PHZ 3113 Fall 2017 Homework #5, Due Friday, October 13

Similar documents
Appendix A. Appendices. A.1 ɛ ijk and cross products. Vector Operations: δ ij and ɛ ijk

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3.

Math 2263 Solutions for Spring 2003 Final Exam

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

Math Notes on Kepler s first law 1. r(t) kp(t)

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

Review: Electrostatics and Magnetostatics

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2

EM Boundary Value Problems

1 MathematicalPreliminaries

Vectors, Vector Calculus, and Coordinate Systems

Question 1: The dipole

Vector d is a linear vector function of vector d when the following relationships hold:

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if

(read nabla or del) is defined by, k. (9.7.1*)

B da = 0. Q E da = ε. E da = E dv

3 VECTOR CALCULUS I. 3.1 Divergence and curl of vector fields. 3.2 Important identities

(n 1)n(n + 1)(n + 2) + 1 = (n 1)(n + 2)n(n + 1) + 1 = ( (n 2 + n 1) 1 )( (n 2 + n 1) + 1 ) + 1 = (n 2 + n 1) 2.

6 Vector Operators. 6.1 The Gradient Operator

MATH 417 Homework 3 Instructor: D. Cabrera Due June 30. sin θ v x = v r cos θ v θ r. (b) Then use the Cauchy-Riemann equations in polar coordinates

3D-Central Force Problems II

B. Spherical Wave Propagation

Homework # 3 Solution Key

dq 1 (5) q 1 where the previously mentioned limit has been taken.

KEPLER S LAWS AND PLANETARY ORBITS

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

KEPLER S LAWS OF PLANETARY MOTION

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is

So, if we are finding the amount of work done over a non-conservative vector field F r, we do that long ur r b ur =

Vectors, Vector Calculus, and Coordinate Systems

Section 8.2 Polar Coordinates

Lecture 8 - Gauss s Law

TUTORIAL 9. Static magnetic field

EFFECTS OF FRINGING FIELDS ON SINGLE PARTICLE DYNAMICS. M. Bassetti and C. Biscari INFN-LNF, CP 13, Frascati (RM), Italy

Math 124B February 02, 2012

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1

Lecture 1a: Satellite Orbits

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. D = εe. For a linear, homogeneous, isotropic medium µ and ε are contant.

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT

Math 259 Winter Handout 6: In-class Review for the Cumulative Final Exam

Now we just need to shuffle indices around a bit. The second term is already of the form

16.1 Permanent magnets

SUPPLEMENTARY MATERIAL CHAPTER 7 A (2 ) B. a x + bx + c dx

Physics 506 Winter 2006 Homework Assignment #9 Solutions

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13

Lecture 1a: Satellite Orbits

Classical Mechanics Homework set 7, due Nov 8th: Solutions

Pendulum in Orbit. Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ (December 1, 2017)

3. Electromagnetic Waves II

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges

J. N. R E DDY ENERGY PRINCIPLES AND VARIATIONAL METHODS APPLIED MECHANICS

Sources of Magnetic Fields (chap 28)

3D-Central Force Problems I

of the contestants play as Falco, and 1 6

OLYMON. Produced by the Canadian Mathematical Society and the Department of Mathematics of the University of Toronto. Issue 9:2.

Review. Electrostatic. Dr. Ray Kwok SJSU

MATH Homework #1 Solution - by Ben Ong

Auchmuty High School Mathematics Department Advanced Higher Notes Teacher Version

Lecture 23. Representation of the Dirac delta function in other coordinate systems

-Δ u = λ u. u(x,y) = u 1. (x) u 2. (y) u(r,θ) = R(r) Θ(θ) Δu = 2 u + 2 u. r = x 2 + y 2. tan(θ) = y/x. r cos(θ) = cos(θ) r.

Hopefully Helpful Hints for Gauss s Law

Green s Identities and Green s Functions

sinγ(h y > ) exp(iωt iqx)dωdq

Vector Calculus Identities

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi

Physics 235 Chapter 5. Chapter 5 Gravitation

Multipole Radiation. February 29, The electromagnetic field of an isolated, oscillating source

15 Solving the Laplace equation by Fourier method

c 2011 Faith A. Morrison, all rights reserved. 1 August 30, 2011

A proof of the binomial theorem

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E)

Electrostatics (Electric Charges and Field) #2 2010

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Electromagnetism II September 15, 2012 Prof. Alan Guth PROBLEM SET 2

Math 1105: Calculus I (Math/Sci majors) MWF 11am / 12pm, Campion 235 Written homework 3

Lab #9: The Kinematics & Dynamics of. Circular Motion & Rotational Motion

Faraday s Law (continued)

Lecture 7: Angular Momentum, Hydrogen Atom

221B Lecture Notes Scattering Theory I

Final Review of AerE 243 Class

Geometry of the homogeneous and isotropic spaces

Dynamic Visualization of Complex Integrals with Cabri II Plus

S7: Classical mechanics problem set 2

Class #16 Monday, March 20, 2017

Right-handed screw dislocation in an isotropic solid

Gauss Law. Physics 231 Lecture 2-1

arxiv: v1 [physics.pop-ph] 3 Jun 2013

PHYS 705: Classical Mechanics. Small Oscillations

REVIEW Polar Coordinates and Equations

FI 2201 Electromagnetism

Physics 122, Fall October 2012

INTRODUCTION. 2. Vectors in Physics 1

Uniform Circular Motion

Physics 862: Atoms, Nuclei, and Elementary Particles

The geometric construction of Ewald sphere and Bragg condition:

Electromagnetism Physics 15b

Newton s Laws, Kepler s Laws, and Planetary Orbits

Transcription:

PHZ 3113 Fall 2017 Homewok #5, Due Fiday, Octobe 13 1. Genealize the poduct ule (fg) = f g +f g to wite the divegence Ö (Ù Ú) of the coss poduct of the vecto fields Ù and Ú in tems of the cul of Ù and the cul of Ú. Use this to compute Ö (Öφ Öψ), fo scala fields φ and ψ. This can be done seveal ways. One is to ague as follows: The deivative opeato Ö acts on both Ù and Ú; the poduct ule applies in some fom. The outcome must be a scala, and so cannot contain Ö Ù o Ö Ú, since thee is no way to combine eithe with the emaining vecto to poduce a scala. Thus, the esult must contain Ö Ù and Ö Ú, and to fom a scala must contain Ú (Ö Ù) and Ù (Ö Ú). ompaed to the oiginal, in the fist tem the thee vectos Ö, Ù, and Ú emain in cyclic ode, and so it appeas with a + sign; but in the second tem the cyclic ode is evesed, and so it appeas with a sign: Ö (Ù Ú) = Ú (Ö Ù) Ù (Ö Ú). O, you can wite out all the components (u x,y = u x / y, etc.), in exhaustive detail, Ö (Ù Ú) = u y v z u z v y + u y z v x u x v z + u z x v y u y v x = u y,x v z +u y v z,x u z,x v y u z v y,x +u z,y v x +u z v x,y u x,y v z u x v z,y +u x,z v y +u x v y,z u y,z v x u y v x,z = v x (u z,y u y,z )+v y (u x,z u z,x )+v z (u y,x u x,y ) u x (v z,y v y,z ) u y (v x,z v z,x ) u z (v y,x vx,y) = Ú (Ö Ù) Ù (Ö Ú). O, you can use the ǫ ijk notation: (Ù Ú) i = ǫ ijk u j v k, and Ö (Ù Ú) = Ö i (ǫ ijk u j v k ) = ǫ ijk Ö i (u j v k ) = ǫ ijk [(Ö i u j )v k +u j (Ö i v k )] Fo Ù = Öφ and Ú = Öψ, = v k (ǫ ijk Ö i u j )+u j (ǫ ijk Ö i v k ) = v k (+ǫ kij Ö i u j )+u j ( ǫ jik Ö i v k ) = v k (Ö Ù) k u j (Ö Ú) j = Ú (Ö Ù) Ù (Ö Ú). Ö (Öφ Öψ) = Öψ (Ö Öφ) Öφ (Ö Öψ) = 0, since the cul of a gadient always vanishes fo easons discussed peviously. This also follows fom ǫ ijk Ö k (Ö j φ Ö k ψ).

2. Letthevectofield Ú be Ú = y(y2 +z 2 ) 3 ˆÜ+ x(x2 +z 2 ) 3 ˆÝ xyz 3 ˆÞ,whee = Ô x 2 +y 2 +z 2. (a) ompute Ö Ú. ompute Ö Ú. All calculations can make good use of the elation 1 p = and similaly fo y and z. 1 (x 2 +y 2 +z 2 ) p/2 = p 2 2x (x 2 +y 2 +z 2 ) (p+2)/2 = px p+2, The deivatives that appea in the divegence ae = 3xy(y 2 +z 2 ) 5 y = 3xy(x 2 +z 2 ) 5 z = xy(x 2 +y 2 2z 2 ) and the divegence is Ö Ú = + y + z = 4xy 3. The deivatives that appea in the cul ae y = 3x2 y 2 +x 2 z 2 +y 2 z 2 +z 4 = 3x2 y 2 +x 2 z 2 +y 2 z 2 +z 4 = yz(2x2 y 2 z 2 ) z = yz(2x2 y 2 z 2 ) z = xz(2y2 x 2 z 2 ) y = xz(2y2 x 2 z 2 ) and Ö Ú = ˆÜ vz y v y vx + ˆÝ z z v z vy + ˆÞ v x = 0. y

(b) ompute Ö(Ö Ú) and Ö 2 Ú. ompute Ö (Ö Ú) two diffeent ways. Again using ( /)(1/ 3 ) = 3x/ etc., it is staightfowad to obtain Ö(Ö Ú) = 4y(3x2 2 ) 5 ˆÜ+ 4x(3y2 2 ) 5 ˆÝ + 12xyz 5 ˆÞ. The Laplacian of the x-component is 2 = 3y(y2 +z 2 )( 2 5x 2 ) 7, y 2 = 3y(2x4 3x 2 y 2 +x 2 z 2 y 2 z 2 z 4 ) 7, z 2 = y(2x4 +x 2 y 2 y 4 11x 2 z 2 +y 2 z 2 +2z 4 ) 7, Ö 2 v x = 4y(2 3x 2 ) 5. The y-component follows fom exchanging x and y, and This gives the familia-looking Ö 2 v z = 12xyz 5. Ö 2 Ú == 4y(3x2 2 ) 5 ˆÜ+ 4x(3y2 2 ) 5 ˆÝ + 12xyz 5 ˆÞ. The cul of the cul diectly is easy, which is the same as Ö(Ö Ú) Ö 2 Ú. Ö (Ö Ú) = Ö (0) = 0. If you think of it, Ö Ú = 0 means that Ú = Öφ fo some φ; and fom v z it is appaent that this potential function is Then, φ = xy. Ö 2 Ú = Ö 2 (Öφ) = Ö(Ö 2 φ) = Ö 4xy 3.

(x y) 3. Let Ú(x,y) be the vecto field Ú = ˆÜ+ (x+y) ˆÝ, whee = Ô x 2 +y 2. Let be the cicumfeence of the cicle of adius = 1 in the x-y plane centeed at the oigin. (a) ompute Ú ˆÒds two diffeent ways. To compute integals, we need to wite eveything in tems of some one thing that we can then integate ove. Let a point on the cicle be specified by pola angle θ, x = cosθ, y = sinθ. Then, position and its deivative ae Ö = xˆü+y ˆÝ = cosθ ˆÜ+sinθ ˆÝ, dö = ( sinθ ˆÜ+cosθ ˆÝ)dθ, ds = dö = dθ; and the unit vecto pependicula to the cicle ( unit nomal ) is ˆÒ = cosθ ˆÜ+sinθˆÝ. The diect integal ove θ then gives Ú ˆÒds = [(cosθ sinθ)ˆü+(cosθ+sinθ)ˆý] (cosθ ˆÜ+sinθˆÝ) dθ = cos 2 θ sinθcosθ+cosθsinθ+sin 2 2π θ dθ = dθ = 2π. 0 The othe way is using the two-dimensional divegence theoem, Ú ˆÒds = (Ö Ú)d 2 a. A The divegence is Ö Ú = (x y) + y (x+y) = 1 x(x y) 3 + 1 y(x+y) 3 = 1, and the aea integal is also 1 d 2 a(ö Ú) = ddφ 1 A 0 = 2π

(b) ompute Ú dö two diffeent ways. The θ-integal is Ú dö = = [(cosθ sinθ)ˆü+(cosθ+sinθ)ˆý] ( sinθ ˆÜ+cosθˆÝ)dθ [ cosθsinθ+sin 2 θ+cos 2 θ+sinθcosθ]dθ = 2π. By Stoke s theoem, this is also Ú dö = (Ö Ú) ˆÒd 2 a. A The cul is leading to the integal Ö Ú = vy v x ˆÞ = 1 y ˆÞ 1 Ú dö = (Ö Ú) ˆÒd 2 a = A 0 ddφ = 2π. (c) What happens when the denominato in Ú is 2 instead of? The values of the integals aound the cicumfeence of the unit cicle ae the same fo any powe p. Without egulaization, the divegence o cul fo denominato 2 would appea to vanish entiely, but with cutoff ǫ and Ö Ú = 2ǫ 2 ( 2 +ǫ 2 ) 2, Ö Ú = 2ǫ 2 ( 2 +ǫ 2 ) 2 ˆÞ, 1 (Ö Ú)d 2 2ǫ 2 2π2 1 a = A 0 ( 2 +ǫ 2 ) 2 2πd = 2 +ǫ 2 = 2π 0 1+ǫ 2 2π. The only contibution to the aea integal is fom the δ-function hiding in the divegence/cul.