ADVANCES in NATURAL and APPLIED SCIENCES

Similar documents
Studies on Structural and Electrical conducting properties of Micro and Nano Copper Doped Polyaniline

Polyaniline-SbO 2 Composites: Preparation, Characterization and a c conductivity Study

Synthesis and Microwave Absorption Property of Cr Doped Poly-aniline

CHEMICAL POLYMERIZATION OF SUBSTITUTED DERIVATIVES OF ANILINE IN OXALIC ACID MEDIUM

Preparation and Characterization of New Polymer Electrolyte for Fuel Cell and Its Application

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

Preparation of Nanocomposites Polypyrrole and Zinc Oxide Thin Film Characterization and its Application of Gas Sensor

Supporting Information. Polyaniline-MnO 2 nanotubes hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte

MOPHOLOGY OF POLYANILINE NANOTUBE WITH VARIOUS LEVEL OF Fe3O4 NANOPARTICLES AND THEIR ELECTRICAL CONDUCTIVITIES BY ULTRASONIC DISPERSION METHOD

SYNTHESIS AND CHARACTERIZATION OF POLYANILINE/POLY (P-HYDROXYANILINE)/Fe 3 O 4 MAGNETIC NANOCOMPOSITE

Pelagia Research Library

STRUCTURAL AND ELECTRICAL CHARACTERIZATION OF PROTONIC ACID DOPED POLYPYRROLE

Synthesis and characterization of hybride polyaniline / polymethacrylic acid/ Fe 3 O 4 nanocomposites

Cu 2 O/g-C 3 N 4 nanocomposites: An insight into the band structure tuning and catalytic efficiencies

Activated Carbon/Polyaniline Electrode For Electrochemical Supercapacitor

nanocomposites: synthesis and characterization

Supporting information A Porous Zr-cluster-based Cationic Metal-Organic Framework for Highly Efficient Cr 2 O 7

In Situ synthesis of architecture for Strong Light-Matter Interactions

Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation

Supplementary Information for

Poly(anthranilic acid) Nanorods: Synthesis, Characterization and Electrochemical Sensing Properties

Synthesis of Oxidized Graphene Anchored Porous. Manganese Sulfide Nanocrystal via the Nanoscale Kirkendall Effect. for supercapacitor

driving agent and study of photocatalytic activity Mohammad Salehi Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran

Ethylenediaminetetraacetic Acid-Assisted Synthesis of Nano Antimony Oxide by Microwave Method

Synthesis, Characterization, Thermal Stability and D.C. Electrical Conductivity of Pani/Pbs Nanocomposite

Fabrication and Characterization of Nanometer-sized AgCl/PMMA Hybrid Materials

Supporting information

Supporting Information

PREPARATION, CHARACTERISATION AND PHOTOCATALYTIC ACTIVITY OF TERNARY GRAPHENE-Fe 3 O 4 :TiO 2 NANOCOMPOSITES

Fabrication and characterization of poly (ethylene oxide) templated nickel oxide nanofibers for dye degradation

Department of Chemistry of The College of Staten Island and The Graduate Center, The City University of

RESULTS AND DISCUSSION Characterization of pure CaO and Zr-TiO 2 /CaO nanocomposite

Graphene Oxide / Polyaniline Nanostructures: Transformation of 2D sheet to 1D Nanotube and in-situ Reduction

Electronic Supplementary Information

CdS/PMMA-BASED INORGANIC/ORGANIC HETEROJUNCTION FOR H 2 S GAS SENSING

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes

The characterization of MnO nanostructures synthesized using the chemical bath deposition method

Synthesis and Characterization of Polypyrrole/ Copper (II) Oxide Nanocomposite Electrolyte for Fuel Cell Application

Catalytic Decomposition of Formaldehyde on Nanometer Manganese Dioxide

Growth of silver nanocrystals on graphene by simultaneous reduction of graphene oxide and silver ions with a rapid and efficient one-step approach

Synthesis and characterization of polypyrrole polyvinyl alcohol composite film with various organic acids dopants and their gas sensing behavior

The CdS and CdMnS nanocrystals have been characterized using UV-visible spectroscopy, TEM, FTIR, Particle Size Measurement and Photoluminiscence.

Electronic Supplementary Material. Methods. Synthesis of reference samples in Figure 1(b) Nano Res.

New York Science Journal, ISSN

Engineering electronic structure of Two-Dimensional Subnanopore. nanosheet by Molecular Titanium-oxide Incorporation for Enhanced

Electronic Supplementary Information (ESI)

Synthesis and Characterization of Innovative Multilayer, Multi Metal Oxide Thin Films by Modified Silar Deposition Method

Photocatalytic degradation of methylene blue and crystal violet by sulfur/reduced graphene oxide composite

(IJIRSE) International Journal of Innovative Research in Science & Engineering ISSN (Online)

Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline

Supporting Information s for

Synthesis of Highly Conductive Polypyrrole Nanoparticles via Microemulsion Polymerization

Supporting Information:

College of Mechanical Engineering, Yangzhou University, Yangzhou , China; 2

A project report on SYNTHESIS AND CHARACTERISATION OF COPPER NANOPARTICLE-GRAPHENE COMPOSITE. Submitted by Arun Kumar Yelshetty Roll no 410 CY 5066

A COMPARATIVE STUDY ON CHARACTERIZATION AND PHOTOCATALYTIC ACTIVITIES OF PbS AND Co DOPED PbS NANOPARTICLES

SUPPORTING INFORMATION

MAGNETIC NANOPARTICLES FOR HYPERTHERMIA APPLICATIONS. Mohamed DARWISH and Ivan STIBOR

Controllable Synthesis of Functional Polyaniline Nanotubes Via A Complex Template Ying WANG, Donghao SUN a and Yanfeng GUO

/reduced Graphene Oxide (rgo) Composite via Hydrothermal Method. SiO 3. Synthesis of LiFePO 4. /Li 2. Journal of Physics: Conference Series

Available online Research Article. Hamideh Saravani* and Mehdi Sanjarani V.

Studies on Furan Polymer Concrete

Supplementary Information

Supporting Information

SYNTHESIS OF CuS WITH DIFFERENT MORPHOLOGIES BY REFLUXING METHOD: NANOPATICLES IN CLUSTERS AND NANOFLAKES IN SPONGE- LIKE CLUSTERS

Synthesis and Characterization of Polymeric Composites Embeded with Silver Nanoparticles

Large-Scale Synthesis of Transition-metal Doped TiO 2 Nanowires. with Controllable Overpotential

High Salt Removal Capacity of Metal-Organic Gel Derived. Porous Carbon for Capacitive Deionization

International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December ISSN

Supporting Information. Dai-Wen Pang,

Efficient Co-Fe layered double hydroxide photocatalysts for water oxidation under visible light

Adsorption of Methylene Blue on Mesoporous SBA 15 in Ethanol water Solution with Different Proportions

Chapter 12 Mass Spectrometry and Infrared Spectroscopy

Supplementary Information. Core-Shell Silver/Polymeric Nanoparticles-Based Combinatorial Therapy against Breast Cancer In-vitro

Urchin-like Ni-P microstructures: A facile synthesis, properties. and application in the fast removal of heavy-metal ions

Facile Synthesis and Catalytic Properties of CeO 2 with Tunable Morphologies from Thermal Transformation of Cerium Benzendicarboxylate Complexes

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing , China

Supporting Information. Supercapacitors

Controlling Interfacial Contact and Exposed Facets for. Enhancing Photocatalysis via 2D-2D Heterostructure

Supplementary Information. Seeding Approach to Noble Metal Decorated Conducting Polymer Nanofiber Network

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.3, pp ,

Visible-light Driven Plasmonic Photocatalyst Helical Chiral TiO 2 Nanofibers

A highly reactive chalcogenide precursor for the synthesis of metal chalcogenide quantum dots

Room Temperature Hydrogen Generation from Hydrous Hydrazine for Chemical Hydrogen Storage

Dry-gel conversion synthesis of Cr-MIL-101 aided by grinding: High surface area high yield synthesis with minimum purification

Preparation, Characterization and comparative Temperature dependent Electrical Properties of Polythiophene & its Nanocomposites using Carbon Nanotubes

Supporting Information. Graphene Oxide-Palladium Modified Ag-AgBr: A Novel Visible-Light- Responsive Photocatalyst for the Suzuki Coupling Reaction**

Supplementary data. Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur , Chhattisgarh, India.

Journal of Chemical and Pharmaceutical Research, 2017, 9(1): Research Article

PREPARATION AND CHARACTERIZATION OF CdO/PVP NANOPARTICLES BY PRECIPITATION METHOD

Measurement of thermal properties of polyaniline salt from room temperature 30 to 140 C

PHOTOCATALYTIC DEGRADATION STUDIES OF POLYANILINE BASED ZnO-Al 2 O 3 NANOCOMPOSITE

Supporting Information

Supplementary Information

Permeable Silica Shell through Surface-Protected Etching

Supporting Information Hydrothermal synthesis of nitrogen-doped graphene hydrogels using amino acids with different acidities as doping agents

Two Dimensional Graphene/SnS 2 Hybrids with Superior Rate Capability for Lithium ion Storage

Hydrogenated CoO x Ni(OH) 2 nanosheet core shell nanostructures for high-performance asymmetric supercapacitors

High-Performance Semiconducting Polythiophenes for Organic Thin Film. Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner

Supporting Information

Transcription:

ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2017 June 11(8): pages 168-172 Open Access Journal Investigation of Enhanced A.C Electrical Conductivity of Nano Aluminium particles doped with Polymer Composite by in Situ Chemical Oxidation Polymerization Method 1 G. Sowmiya, 2 G. Velraj, 3 C. Shanmugapriya 1 Periyar University, Department of Physics, Salem-636 011, Tamilnadu, India. 2 Anna University, Department of Physics, Chennai-600 025, Tamilnadu, India. 3 Department of sciences, Sona college of Technology, Salem -636005, Tamilnadu, India. Received 28 February 2017; Accepted 22 May 2017; Available online 6 June 2017 Address For Correspondence: G. Velraj, Associate professor, Department of Physics, Anna University, Chennai- 600 025, Tamilnadu, India. E-mail:gvelraj@yahoo.co.uk Copyright 2017 by authors and American-Eurasian Network for ScientificInformation (AENSI Publication). This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ ABSTRACT The conducting polyaniline(pani) and nano aluminium doped polyaniline(n-alpani) nanocomposite have been successively synthesized by in-situ chemical oxidative polymerization method. The synthesized samples were characterized using morphological and elemental compositions were analyzed using FESEM with EDX respectively. The electrical conductivity property of the pure pani and its nanocomposite were studied by two probe technique. The formation of aluminium nano particles were also confirmed by Fourier Transform Infrared spectroscopy (FT-IR). The very strong band at 615cm -1 corresponds to Al-O stretching vibrations. The A.C electrical conductivity of pani and n-alpani was found to be 8.2 x10-9 S/cm and 2.15 x 10-6 S/cm respectively. The results revealed that there is a three order increase of conductivity in the nano metal composite when compared to pure polyaniline. KEYWORDS: polyaniline, FT-IR, XRD, FESEM with EDX, A. C electrical conductivity. INTRODUCTION The intrinsically conductive polymers are organic polymers that conduct electricity due to their conjugated π-electrons, having metallic or semiconducting behavior, good environmental stability and also interesting optical, mechanical and electronic properties [1,2]. Conductive polymer with polyaromatic backbone including polypyrrole, polythiophene, polyaniline, etc. has received a great deal of attention in the last two decades [3]. Polyaniline (PANI) is presently considered to be one of the promising conducting polymers (CP) that has been found to have a wide range of applications including biosensors owing to its lowcost, electrical properties etc. [4]. A number of metal and metal oxide particles have been encapsulated into the conductive polymer to form nanocomposites (NCs). The NCs exhibit combination of properties like conductivity, electrochemical, catalytic and optical properties [4]. The NCs are used in appli-cations like electrochromic devices, light-emitting diodes, electromagnetic interference shielding, secondary batteries, electrostaticdischarge systems, chemical and biochemical sensors [5].The present paper reports the synthesis of Pani nanocomposite by the incorporation of n-al particles in the pani matrix. The pani and n-alpani have been synthesized by in-situ chemical oxidation method. ToCite ThisArticle: G. Sowmiya, G. Velraj, C. Shanmugapriya., Investigation of Enhanced A.C Electrical Conductivity of Nano Aluminium particles doped with Polymer Composite by in Situ Chemical Oxidation Polymerization Method. Advances in Natural and Applied Sciences. 11(8); Pages: 168-172

169 G. Sowmiya et al., 2017/Advances in Natural and Applied Sciences. 11(8) June 2017, Pages: 168-172 This polymer hybrid nanocomposite has been characterized using FTIR, XRD, FESEM with EDX, UV- VIS and two probe technique respectively. MATERIALS AND METHODS 1.1 Synthesis Of Polyaniline: 0.1 M of aniline was dissolved in 100 ml of de-ionized water and stirred for 15 min using a magnetic stirrer. 1M of H 2SO 4 was added slowly from drop to the aniline monomer solution. 0.1 M of ammonium per sulphate was dissolved in 20 ml of deionised water and slowly added drop by drop for half an hour from a burette vertically to the above prepared solution. After stirring for 5 h, the solution was filtered and the residual was washed with double distilled water, methanol and acetone, and then dried in an oven at 60 C. The final product was ground into a fine powder. 1.2 Preparation Of Al Doped With Pani Nanocomposite: To synthesize n-alpani, 0.1M aniline monomer and 1M H 2SO 4 were stirred with DDW, and the required quantity of nano Aluminium (Al) powder was added. The oxidant APS was added drop-wise to the aniline acid Aluminium (Al) mixture with constant stirring. When the sample was reacted in the mixed solution of aniline-nh 4S 2O 8 H 2SO 4, the color of the sample changed to light blue, revealing formation of pani through an oxidation reaction. The stirring was continued for 5h to ensure complete polymerization. A dark green n-alpani nanocomposite was thus formed, followed by a color change to dark blue. The composite obtained was filtered and washed with distilled water and methanol to remove excess acid. The product was dried in an oven at 60 C for 12h. The dried n-alpani composite was fine-ground using a mortar & pestle. 1.3 Characterization Techniques: FT-IR spectra were recorded on a Bruker Alpha T FT-IR spectrometer. IR spectra of the samples were recorded at room temperature in the mid IR region of 4000 400 cm -1.The XRD pattern was recorded using Cu Kα radiation (λ=1.54060 Aº) with nickel monochromatic in the range of 2θ from 10º to 80º. The FESEM - EDX were recorded using JEOL Model 6390 machine. Conductivity measurements were performed by a typical Two Probe method with PSM 1735 Frequency Response Analyzer employing the pressed pellet method over the frequency range from 1 KHz to 10MHz at room temperature. Spectrum of visible light is measured using absorption spectrometer of StellarNet Inc (model EPP2000). The power of visible light is measured using Newport optical power meter (model 1916-R) and is found to be 600 mw at wavelength of 650 nm (maximum intensity of the light spectrum). RESULTS AND DISCUSSION 2.1 Ft- Ir Analysis: The FT-IR spectra of pure pani and n-alpani nanocomposite is shown in Fig.1.The very strong characteristic peaks at 3741, 2361, 1504, 1296, 1151 and 1114cm -1 are assigned to the N-H, stretching vibration, (N-H)+ unsaturated amine, N-B-N stretching vibrations C-N stretching of secondary aromatic amine, (C=N) stretching vibration and in-plane bending vibration of C-H mode. The peaks observed in the present work matches well with pani[6-12]. A broad and smooth absorption band in the wavenumber Range from about 400-900cm -1 reveals the formation of Al-O vibrations [13]. The additional peak appeared at 615 cm -1 was assigned to Al-O stretching vibrations. This confirms the interaction of n-al nanoparticle in the conducting polymer matrix [14]. Fig. 1: FTIR spectra of (a) Pani and n-alpani

170 G. Sowmiya et al., 2017/Advances in Natural and Applied Sciences. 11(8) June 2017, Pages: 168-172 2.2 Xrd Analysis: The X-Ray patterns of the pani and n-alpani nanocomposite are shown in Fig. 2. XRD studies showed that pani is amorphous in nature which shown in the fig.2. The broad diffraction peak at 2θ = 24 is characteristic peak for pani. After doping, the samples showed crystalline nature which was confirmed by the peaks at about 2θ = 37.81º, 48.28 º, 64.32 º and 70.81º for n-alpani. These peaks were matched with JCPDS data of Aluminium file no. 04-0787. The planes corresponding to n-alpani is (111), (220), (200) and (311) respectively. The peak shows sharp and well-defined, indicating the crystallinity of the synthesized materials. The average crystalline size of n-alpani has been estimated to be around 31nm. Fig. 2: XRD spectra of (a) Pani and (b) n-alpani 2.3 Fe-Sem Analysis: FESEM was performed in order to investigate surface morphology of the polymers and the nanocomposite. EDAX was done to reveal the chemical composition of the samples. fig. 3 (a), (b), (c) and (d) shows the SEM and EDAX images of pani and n-alpani with weight percentages are shown in the table 1and 2. The FESEM image of pani is spherical and aggregated globules. In the nano composites some of the Aluminium particles seems to be embedded in the polymer matrix and started coalescing due to the surface absorption property of pani. The change in morphology can be explained by the absorption and intercalation of pani on the surface of Al nanoparticle. (a) (b) (c) (d) Fig. 3: FESEM images of (a) Pani (b) n-alpani and EDX spectra of (c)pani (d) n-alpani

171 G. Sowmiya et al., 2017/Advances in Natural and Applied Sciences. 11(8) June 2017, Pages: 168-172 Table 1: Elemental concentration for Pani Element Weight% Atomic% Al K 52.93 40.00 O K 47.07 60.00 Total 100.00 10.00 Table 2: Elemental concentration for n-alpani Element Weight% Atomic% C K 55.27 69.41 O K 26.87 25.33 Cl K 0.59 0.25 Cr K 17.27 5.01 Total 100.00 100.00 2.4 Uv-Vis Spectroscopy: UV VIS spectroscopy was employed to characterize the optical properties. Fig. 4. Shows the UV visible absorption spectra of pani and n-alpani composite. A strong absorption peak between 200 nm and 400 nm was clearly observed which confirmed the presence of Al nano particles. Three characteristic absorption bands are observed in the spectra of pani at 269 nm, 368 nm and 618nm wavelength, n-alpani composite had absorption peaks at 270 nm, 371 nm and 633nm which are attributed to π -π*conjugated ring systems, polaron- π* and π polaron benzenoid to quinoid excitonic transition respectively. The red shift of the absorption transition to higher wavelength may be due to the successful interaction of metal nanoparticles with the polymer chain. The band gap of the pani and nanocomposite is calculated from E=hc / λ Where, E is the band gap energy, h is Planck s constant, c is velocity of light, λ is wavelength of absorption. Band gap energy for pani is 2.7 ev and for n-alpani composite is 2.58 ev. Optical conductivity of polyaniline increases in presence of aluminium nanoparticles due to the decrease in optical band gap. Fig. 4: UV-VIS spectra of (a) Pani and (b) n-alpani The red shift of the absorption transition to higher wavelength may be due to the successful interaction of metal nanoparticles with the polymer chain. The band gap of the pani and nanocomposite is calculated from E=hc / λ Where, E is the band gap energy, h is Planck s constant, c is velocity of light, λ is wavelength of absorption. Band gap energy for pani is 2.7 ev and for n-alpani composite is 2.58 ev. Optical conductivity of polyaniline increases in presence of aluminium nanoparticles due to the decrease in optical band gap. 2.5 A.C Electrical Conductivity Studies: The A. C Conductivity measurements have been performed by a typical two probe technique. The A. C electrical conductivities of pani and n-alpani are shown in Fig. 5. The A.C electrical conductivity of pani and n- Alpani were calculated and found to be 8.2 x10-9 S/cm and 2.15 x 10-6 S/cm respectively. When compared to pure pani there is a three order increase of conductivity in the nano metal composite. The combination of amorphous and crystalline structure in the composite material may also be the reason for improved conductivity.

172 G. Sowmiya et al., 2017/Advances in Natural and Applied Sciences. 11(8) June 2017, Pages: 168-172 Fig. 5: A. C electrical Conductivity of (a) Pani and (b) n-alpani Conclusions: Pure pani and n-alpani were synthesized by adopting a facile in situ chemical oxidation polymerization method. The structure of pani and its composites has been confirmed by FT-IR study. The average crystalline sizes have been estimated to be around n-alpani is 31nm.The FESEM morphology showed that the pani and n- Alpani has the morphological modification due to doping and the aluminium nanocomposite is evenly distributed through the polymer matrix. The reduced band gap energy in n-alpani nanocomposite may be reason for three order increase in the conductivity. The increased conductivity was attributed to the formation of a better charge transport network in the relatively insulating pani matrix. The improvement in the electrical conductivities of these composites is expected to enhance the potential applications of the polymer. ACKNOWLEDGEMENTS The author thankful to authorities of Periyar University, Salem for providing the financial support through University Research Fellowship. One of the authors thankful to CSIR New Delhi for funding the research project in this field. REFERENCES 1. Das, T.K. and S. Prusty, 2012. Review on conducting polymers and their applications. Polymer-Plastics Technol, Eng., 51: 1487-1500. 2. Xu, H., J. Li, Z. Peng, J. Zhuang and J. Zhang, 2013. Investigation of polyaniline films doped with Ni2+as the electrode material for electrochemical supercapacitors, Electrochim. Acta, 90: 393-399. 3. Chougule, M.A., et al., 2012. Facile and efficient route for preparation of polypyrrole-zno nanocomposites: microstructural, optical and charge trans- port properties. Journal of Applied Polymer Science, 125: 1418-1424. 4. Woodson, M and J. Liu, 2006. Guided growth of nano scale conducting polymer structures on Surface- Functionalized Nanopattern. Journal of the Amer-ican Chemical Society, 128: 3760-3763. 5. Singh, R., C. Dhand, G. Sumana, R. Prasad, S. Sood, R.K. Gupta and B.D. Malhotra, 2010. Polyaniline/- carbon nanotubes Plat form for sexually transmitted disease detection, J.Mol. Recognit, 23: 472-479. 6. Huspe, G.D., D.K. Bandgar, ShashwatiSen and V.B. Patil, 2012. Fussy nanofi-brous network of polyaniline (PANi) for NH 3 detection. Synthetic metals, 162: 1822-1827. 7. Li, Q.H., J.H. Wu, Q.W. Tang, Z Lan and P.J. Li, et al, 2008. Application of Microporous polyaniline counter electrode for dye-sensitized solarcells. Electrochemistry Communications, 10: 1299-1302. 8. Pawar, S.G., S.L. Patil, A.T. Mane, B.T. Raut and V.B. Patil, 2009. Growth, characterization and gas sensing properties of polyaniline thin films. Archives of Applied Science Research, 1(2): 109-114. 9. Babazadeh, M., F. Rezazad Gohari and A. Olad, 2012. J. Appl. Polym. Sci., 123: 1922-1927. 10. Ni, W., D. Wang, Z. Huang, J. Zhao and G. Cui, 2010. Mater. Chem. Phys, 124: 1151-1154. 11. Wang, X., G. Chen and Zhang, 2013. J. Catal. Commun., 31: 57-61. 12. Batool, A., F. Kanwal, M. Imran, T. Jamil and S.A. Siddiqi, 2012. Synth. Met., 161: 2753-2758. 13. Arora, k., A. chaubey, R. Singhal, R.P. Singh, M.K. Pandey and et al, 2006. Application of electrochemically prepared polypyrrrole- polyvenl sul-phonate films to DNA:biosensors, Bioseens Bioelectron, 21: 1777-1783. 14. Liu, Q.A., X. Wang, T. Wang and Zhang, 2006. Mesoporous g-alumina synthesized by hydro- carboxylic acid as structure- directing agent Micropor. Mesopor, Mat., 92: 10-21.