Introduction to the benchmark problem

Similar documents
1. Beam based alignment Laser alignment Solenoid alignment 2. Dark current 3. Thermal emittance

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF-electron source for the European X-FEL

Motivation of emission studies at PITZ

Photo Injector Test facility at DESY, Zeuthen site

Dark Current at Injector. Jang-Hui Han 27 November 2006 XFEL Beam Dynamics Meeting

Juliane Rönsch Hamburg University. Investigations of the longitudinal phase space at a photo injector for the X-FEL

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR)

Photo Injector Test facility at DESY, Zeuthen site. PITZ: facility overview

Tomographic transverse phase space measurements at PITZ.

Simulations of the IR/THz source at PITZ (SASE FEL and CTR)

Progress towards slice emittance measurements at PITZ. Raffael Niemczyk for the PITZ team, Würzburg, March 20 th 2018

Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ

RF-Gun Experience at PITZ - Longitudinal Phase Space

Dark current at the Euro-XFEL

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ

Multi-quadrupole scan for emittance determination at PITZ

Lab Report TEMF - TU Darmstadt

Velocity Bunching Studies at FLASH. Bolko Beutner, DESY XFEL Beam Dynamics Meeting

Beam dynamics studies for PITZ using a 3D full-wave Lienard-Wiechert PP code

Simulation of transverse emittance measurements using the single slit method

TTF and VUV-FEL Injector Commissioning

Phase space measurements with tomographic reconstruction at PITZ.

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE*

START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ

Projected and slice emittance measurements using multi-quadrupole scan and streak readout at PITZ

LOLA: Past, present and future operation

Diagnostic Systems for High Brightness Electron Injectors

Modeling of the secondary electron emission in rf photocathode guns

Low energy high brilliance beam characterization

Developing an Eletron source for the XFEL -

Start-to-End Simulations

Low slice emittance preservation during bunch compression

Beam Dynamics and SASE Simulations for XFEL. Igor Zagorodnov DESY

Simulations for a bunch compressor at PITZ Study of high transformer ratios

Alignment requirement for the SRF cavities of the LCLS-II injector LCLSII-TN /16/2014

The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun

Normal-conducting RF Photo Injectors for Free Electron Lasers

Injector Experimental Progress

PAL LINAC UPGRADE FOR A 1-3 Å XFEL

Simulations for photoinjectors C.Limborg

Photo Injector Test facility at DESY, Zeuthen site.

Introduction. Thermoionic gun vs RF photo gun Magnetic compression vs Velocity bunching. Probe beam design options

LCLS Injector Prototyping at the GTF

ICFA ERL Workshop Jefferson Laboratory March 19-23, 2005 Working Group 1 summary Ilan Ben-Zvi & Ivan Bazarov

DESY/TEMF Meeting - Status 2011

Tomography module for transverse phase-space measurements at PITZ.

Towards a Low Emittance X-ray FEL at PSI

Accelerator Activities at PITZ

Transverse emittance measurements on an S-band photocathode rf electron gun * Abstract

SwissFEL INJECTOR DESIGN: AN AUTOMATIC PROCEDURE

Overview of FEL injectors

Linac optimisation for the New Light Source

Linac Driven Free Electron Lasers (III)

Laser acceleration of electrons at Femilab/Nicadd photoinjector

VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab.

Emission-related Activities at PITZ Proposals for the DFG-Networking "Hi 2 PE"

$)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV

Expected properties of the radiation from VUV-FEL / femtosecond mode of operation / E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov

Ellipsoidal Laser Status & Results Introduction Laser system & on-table data Results Redesign Outlook

DIAGNOSTIC TEST-BEAM-LINE FOR THE MESA INJECTOR

FACET-II Design Update

Photo Injector Test facility at DESY, Zeuthen site.

Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem

THERMAL EMITTANCE MEASUREMENTS AT THE SwissFEL INJECTOR TEST FACILITY

Commissioning of the new Injector Laser System for the Short Pulse Project at FLASH

SCSS Prototype Accelerator -- Its outline and achieved beam performance --

Femto-second FEL Generation with Very Low Charge at LCLS

H. Maesaka*, H. Ego, T. Hara, A. Higashiya, S. Inoue, S. Matsubara, T. Ohshima, K. Tamasaku, H. Tanaka, T. Tanikawa, T. Togashi, K. Togawa, H.

High average current photo injector (PHIN) for the CLIC Test Facility at CERN

S2E (Start-to-End) Simulations for PAL-FEL. Eun-San Kim

FLASH/DESY, Hamburg. Jörg Rossbach University of Hamburg & DESY, Germany - For the FLASH Team -

Novel, Hybrid RF Injector as a High-average. Dinh Nguyen. Lloyd Young

Ultra-Short Low Charge Operation at FLASH and the European XFEL

Selected Beam Studies at PITZ in 2017

Accelerator Physics Issues of ERL Prototype

GTF Transverse and Longitudinal Emittance Data Analysis Technique * J.F. Schmerge, J.E. Clendenin, D.H. Dowell and S.M. Gierman

Fast Simulation of FEL Linacs with Collective Effects. M. Dohlus FLS 2018

DESY/TEMF Meeting Status 2012

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012

ASTRA BASED SWARM OPTIMIZATIONS OF THE BERLinPro INJECTOR

Angular momentum dominated electron beam and flat beam generation. FNPL video conference Feb. 28, 2005 Yin-e Sun 1

INVESTIGATIONS OF THE DISTRIBUTION IN VERY SHORT ELECTRON BUNCHES LONGITUDINAL CHARGE

Generation and characterization of ultra-short electron and x-ray x pulses

Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems. Martin Dohlus DESY, Hamburg

AWAKE: The Proton Driven Plasma Wakefield Acceleration Experiment at CERN. Alexey Petrenko on behalf of the AWAKE Collaboration

Microbunching Workshop 2010 March 24, 2010, Frascati, Italy. Zhirong Huang

Using IMPACT T to perform an optimization of a DC gun system Including merger

FACET-II Design, Parameters and Capabilities

Diagnostics at the MAX IV 3 GeV storage ring during commissioning. PPT-mall 2. Åke Andersson On behalf of the MAX IV team

The CeB6 Electron Gun for the Soft-X-ray FEL Project at SPring-8

BERLinPro. An ERL Demonstration facility at the HELMHOLTZ ZENTRUM BERLIN

X-band Experience at FEL

Studies on charge production from Cs 2 Te photocathodes in the PITZ L-band normal conducting radio frequency photo injector

Superconducting RF Photoinjectors

Optimum beam creation in photoinjectors using spacecharge expansion II: experiment

Numerical modelling of photoemission for the PITZ photoinjector

Transverse Phase Space Studies in TTF. Photoinjector during Run 00-01: A. Comparison between Simulation and. A. Cianchi,

THE LCLS-II INJECTOR DESIGN*

Transcription:

Introduction to the benchmark problem M. Krasilnikov (DESY) Working group 4: Low emittance electron guns 37th ICFA Beam Dynamics Workshop Future Light Sources 15 19 May 6 DESY, Hamburg, Germany

Outline Introduction, Photo Injector Test facility at Zeuthen PITZ1 benchmark: Motivation Measurements Phase scan for bunch charge Reference phase check beam size Longitudinal momentum measurements Emittance measurements using slit-scan technique Cathode laser measurements Stability issues Possible sources of errors and discrepancies Conclusions

Generic photo injector design Solenoid magnets to counteract space charge induced emittance growth RF gun Laser Longitudinal ps and transverse flat-top laser pulse ~5 MeV 1 5-5 -1-15 Longitudinal phase space Δp z Booster cavity with proper position and gradient Superconducting TESLA module Δz -5-4 -3 - -1 1 3 4 5 Flatten longitudinal phase space distribution with 3 rd harmonic (3.9 GHz) cavity 3 rd harmonic cavity 4 - -4-6 bunch compressor ~13 MeV Longitudinal phase space Δp z Δz -4-3 - -1 1 3 4 5 Proper bunch compression diagnostic section Longitudinal phase space 6 4 - -4-6 Δp z Δz -4-3 - -1 1 3 4 5 3

Optimization of the XFEL photo injector ASTRA simulations mm mm mrad 9 8 7 6 5 4 3 1 Bunch slice parameters @ z=15m charge density (flat-top, cases 1), a.u. 1.8 3 1.6 slice emittance (flat-top, Ek=.55eV, case 1) 1.4 Erms (flat-top, Ek=.55eV, case 1) 1. 1.8.6 1.4. -. -5-4 -3 - -1 1 3 4 5 -.4 slice projected -.6 ε () ε -1 -.8-1 -1. - z-<z>, mm mm mrad Xemit (flat-top, Ek=.55eV) case 1 Xrms (flat-top, Ek=.55eV) case 1 4 6 z, m 8 1 1 14 Erms, kev 4

Photo injector layout and PITZ setup RF gun Laser Superconducting TESLA module (ACC1) 1 MV/m > MV/m 4-5 MeV 3 rd harmonic cavity bunch compressor 13-15 MeV diagnostic section PITZ (+booster cavity) Photo-Injector Test Facility at Zeuthen (PITZ) 5

Photo Injector Test Facility at Zeuthen (PITZ) test facility for FELs: FLASH, XFEL small transverse emittance (1 mm mrad @ 1 nc) stable production of short bunches with small energy spread further studies: dark current, QE, BBA, thermal emittance, + detailed comparison with simulations extensive R&D on photo injectors in parallel to FLASH operation test and optimize rf guns for subsequent operation at the FLASH and XFEL test new developments (laser, cathodes, beam diagnostics) 6

Diagnostics at PITZ1 z=.76m z=.935m z=1.618m z=3.448m z= l=.679m z=.778m z=.68m component property diagnostics cathode laser transverse profile virtual cathode, CCD longitudinal streak-camera charge FC, ICTs beam size screens 1,,3,4, CCD emittance EMSY (slit masks), screens,3, CCD electron beam momentum dipole, screen 5, CCD longitudinal profile radiators(straight)+streak camera longitudinal phase space radiators(straight+dispersive arm)+streak camera 7

PITZ1 benchmark problem Simultaneous simulations of a set of the consistent beam measurements (night shift 17.8.4): Stable machine run (phase drift within <1 deg, cathode laser profiles, measured emittance) Several measurements (laser+electron beam) have been done: Phase scan ~1nC, ICT1 Phase check (several beam size measurements at screen_pp vs. SP Phase) Momentum measurements for SPPhase=Phi+1 deg, SPPhase=Phi+3 deg (x), SPPhase=Phi+5 deg Emittance measurements for (SPPhase=Phi+1 deg) (Imain=318.5A), (SPPhase=Phi+3 deg, SPPhase=Phi+5 deg) (Imain=3;34;36:38;33;33A) Some stability studies (charge,position) 8

PITZ1 benchmark problem Beam measurements to be simulates Bunch charge vs. rf phase Longitudinal momentum Beam size vs. rf phase Beam size vs. solenoid Beam emittance vs. main solenoid current Measurements Auxiliary measurements to be used for input Cathode laser transverse intensity distribution Cathode laser temporal distribution Bunch charge stability Cathode laser position stability 9

PITZ1 benchmark problem: Phase scan Bunch charge vs. rf gun launch phase measured with ICT SPV=33 ( <Pz>max=5.MeV/c) Imain=3A Ibuck=4A ICT(z=.935m) 14 space charge 1 1 8 Schottky 6 4 SP Phase, deg rf phase = PhaseOffset - SP Phase, PhaseOffset to be found - -4 1.6 1.4 1. 1.8.6.4. charge, nc?aperture??se? 1

PITZ1 benchmark problem: Reference rf phase check Reference phase ~ rf gun launch phase of maximum momentum gain 9 85 8 Xrms (screen 3) Yrms (screen 3) 75 7 65 SP Phase, deg SPV=33 (5.MeV/c) Imain=3A Ibuck=4A Screen 3 (z=.68m) 6 55 5 5 4.5 4 3.5 3.5 1.5 rms size, mm Phi, deg 76 74 7 7 68 66 64 6 6 17.8.4 :48 18.8.4 : R = X + Y rms rms Reference RF Phase Drift 18.8.4 1:1 18.8.4 :4 18.8.4 3:36 18.8.4 4:48 rms 18.8.4 6: 18.8.4 7:1 11

Reference rf phase simulations mm Measurements+Simulations 4 3.8 3.6 3.4 3. 3.8.6.4. Rrms,measured Rrms,simulated <Pz>,simulated 5 3 35 4 45 5 rf phase, deg ΔΦ 5.3 5.8 5.6 5.4 5. 5. 5.18 5.16 5.14 5.1 5.1 <Pz>, MeV/c ΔΦ vs. cath. laser parameters practical parameter region 1

PITZ1 benchmark problem: Longitudinal momentum measurements Pmean, MeV/c 5.3 5.5 5. 5.15 5.1 5.5 Pmean, MeV/c Prms, kev/c 5-1 -1-8 -6-4 - Phi-SPPhase, deg 4 35 3 5 15 1 5 Prms, kev/c SPPhase=Phi+3deg (1) SPPhase=Phi+3deg () SPPhase=Phi+1deg SPPhase=Phi+5deg SPV=33 (5.MeV/c) Imain=8A Ibuck=1A Screen 5 (disp.arm) 5.5 5.1 5.15 5. 5.5 5.3 5.35 Pz, MeV/c 45 4 35 3 5 15 1 5 intensity, a.u. 13

PITZ1 benchmark problem: Emittance measurements using slit scan technique ε ε n x n y = βγ X = βγ Y rms rms X Y ' rms ' rms X rms - whole beam rms size at screen (z = 1.618m) 3 ( X ) w ( Y ) wn rms n n rms n ' 1 n= 1 ' 1 n= 1 X rms =, Yrms =, L = 1. 1m 3 3 L L w w n= 1 n n= 1 Beamlet # Slit position-<x> 1 -.7 Xrms 3 +.7 Xrms 3 n 14

PITZ1 benchmark problem: Emittance measurements. Beam size at screens (EMSY) and 3 mm 1. 1.8.6.4. Xrms (EMSY - screen ) Yrms (EMSY - screen ) 6. 3 3 34 36 38 33 33 334 5. Imain, A mm 4. 3.. SPV=33 (5.MeV/c) SPPhase=Phi+5deg Ibuck=.74847*Imain Screens: (EMSY), 3 1. 3 3 34 36 38 33 33 334 Imain, A Xrms (screen 3) Yrms (screen 3) 15

PITZ1 benchmark problem: Emittance measurements for SP Phase=Phi+5deg, Imain=36A ε n x = βγ X X βγ rms ' n ' rms; ε y = Yrms Yrms ε n GAvg = ε ε n x n y Screen (EMSY) 3.5 Screen 3 mm mrad 4. 3..5. 1.5 1..5. EmX EmY EmGAvr 3 3 34 36 38 33 33 334 Imain, A X-beamlets: X= -.7 Xrms; ; +.7 Xrms Y-beamlets: Y= -.7 Yrms; ; +.7 Yrms

PITZ1 benchmark problem: Cathode laser. Transverse 1.5 mm diaphragm: Xrms=.54mm Yrms=.57mm Virtual cathode (CCD camera) 17

PITZ1 benchmark problem: Cathode laser. Temporal Streak-camera in UV 18

PITZ1 benchmark: Stability charge, nc 1.6 1.4 1. 1..8.6.4.. :: ::53 :5:46 :8:38 :11:31 :14:4 laser position @VC, mm 3.5 3.5 1.5 1.5 StDev~4% Charge time/ hh:mm;ss Q(p-p) 1 3 Time, sec Q(area) Laser position stability at Virtual Cathode (19.8.4) <x> <y> StDev Xrms SPV=33 (5.MeV/c) Imain=3A Ibuck=4A SPPhase=Phi ICT1 <X>=(1.517±.8) mm <Y>=(.861±.3) mm Xrms=(.56±.5) mm Yrms=(.58±.4) mm ( X ) StDev ( Y ) ~ Yrms ~ 5% 5 frames* ~% 19

PITZ1 Benchmark Problem: EM Fields Bz, T..15.1.5 -...4.6.8-1 -.5 -.1 -.15 cathode plane Main solenoid (Imain=3A) Bucking solenoid (Ibuck=4A) Ez (balanced) Bz_peak measured, T.3.5..15.1.5 5 4 1 3 4 5 3 Imain, A 1 - -3-4 Ez, MV/m Main Solenoid Calibration Bz_peak(mT) =.5871*Imain(A) +.3641 Field balance in the rf gun cavity Solenoid calibration MF compensation Ibuck=.74847*Imain -. z, m -5

Possible sources of errors and discrepancies RF Phase drift and jitter Reference phase determination Cathode laser power and position jitter Field balance (FB=Ecath/Efullcell) Solenoid calibration Cathode laser measurements Beam size measurements using YAG screens Influence of the beam line components (i.e.vacuum mirror), misalignment of the components (i.e. DDC) 1

Conclusions A set of consistent beam measurements has been proposed as a benchmark for the theoretical understanding (PITZ1 benchmark problem): implies simultaneous simulation of measured charge, momentum, beam size at different positions, emittance (beamlet size) effects during emission (Schottky, space charge, etc) seem to be of importance for accurate simulations of beam dynamics in photo injector various measurements of projected values simulated simultaneously should provide more reliability for simulated slice parameters of the electron bunch http://www-zeuthen.desy.de/~kras/pitzproblem.html/pitzbenchmark.html