0111 0010 1001 SUM 0 0000 1 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 10 1010 11 1011 12 1100 13 1101 14 1110 15 1111 A TRUTH TABLE FOR ADDITION RULES B CIN SUM COUT 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 Page 26

AND-OR CIRCUIT REALIZATION OF SUM TRUTH TABLE FOR ADDITION RULES A B CIN SUM COUT SUM 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 A B Cin Page 27

CIRCUIT REALIZATION OF CARRY OUT (COUT) TRUTH TABLE FOR ADDITION RULES A B CIN SUM COUT COUT 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 A B Cin Page 28

FULL ADDER Page 29

1 TO 4 DEMULTIPLEXER I A B Q 0 Q 1 Q 2 Q 3 Page 30

DECODER A Q 0 Q 1 B Q 2 Q 3 Page 31

ENCODER Q 0 Q 1 Q 2 Q n Digital Encoder Coded Output Lines 512 inputs can be coded into 9 lines which is a more dramatic benefit A B C D 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 Q0 Q1 0 0 0 1 1 0 1 1 A B Q 1 C D No Connection Q 2 Page 32

FILP-FLOPS RS FLIP FLOP R S Q QBAR R S Q 0 0 Qn-1 0 1 1 1 0 0 1 1 INDETERMINATE D FLIP FLOP Q DATA CLOCK QBAR Q=DATA IF CLOCK IS HIGH IF CLOCK IS LOW Q=PREVIOUS DATA VALUE Page 33

MASTER-SLAVE D FLIP FLOP DATA CLOCK Q QBAR A B NEGATED INPUT NOR IS EQUAL TO AND A A OUT = B B A B A B OUT OUT 0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0 0 0 1 Page 34

ALL NOR MASTER SLAVE D FLIP FLOP Q DATA CLOCK DATA Q CLOCK ALL NOR NMOS REALIZATION ALLOWS FOR LOWER SUPPLY VOLTAGE Page 35

CMOS CLOCKED DATA LATCH USING AND-OR-INV D CLK _ Q Q V DD Q CLK D _ Q V DD CLK _ D Page 36

EDGE TRIGGERED D TYPE FLIP FLOP Page 37

JK FLIP FLOP Page 38

T-TYPE FILP-FLOP TOGGEL FLIP FLOP T Q QBAR Q: Toggles High and Low with Each Input T Qn-1 Q 0 0 0 0 1 1 1 0 1 1 1 0 Page 39

BINARY COUNTER USING T TYPE FLIP FLOPS Input Pulses T A T B Tc A A B B C C T A State Table for Binary Counter Present Next F-F State State Inputs A B C T A T B T C B 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 1 1 1 0 0 1 0 1 0 0 1 1 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 Qn-1 C Q 0 0 0 0 1 1 1 0 1 1 1 0 TOGGEL FLIP FLOP A BC 0 1 00 01 11 10 0 0 0 0 1 1 0 T A 0 A BC 0 1 00 01 11 10 0 1 0 1 1 1 0 0 T B A BC 0 1 00 01 11 10 1 1 1 1 1 1 1 1 T C Page 40

3-BIT BINARY COUNTER WITH D FLIP FLOPS Page 41

INVERTER WITH HYSTERESIS R=100K 1 + - V1 5V 3 M2 Vout M3 Inverter with Hysteresis Vout 2 7 V2=0-5 Or 5-0 + - M1 Vin The voltage on node 7 is different depending on if Vout is high or low. Changing Microelectronic the Voltage Engineering from source to substrate which changes the threshold voltage of M2 Page 42

INVERTER WITH HYSTERESIS SPICE shows inverter has hysteresis (Flip Blue output about the y-axis and superimpose on Red-Green Plot) Page 43

RC OSCILLATOR USING INVERTER WITH HYSTERESIS R C Vout RC Oscillator Page 44

BUFFERS R C RC Oscillator Vout Buffers Vout Page 45

CMOS INVERTER WITH HYSTERESIS SPICE show this inverter has hysteresis Page 46

OSCILLATOR CMOS INVERTER WITH HYSTERESIS R Vout C RC Oscillator Page 47

REFERNCES 1. Hodges Jackson and Saleh, Analysis and Design of Digital Integrated Circuits, Chapter 4. 2. Sedra and Smith, Microelectronic Circuits, Sixth Edition, Chapter 13. 3. Dr. Fuller s Lecture Notes, http://people.rit.edu/lffeee Page 48

HOMEWORK LOGIC 1. Design a pseudo NMOS NAND gate. Use 1um technology. Show it will work using SPICE. 2. Look up the data sheet for the MM74C14 CMOS inverter with hystersis. Design a 10 Khz oscillator. 3. Use SPICE (transistor level) to simulate the 1 to 4 Demultiplexer. 4. Use SPICE (transistor level) to simulate the positive edge triggered D-type Flip-Flop. 5. Use SPICE to simulate a CMOS RC Oscillator with Buffers. Page 49

SPICE MODELS FOR MOSFETS *SPICE MODELS FOR RIT DEVICES - DR. LYNN FULLER 4-10-2014 *LOCATION DR.FULLER'S WEBPAGE - http://people.rit.edu/lffeee/cmos.htm * *Used in Electronics II for CD4007 inverter chip *Note: Properties L=1u W=200u.MODEL RIT4007N7 NMOS (LEVEL=7 +VERSION=3.1 CAPMOD=2 MOBMOD=1 +TOX=1.5E-8 XJ=1.84E-7 NCH=1.45E17 NSUB=5.33E16 XT=8.66E-8 +VTH0=1.0 U0= 600 WINT=2.0E-7 LINT=1E-7 +NGATE=5E20 RSH=1082 JS=3.23E-8 JSW=3.23E-8 CJ=6.8E-4 MJ=0.5 PB=0.95 +CJSW=1.26E-10 MJSW=0.5 PBSW=0.95 PCLM=5 +CGSO=3.4E-10 CGDO=3.4E-10 CGBO=5.75E-10) * *Used in Electronics II for CD4007 inverter chip *Note: Properties L=1u W=200u.MODEL RIT4007P7 PMOS (LEVEL=7 +VERSION=3.1 CAPMOD=2 MOBMOD=1 +TOX=1.5E-8 XJ=2.26E-7 NCH=7.12E16 NSUB=3.16E16 XT=8.66E-8 +VTH0=-1.0 U0= 376.72 WINT=2.0E-7 LINT=2.26E-7 +NGATE=5E20 RSH=1347 JS=3.51E-8 JSW=3.51E-8 CJ=5.28E-4 MJ=0.5 PB=0.94 +CJSW=1.19E-10 MJSW=0.5 PBSW=0.94 +CGSO=4.5E-10 CGDO=4.5E-10 CGBO=5.75E-10) Page 50

SPICE MODELS FOR MOSFETS *Used for ALD1103 chips *Note: Properties L=10u W=880u.MODEL RITALDN3 NMOS (LEVEL=3 +TPG=1 TOX=6.00E-8 LD=2.08E-6 WD=4.00E-7 +U0= 1215 VTO=0.73 THETA=0.222 RS=0.74 RD=0.74 DELTA=2.5 +NSUB=1.57E16 XJ=1.3E-6 VMAX=4.38E6 ETA=0.913 KAPPA=0.074 NFS=3E11 +CGSO=5.99E-10 CGDO=5.99E-10 CGBO=4.31E-10 PB=0.90 XQC=0.4) * *Used for ALD1103 chips *Note: Properties L=10u W=880u.MODEL RITALDP3 PMOS (LEVEL=3 +TPG=1 TOX=6.00E-8 LD=2.08E-6 WD=4.00E-7 +U0=550 VTO=-0.73 THETA=0.222 RS=0.74 RD=0.74 DELTA=2.5 +NSUB=1.57E16 XJ=1.3E-6 VMAX=4.38E6 ETA=0.913 KAPPA=0.074 NFS=3E11 +CGSO=5.99E-10 CGDO=5.99E-10 CGBO=4.31E-10 PB=0.90 XQC=0.4) Page 51

SPICE MODELS FOR MOSFETS *4-4-2013 LTSPICE uses Level=8 *For RIT Sub-CMOS 150 process with L=2u.MODEL RITSUBN8 NMOS (LEVEL=8 +VERSION=3.1 CAPMOD=2 MOBMOD=1 +TOX=1.5E-8 XJ=1.84E-7 NCH=1.45E17 NSUB=5.33E16 XT=8.66E-8 +VTH0=1.0 U0= 600 WINT=2.0E-7 LINT=1E-7 +NGATE=5E20 RSH=1082 JS=3.23E-8 JSW=3.23E-8 CJ=6.8E-4 MJ=0.5 PB=0.95 +CJSW=1.26E-10 MJSW=0.5 PBSW=0.95 PCLM=5 +CGSO=3.4E-10 CGDO=3.4E-10 CGBO=5.75E-10) * *4-4-2013 LTSPICE uses Level=8 *For RIT Sub-CMOS 150 process with L=2u.MODEL RITSUBP8 PMOS (LEVEL=8 +VERSION=3.1 CAPMOD=2 MOBMOD=1 +TOX=1.5E-8 XJ=2.26E-7 NCH=7.12E16 NSUB=3.16E16 XT=8.66E-8 +VTH0=-1.0 U0= 376.72 WINT=2.0E-7 LINT=2.26E-7 +NGATE=5E20 RSH=1347 JS=3.51E-8 JSW=3.51E-8 CJ=5.28E-4 MJ=0.5 PB=0.94 +CJSW=1.19E-10 MJSW=0.5 PBSW=0.94 +CGSO=4.5E-10 CGDO=4.5E-10 CGBO=5.75E-10) Page 52

SPICE MODELS FOR MOSFETS * From Sub-Micron CMOS Manufacturing Classes in MicroE ~ 1um Technology.MODEL RITSUBN7 NMOS (LEVEL=7 +VERSION=3.1 CAPMOD=2 MOBMOD=1 +TOX=1.5E-8 XJ=1.84E-7 NCH=1.45E17 NSUB=5.33E16 XT=8.66E-8 +VTH0=1.0 U0= 600 WINT=2.0E-7 LINT=1E-7 +NGATE=5E20 RSH=1082 JS=3.23E-8 JSW=3.23E-8 CJ=6.8E-4 MJ=0.5 PB=0.95 +CJSW=1.26E-10 MJSW=0.5 PBSW=0.95 PCLM=5 +CGSO=3.4E-10 CGDO=3.4E-10 CGBO=5.75E-10) * *From Sub-Micron CMOS Manufacturing Classes in MicroE ~ 1um Technology.MODEL RITSUBP7 PMOS (LEVEL=7 +VERSION=3.1 CAPMOD=2 MOBMOD=1 +TOX=1.5E-8 XJ=2.26E-7 NCH=7.12E16 NSUB=3.16E16 XT=8.66E-8 +VTH0=-1.0 U0= 376.72 WINT=2.0E-7 LINT=2.26E-7 +NGATE=5E20 RSH=1347 JS=3.51E-8 JSW=3.51E-8 CJ=5.28E-4 MJ=0.5 PB=0.94 +CJSW=1.19E-10 MJSW=0.5 PBSW=0.94 +CGSO=4.5E-10 CGDO=4.5E-10 CGBO=5.75E-10) Page 53

SPICE MODELS FOR MOSFETS *4-4-2013 LTSPICE uses Level=8 * From Electronics II EEEE482 FOR ~100nm Technology.model EECMOSN NMOS (LEVEL=8 +VERSION=3.1 CAPMOD=2 MOBMOD=1 +TOX=5E-9 XJ=1.84E-7 NCH=1E17 NSUB=5E16 XT=5E-8 +VTH0=0.4 U0= 200 WINT=1E-8 LINT=1E-8 +NGATE=5E20 RSH=1000 JS=3.23E-8 JSW=3.23E-8 CJ=6.8E-4 MJ=0.5 PB=0.95 +CJSW=1.26E-10 MJSW=0.5 PBSW=0.95 PCLM=5 +CGSO=3.4E-10 CGDO=3.4E-10 CGBO=5.75E-10) * *4-4-2013 LTSPICE uses Level=8 * From Electronics II EEEE482 FOR ~100nm Technology.model EECMOSP PMOS (LEVEL=8 +TOX=5E-9 XJ=0.05E-6 NCH=1E17 NSUB=5E16 XT=5E-8 +VTH0=-0.4 U0= 100 WINT=1E-8 LINT=1E-8 +NGATE=5E20 RSH=1000 JS=3.51E-8 JSW=3.51E-8 CJ=5.28E-4 MJ=0.5 PB=0.94 +CJSW=1.19E-10 MJSW=0.5 PBSW=0.94 PCLM=5 +CGSO=4.5E-10 CGDO=4.5E-10 CGBO=5.75E-10) * Page 54