J. Am. Chem. Soc., 1997, 119(5), , DOI: /ja962780a

Similar documents
Supporting information for J. Am. Chem. Soc., 1973, 95(10), , DOI: /ja00791a018

J. Am. Chem. Soc., 1996, 118(17), , DOI: /ja953373m

Identification of Two Antiparallel-sheet Structure of Cobrotoxin in Aqueous Solution by'hnmr

antibodies, it is first necessary to understand the solution structure antigenic human epithelial mucin core peptide. The peptide EXPERIMENTAL

J. Org. Chem., 1997, 62(12), , DOI: /jo961896m

Sequential resonance assignments in (small) proteins: homonuclear method 2º structure determination

Resonance assignments in proteins. Christina Redfield

BMB/Bi/Ch 173 Winter 2018

PROTEIN NMR SPECTROSCOPY

J. Phys. Chem., 1996, 100(35), , DOI: /jp952328y

BMB/Bi/Ch 173 Winter 2018

Indirect Coupling. aka: J-coupling, indirect spin-spin coupling, indirect dipole-dipole coupling, mutual coupling, scalar coupling (liquids only)

J. Am. Chem. Soc., 1996, 118(9), , DOI: /ja953497z

High-Resolutio n NMR Techniques i n Organic Chemistry TIMOTHY D W CLARIDGE

Biochemistry 530 NMR Theory and Practice

BASIC NMR HANDBOOK Written by M. A. Eastman Copyright 1997, 2001, 2013, 2015, 2018

J. Am. Chem. Soc., 1998, 120(7), , DOI: /ja972816e

J. Am. Chem. Soc., 1997, 119(41), , DOI: /ja964223u

Two Dimensional (2D) NMR Spectroscopy

Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets

NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease

Supplementary Information. Figure S1. 1 H NMR (600 MHz, CDCl 3 ) of 1.

Two-Dimensional NMR Spectroscopy

Structural Basis of Multivalent Binding to Wheat Germ Agglutinin

Reassignment of the 13 C NMR spectrum of minomycin

Supporting information for Environ. Sci. Technol., 1991, 25(4), , DOI: /es00016a021 HIDEMANN

NMR Data workup using NUTS

Sequential Assignment Strategies in Proteins

ESI for. A rotaxane host system containing integrated triazole C H hydrogen bond donors for anion recognition. Nicholas G. White & Paul D.

Citation for published version (APA): Feenstra, K. A. (2002). Long term dynamics of proteins and peptides. Groningen: s.n.

Supplementary Material

Chem 2320 Exam 1. January 30, (Please print)

Structure Elucidation through NMR Spectroscopy. Dr. Amit Kumar Yadav Assistant Professor-Chemistry Maharana Pratap Govt. P.G.

1. 3-hour Open book exam. No discussion among yourselves.

NMR Spectroscopy of Polymers

Band-Selective Homonuclear 2D Correlation Experiments

Name: BCMB/CHEM 8190, BIOMOLECULAR NMR FINAL EXAM-5/5/10

Supporting Information for Inorg. Chem., 1994, 33(7), , DOI: /ic00085a003 OHTO

made possible by decoupling and deuterium exchange experiments as outlined

COSY type experiments exploring through-bond homonuclear correlations

J. Org. Chem., 1998, 63(13), , DOI: /jo980296f

Ibuprofen. Example of benchtop NMR on small organic molecules

Center for Sustainable Environmental Technologies, Iowa State University

Spin-spin coupling I Ravinder Reddy

Solutions In each case, the chirality center has the R configuration

Magnetic Resonance Spectroscopy

Simulation of Second Order Spectra Using SpinWorks. CHEM/BCMB 8190 Biomolecular NMR UGA, Spring, 2005

A prevalent intraresidue hydrogen bond stabilizes proteins

Nuclear Magnetic Resonance Spectrum of Deamino-Lysine-Vasopressin in Aqueous Solution and Its Structural Implications

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009

Agilent s new solution for obtaining routinely quantitative results from NMR measurements. Magnetic Resonance Systems

Pulsar. Delivering NMR to your benchtop

SUPPLEMENTARY INFORMATION

J. Med. Chem., 1997, 40(14), , DOI: /jm970199z

NMR NEWS June To find tutorials, links and more, visit our website

Deuteration: Structural Studies of Larger Proteins

Carbohydrate Research 337 (2002)

NMR Studies of a Series of Shikimic Acid Derivatives

Intramolecular hydrogen bonding of (+)-biotin and biotin derivatives in organic solvents

Supplementary Information

NMR parameters intensity chemical shift coupling constants 1D 1 H spectra of nucleic acids and proteins

H B. θ = 90 o. Lecture notes Part 4: Spin-Spin Coupling. θ θ

(Refer Slide Time: 0:37)

Ethyl crotonate. Example of benchtop NMR on small organic molecules

THE NUCLEAR OVERHAUSER EFFECT IN STRUCTURAL AND CONFORMATIONAL ANALYSIS

Supporting Information

Stereoselectivity of Proline / Cyclobutane Amino Acid-Containing Peptide. Organocatalysts for Asymmetric Aldol Additions: a Rationale

Non Uniform Sampling in Routine 2D Correlation Experiments

Can you differentiate A from B using 1 H NMR in each pair?

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS. HINDERED ROTATION IN N-METHYLFORMAMIDE. A PEPTIDE-BOND MODEL SYSTEM.*t

00 > oo m 00 CD. Supporting information for Environ. Sci. Technol., 1994, 28(1), 88 98, DOI: /es00050a013. Terms & Conditions

Key words: CLEANEX-PM, hydrogen exchange, NOE, protein, pulsed field gradients, water

Assignment of Heme Resonances and. High- and Low-Spin Nitrophorin 2 by 1 H and. Order of Heme Methyl Resonances in High- Spin Ferriheme Proteins

Tools for Structure Elucidation

Other Methods for Generating Ions 1. MALDI matrix assisted laser desorption ionization MS 2. Spray ionization techniques 3. Fast atom bombardment 4.

Chapter 4: Amino Acids

Spin mixing at level anti-crossings in the rotating frame makes high-field SABRE feasible

StepNOESY Overcoming Spectral Overlap in NOESY1D

Light irradiation experiments with coumarin [1]

Ultra-high Resolution in Low Field Tabletop NMR Spectrometers

SUPPORTING INFORMATION

J. Org. Chem., 1996, 61(21), , DOI: /jo

Recent development in NMR methodology for the study of molecular structure and dynamics

Determining Chemical Structures with NMR Spectroscopy the ADEQUATEAD Experiment

Multidimensional NMR Experiments

Investigation of Molecular Structure of the Cortex of Wool Fibers

Supporting Information

William H. Brown & Christopher S. Foote

Chapter 13 Structure t Determination: Nuclear Magnetic Resonance Spectroscopy

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10)

Proton Acidity. (b) For the following reaction, draw the arrowhead properly to indicate the position of the equilibrium: HA + K + B -

C H E M I S T R Y N A T I O N A L Q U A L I F Y I N G E X A M I N A T I O N SOLUTIONS GUIDE

Conformational Analysis

Collecting the data. A.- F. Miller 2012 DQF- COSY Demo 1

VOL. 55 NO. 8, AUG THE JOURNAL OF ANTIBIOTICS pp LARISSA VOLLBRECHT, HEINRICH STEINMETZ and GERHARD HOFLE*

Host research institute: Laboratory of G. Bodenhausen, EPFL, Lausanne (Switzerland)

Anion recognition in water by a rotaxane containing a secondary rim functionalised cyclodextrin stoppered axle

Biochemistry 530 NMR Theory and Practice

HSQC spectra for three proteins

A Plausible Model Correlates Prebiotic Peptide Synthesis with. Primordial Genetic Code

Transcription:

J. Am. Chem. Soc., 1997, 119(5), 918-925, DOI:10.1021/ja962780a Terms & Conditions Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html Copyright 1997 American Chemical Society

Pseudo-Prolines (PPro) as a Molecular inge: Reversible Induction of Cis Amide Bonds into Peptide Backbones. Pascal Dumy, Michael Keller, Declan E. Ryan, Barbara Rohwedder, Torsten Wohr and Manfred Mutter. Contribution from the Institute of Organic Chemistry, University of Lausanne, BC-Dorigny, C- 1015, Lausanne, Switzerland. Spectra were recorded at 400 MI-Lz using a Bruker ARX spectrometer at 300 K. Samples of around 25 mg were dissolved in 0.4-0.5 ml of DMSOd 6. Chemical shifts were calibrated on the solvent isotopic impurity (2.49 ppm at 300 K). 2D experiments were typically acquired using 2K x 512 matrices over a 4000 z sweep width in both dimensions. Quadrature detection in the indirect dimension was achieved by using the TPPI procedurel. Scalar connectivities were recovered from 2D double quantum filtration (DQF) COSY experiments 2. Dipolar connectivities were obtained either through the conventional NOESY sequence 3 or the ROESY sequence 4 with mixing times from 150 to 200 ms. A randomization of the mixing length (± 5%) was introduced in the NOESY experiments in order to minimize coherence transfer. The spin lock mixing interval of the ROESY sequence was applied by coherent CW irradiation at yb 2 /2xr = 2 Kz. Experimental data processing was performed using the Felix software package 5. The standard sinebell squared routine was employed for apodization with a shift range of 60-900 and zero filling in both dimensions before 2D transformations were applied to end up with square matrices of 2K x 2K real point data. Complete proton resonance assignments were made using (DQF) COSY experiments, MQC was used to assign unambiguously the carbon resonances. J coupling constant were directly measured from highresolution ' -ID spectra (±0.1z) or simulated for complex or overlapped systems. Prochiral assignments for the 'Pro P and Me protons were achieved, in some cases, on the basis of relative interproton ROE intensities and J coupling constant values. 1 Drobny, G.; Pines, A., Sinton, S.; Wertekamp, D.; Wemmer, D. Faraday Div. Chem. Soc. Symp., 1979, 13, 48-58. 2 Piantini, V.; Sorensen, 0. W.; Ernst, R. R. J Am. Chem. Soc,. 1982, 104, 6800-680 1. 3 Jeener, J.; Meier, B..; Bachmann, P.; Ernst, R. R. J Chem. Phys., 1979, 71, 4546-4553. 4 Bothner-By, A. A.; Stephen, R. R-L.; Lee, J., Warren, C. D.; Jeanloz, R. W., J Am. Chem. Soc. 1984, 106, 811-813. 5 Biosym Technologies Inc., San Diego. Pseudo-Prolines (YPro) as a Molecular inge: Reversible Induction of Cis Amide Bonds into Peptide Backbones. Pascal Dumy, Michael Keller, Declan E. Ryan, Barbara Rohwedder, Torsten W6hr and Manfred Mutter.

Ac-Ala-Ser(MeMepro)N-Me (1) pros 0 Table 1. 1 NMR spectral parameters of compounds 1. N ('JN-a) a 3 a-p) ( 2 jp-p) 2-Me Ala 8.154 4.100 1.16(7.0) Ser(Yue~mepro) - 4.44(6. lpro-r) 4.17/4. 0 5 Pro-R( 8.8) 1.52/1. 4 3 pro-s NMe 8.176(4.5) 2.615 Ac 1.667 Table 2. 13 C NMR spectral parameters of compounds 1. O p 2-C 2-Me CO Ala 47.8 16.5 169.5 ser 59.2 67 90.5 25.2pro-s/22.4 169.2 Ac 21.8 Me 25.8 Pseudo-Prolines (TPro) as a Molecular inge: Reversible Induction of Cis Amide Bonds into Peptide Backbones. Pascal Dumy, Michael Keller, Declan E. Ryan, Barbara Rohwedder, Torsten Wohr and Manfred Mutter.

Ac-Ala-Thr(TMeMepro)N-Me (2) N Me 0 NMe Table 3. 1 NMR spectral parameters of compounds 2. N ( 3 JN-) c a-) ( 2 p-p-i) PMe 2-Me Ala 7.70 4.28 1.271(6.6) - Thr(Y M e* M epro) - 4.03(5.7) 4.12 1.29 1.52/1.50os NMe 8.6 2.61(3.6) Ac 1.805 Table 4. 13 NMR spectral parameters of compounds 2. OX 0 PMe C(2) 2-C CO Ala 46.8 18.5 169.7 Thr(" m ''"pro) 65.6 74.9 19.1 95.4 2 6. 1 8 pro-s/ 2 3. 9 168.9 Ac 22.2 168.2 Me 25.8 Pseudo-Prolines ('VPro) as a Molecular linge: Reversible Induction of Cis Anide Bonds into Peptide Backbones. Pascal Dumy, Michael Keller, Declan E. Ryan, Barbara Rohwedder, Torsten W6hr and Manfred Mutter.

Ac-Ala-Cys(TMeMepro)N-Me (3) pros Me N. 0 Table 5. 1 NMR spectral parameters of compounds 3. N ('JN-a) C3 ajo-o) 2 P-P) 2-Me Ala 8.21(6.9) 4.10 1.16 Cys(FueM'pro) - 5. 34 ( 6.4ro-R) 3. 6 2 pro-r/3. 2 0 (11.8) 1. 9 3 /1. 8 5 ro-s NMe 8.176(4.7) 2.85 Ac 1.667 Table 6. 1 NMR spectral parameters of compounds 3. a. 0 2-Me CO Ala 49.31 18.7 170.4 Cys(YMeMepro) 64.6 30.8 2 8. 9 pro-s/ 2 7. 6 171.2 Ac 22.5 168.2 Me 25.3 Pseudo-Prolines (TPro) as a Molecular inge: Reversible Induction of Cis Anide Bonds into Peptide Backbones. Pascal Dumy, Michael Keller, Declan E. Ryan, Barbara Rohwedder, Torsten W6hr and Manfred Mutter.

Ac-Ala-Ser(T,pro)N-Me (4) 0) pros N NMe Table 7. 1 NMR spectral parameters of compounds 4. N ( 3 JNl-ly) cc P ( 2 JfW.P{1) y 2- Ala 8.219(5.8) 4.29 1.18(6.90) - Ser(pro) - 4.31 4.09/3.83-5.17/4.96(3) Ser(Ypro) 4.48 4.18/4.03 4.88 Cis(28%) NMe 7.78(4.5) 2.57 NMe 8.13 2.60 Ac 1.81 Table 8. 13 C NMR spectral parameters of compounds 4. cx y 2-C CO Ala 46.8 16.6 169.2 Ser(YPpro) 59.2 69.7 78.5 169.2 Ser(PIlpro) Cis 59.8 71.2 79.1 Ac 21.9 168.9 Me 25.4(25.7) Pseudo-Prolines (TPro) as a Molecular inge: Reversible Induction of Cis Amide Bonds into Peptide Backbones. Pascal Duny, Michael Keller, Declan E. Ryan, Barbara Rohwedder, Torsten W~hr and Manfred Mutter.

Ac-Ala-Pro-N-Me (5) 0 pros N 0 NMe Table 9. 1 NMR spectral parameters of compounds 5. N ( 3 JN-o) X ( 3 Ja.-O) (2j P-P) y 5 Ala trans(82%) 8.05(7.5) 4.51 1.55(6.9) - - Pro trans - 4.2(3.8/8.4) 1. 9 7 P-'/1. 7 5 pro-r 1.88/1.86 3. 57 pro-r/3. 5 3 pro-s Ala Cis (18%) 7.99(7.3) 4.26 1.13(6.8) - - Pro Cis - 4.3(3.4/7.3) 2.04 1.76/1.68 3.38/3.36 Me trans 7.63 2.54(4.7) Me cis 7.94 2.58(4.7) Ac 1.79 Table 10. 13 C NMR spectral parameters of compounds 5. a p y 6 CO Ala trans 46.5 16.9 168.6 Pro trans 59.5 29.1 24.3 45.9 170.6 Ala Cis 46.7 17.5 168.7 Pro cis 50.6 31 21.6 46.2 170.9 Ac 22.1 171.8 Me 25.4 Me 25.7 Pseudo-Prolines ('PPro) as a Molecular inge: Reversible Induction of Cis Amide Bonds into Peptide Backbones. Pascal Dumy, Michael Keller, Declan E. Ryan. Barbara Rohwedder, Torsten Wahr and Manfred Mutter.

Succinyl-Val-Ser( pro)-phe-pna (7) Table 11. 1 NMR spectral parameters of compound 7 N('JN-a) cx (Jcc-P) 3 ( 2 Jp-a) Val 8.202(8.2) 3.94 1.89 Ser('F pro) 4.485 (7.3/ 5..0) 4.174pro-R 3.818 (8.7) Phe Succinyl (4-NO 2 )-Ph 8.417 (7.1) 2.42 10.53 4.637(5.4, 8.4) 8.2 (9.3) meta 3.07 2.96 (13.8,) 7.79 ortho 0.865(6.6) /0.855(6.6) 2-5.289 (3.7) 4.95 Pseudo-Prolines (TPPro) as a Molecular inge: Reversible Induction of Cis Anide Bonds into Peptide Backbones. Pascal Duny, Michael Keller. Declan E. Ryan, Barbara Rohwedder, Torsten W3hr and Manfred Mutter.

Succinyl-Val-Ser(Tm',mepro)-Phe-pNA (8) Table 12. 1 NMR spectral parameters of compound 8. N( JN-a) c. (3 Ja-P) P( 2JP-a) y 2-Me Ser(' MeMepro) - 4.64 (6.5,/1.9) 4. 10 2 pro-r 1.43 4.00 (9.1) Phe 8.46 (7.7) 4.702 3.2 -- Val 7.84 (8) 4.27 (6.2) 1.9 0.86 (6.8) 0.88 (6.8) Succinyl 2.45 (4-NO2)-Ph 10.68 8.2(9.3) meta 7.77 ortho Pseudo-Prolines ('TPro) as a Molecular linge: Reversible Induction of Cis Anide Bonds Into Peptide Backbones. Pascal Duny, Michael Keller, Declan E. Ryan, Barbara Rohwedder, Torsten W6hr and Manfred Mutter.

Succinyl-Val-Ser( Y(2-R),PM PrO)-Phe-pNA (9) Table 13. 1 NMR spectral parameters of compound 9 N( 3 JN-x) a ('Jcx-P) Val trans (90%) 8.159 (8.5) 3.885 (8.8) (2j J-P) 1.67 0.56 (6.6) /0.23 2- (6.7) Ser(W PMPpro) trans 4.65 (7.4/5.6) 4.122pro-R/4.005 6.396 (8.9) Val Cis (10%) 4.36 0.95 (6.5) Ser( PMP pro) cis 4.878 4.32 / 4.279 6.025 Phe trans 8.52 (7.2) 4.71 (5.9/8.4) 3.102 / 3.01 (14) Phe cis 8.888 (7.23) Succinyl 2.4 PMP 3.728(OMe) 6.98 (8.7) meta 7.71 ortho NO2Ph trans 10.639 8.2 (9.3) meta 7.8 ortho Table 14. 1 3 C NMR spectral parameters of compound 9. a. P y 2-C Val trans 55.6 29.25 17.9/19 - Ser(PW, pro) trans 58.3 67.3-89.7 Phe 55.0 37.1 Suc 29 29 - - PMP 55 (OMe) 113 meta 130 ortho (4-NO2)-Ph 124.7 meta 118.7 ortho Pseudo-Prolines ('PPro) as a Molecular inge: Reversible Induction of Cis Anide Bonds Into Peptide Backbones. Pascal Durny, Michael Keller, Declan E. Ryan, Barbara Rohwedder, Torsten Wahr and Manfred Mutter.

Succinyl-Val-Ser(W(2-S)PMPpro)-Phe-pNA (major) (10) Table 15. 1 NMR spectral parameters of compound 10. N ( 3 JN-a) a ( 3 Jc-O) 0(2JP-P) Val trans (50%) 7.53(8.9) 4.00 (8.3) 2.00 Ser(YPP trans ", pro) Val cis (50%) Ser(TPM., pro) cis Phe trans Phe cis Succinyl cis Succinyl trans PMP trans PMP cis (4-NO2)Ph trans (4-NO2)Ph cis - 4.704 (7.2/3.1) 7.65 (9.1) 4.44 (4.7/8.9) 4.853 (6.3,/1.9) 8.489 (7.2) 4.639 (5.7/8.7) 8.89 (7.5) 4.793 (7.0 /7.2) 2.39 2.33 2.22 2.08 3.73 (OMe) 6.9(8.5) meta 3.74 (OMe) 6.88(8.5) meta 10.49 8.21(9.3) meta 10.55 8.19(9.3) meta 3. 9 7 9 pror 3.864 (9.3) 2.064 4.29pro R 4.02 (8.9) 3.076 (13.8), 2.977 3.175 (14), 3.108 7.26 ortho 7.29 ortho 7.8 ortho 7.77 ortho y 0.79(6.6)0.7 44(6.8) 0.82 (6.6), 0.69 (6.8) 2-6.32 6.17 Table 16. 13 C NMR spectral parameters of compound 10. Val trans a 54.7 0 y 29 19.1/16.8 2-C Ser( PMP, pro) trans 58.2 66.62 88.7 Phe trans 55.2 37.105 Val cis 54.66 28.97 19.1/16.6 Ser(Tp'l", pro) cis 58.18 69.9 90.0 Phe cis 54.3 37.1 Suc 28.2 28.2 - NO2PhN 124.7 meta 118.7 meta PMP 54.7 (OMe) 127.9 meta 119.3 ortho Pseudo-Prolines ('Pro) as a Molecular inge: Reversible Induction of Cis Anide Bonds into Peptide Backbones. Pascal Dumy, Michael Keller, Declan E. Ryan, Barbara Rohwedder, Torsten W6hr and Manfred Mutter.

L) - Y *, 111 Ac-Ala-Ser['P Mo 101 to 115 Kcal.morl am 116 to 130 Kcal.mor 131 to 145 Kcal.molpro]-NMe 180 Trans conformation E=20.1Kcal.mol' Cis conformation E=19.9 Kcal.mol' -1801-180 180-180 180 mm 101 to 115 Kcal.mol 116 to 130 Kcal.mol... 131 to 145 Kcal.mol

-~-~ j Trans conformation E=27.5 Kcal. mot' Ac-Ala-Pro-NMe 180 Cis conformation E=29.9 Kcal.mo' I Pt -18-180 180-180 180 m 81 to 95 Kcal.mol) 96 to 110 Kcal.mol" Ill to 125 Kcal.mol m 83 to 97 Kcal.mol 98 to 112 Kcal.niol, 113 to 127 Kcal.mol"

II -~ Ii Ac-Ala-Ser[P MeMe pro]-nme Trans conformation E= -44.9 Kcal.mor' Cis conformation E= -48.0 Kcal.mot C) ac 5 4 00 oo 00-180 180-47 to 61 Kcal.mol - 62 to 76 Kcal.mol' 77 to 91 Kcal.mol- - 32 to 46 Kcal.mol" - 47 to 61 Kcal.mol 62 to 76 Kcal.mol