IN GALAXY GROUPS? WHERE IS THE CENTER OF MASS MATT GEORGE. 100 kpc 100 kpc UC BERKELEY

Similar documents
Mapping Baryonic & Dark Matter in the Universe

Galaxy Group Masses: Lensing, Dynamics & Xrays

Weak lensing calibrated scaling relations for galaxy groups and clusters in the COSMOS and CFHTLS fields

The gas-galaxy-halo connection

Stellar-to-Halo Mass Relation in X-ray Groups at 0.5<z<1

Weak lensing measurements of Dark Matter Halos around galaxies

IRAC Deep Survey Of COSMOS

Target Selection for future spectroscopic surveys (DESpec) Stephanie Jouvel, Filipe Abdalla, With DESpec target selection team.

Galaxy evolution in the cosmic web: galaxy clusters

Highlights from the VIMOS VLT Deep Survey

Clusters, lensing and CFHT reprocessing

Multiwavelength Analysis of CLASH Clusters

THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS

Cosmology and Dark Energy with the DEEP2 Galaxy Redshift Survey

Observational Cosmology

The Chandra COSMOS X-ray Survey

Gravitational Lensing of the Largest Scales

The The largest assembly ESO high-redshift. Lidia Tasca & VUDS collaboration

Clusters at z > 1.5 from the SpARCS Infrared Cluster Survey

the galaxy-halo connection from abundance matching: simplicity and complications

What Can We Learn from Galaxy Clustering 1: Why Galaxy Clustering is Useful for AGN Clustering. Alison Coil UCSD

The PRIsm MUlti-object Survey (PRIMUS)

Extending Robust Weak Lensing Masses to z~1. Douglas Applegate, Tim Schrabback & the SPT-Lensing Team

High Redshift Universe

Some issues in cluster cosmology

Galaxy formation and evolution. Astro 850

9. Evolution with redshift - z > 1.5. Selection in the rest-frame UV

Subaru/WFIRST Synergies for Cosmology and Galaxy Evolution

STAR FORMATION ALONG A CLUSTER-FEEDING FILAMENT

Galaxy evolution in clusters from the CLASH-VLT survey

Substructure in the Stellar Halo of the Andromeda Spiral Galaxy

Star formation in XMMU J : a massive galaxy cluster at z=1.4

Nearby Galaxy Clusters with UVIT/Astrosat

The interplay between the brightest cluster galaxy and the intra-cluster medium via AGN feedback.

Radio Properties Of X-Ray Selected AGN

CFHT Large Area U-Band Deep Survey

A mid and far-ir view of the star formation activity in galaxy systems and their surroundings

ROSAT Roentgen Satellite. Chandra X-ray Observatory

ASTR 610 Theory of Galaxy Formation

The Red-Sequence Cluster Survey (RCS)

Satellite Galaxy Evolution in Groups & Clusters

The dark matter haloes of moderate luminosity X-ray AGN as determined from weak gravitational lensing and host stellar masses

Investigating Cluster Astrophysics and Cosmology with Cross-Correlation of Thermal Sunyaev-Zel dovich Effect and Weak Lensing

ELTs for Cluster Cosmology

Aeree Chung Yonsei University

The Concentration-Mass relation from CLASH

Optical studies of an ultraluminous X-ray source: NGC1313 X-2

arxiv:astro-ph/ v1 10 Nov 1999

High redshift universe in the COSMOS field

The Distribution of Stellar Mass in Galaxy Clusters since z=1

The XXL survey. Jon Willis, Marguerite Pierre, Florian Pacaud, Ben Maughan, Maggie Lieu, Sebastien Lavoie, Adam Mantz et al.

COSMOS : Strong Lens Candidate

SUPPLEMENTARY INFORMATION

GALAXIES. Edmund Hodges-Kluck Andrew Ptak

Constraints on physics of gas and dark matter from cluster mergers. Maxim Markevitch (SAO)

arxiv: v1 [astro-ph.co] 27 May 2009

A galaxy without its SMBH: implications for feedback

The role of massive halos in the cosmic star formation history

Exploiting Cosmic Telescopes with RAVEN

On the Trail of the Most Massive Clusters in the Universe!

Summer School on Cosmology July Clusters of Galaxies - Lecture 2. J. Mohr LMU, Munich

The History of Active Galaxies A.Barger, P. Capak, L. Cowie, RFM, A. Steffen, and Y. Yang

Weighing the Giants:

Photometric Redshifts, DES, and DESpec

Tracing mass and light in the Universe: where is the dark matter?

Galaxy population properties in high-redshift clusters: a study of most distant cluster galaxies

Big Data Inference. Combining Hierarchical Bayes and Machine Learning to Improve Photometric Redshifts. Josh Speagle 1,

The History of Active Galaxies A.Barger, P. Capak, L. Cowie, RFM, A. Steffen,W-H Wang and Y. Yang

Refining Photometric Redshift Distributions with Cross-Correlations

MILANO OAB: L. Guzzo, S. de la Torre,, E. Majerotto, U. Abbas (Turin), A. Iovino; MILANO IASF (data reduction center): B. Garilli, M. Scodeggio, D.

The inside-out Growth of the Stellar Mass Distribution in Galaxy Clusters since z 1

Optical/IR Surveys for High Redshift Galaxy Clusters:

Galaxy Clusters in Stage 4 and Beyond

Clusters: Observations

Embedded Spiral Patterns in the massive galaxy cluster Abell 1835

SNAP Photometric Redshifts and Simulations

Role of the Environment in the Evolution of Galaxies Richard Ellis

arxiv: v2 [astro-ph.co] 27 Nov 2015

Clusters: Observations

Results from the 2500d SPT-SZ Survey

Massively Star-Forming Dusty Galaxies. Len Cowie JCMT Users Meeting

AGN Feedback in the Hot Halo of NGC 4649

Hot Gas Around Elliptical Galaxies

The ALMA z=4 Survey (AR4S)

The Masses of Galaxies from the Galaxy-Halo Connection

Keck/Subaru Exchange Program Subaru Users Meeting January 20, 2011

CLASH MCT Program Progress Report. Progress Report on the CLASH Multi-Cycle Treasury Program By Marc Postman

Snowballs in hell! X-ray galactic coronae in galaxy! clusters and the need for sub-arcsecond resolution! Simona Giacintucci (NRL)!

Constraining Source Redshift Distributions with Angular Cross Correlations

arxiv: v2 [astro-ph.co] 14 Jul 2009

A New Window of Exploration in the Mass Spectrum Strong Lensing by Galaxy Groups in the SL2S

Constraints on dark matter annihilation cross section with the Fornax cluster

Elliptical galaxies as gravitational lenses

Giovanni Covone University Federico II, Naples, Italy November 19, 2014 NAOC Observatory Colloquium

CIB Fluctuations from. l ~ ,000. Marco Viero - Caltech

HI in Galaxies at Redshifts 0.1 to 1.0: Current and Future Observations Using Optical Redshifts for HI Coadding. Philip Lah

The sizes of z ~ 6-8 lensed galaxies from the Hubble Frontier Fields data of Abell 2744

arxiv: v2 [astro-ph.co] 7 Nov 2017

The evolution of the Galaxy Stellar Mass Function:

Lyα-Emitting Galaxies at z=3.1: L* Progenitors Experiencing Rapid Star Formation

Transcription:

WHERE IS THE CENTER OF MASS IN GALAXY GROUPS? 100 kpc 100 kpc MATT GEORGE UC BERKELEY WITH ALEXIE LEAUTHAUD, KEVIN BUNDY, JEREMY TINKER, PETER CAPAK, ALEXIS FINOGUENOV, OLIVIER ILBERT, SIMONA MEI AND THE COSMOS COLLABORATION

Motivation for Finding Centers BCG properties and galaxy evolution Cluster finding Mass determination - satellite kinematics - gravitational lensing Halo occupation models Miscentering Fraction Fraction of halos where BCG Center Sloshing and ICM heating Measuring mass-concentration and intrinsic alignments log(mhalo) Skibba et al. 2010

Weak Lensing Signal ΔΣ (h M pc -2 ) MaxBCG Increasing richness Projected Distance from Center (h -1 Mpc) Model components: NFW Offset NFW BCG Neighboring halos Non-weak shear Total Johnston et al. 2010

Weak Lensing Signal ΔΣ (h M pc -2 ) MaxBCG Increasing richness Projected Distance from Center (h -1 Mpc) Model components: NFW Offset NFW BCG Neighboring halos Non-weak shear Total Fraction of Groups with Correct Center Distribution of Offsets from True Center Fraction Richness (N200) Offset (Mpc) Johnston et al. 2010

COSMOS: A panchromatic survey XMM 0.5-10 kev CHANDRA GALEX FUV, NUV Magellan - IMAX HST-ACS I814W VLT-VIRMOS CFHT Megacam u*, i* Spitzer MIPS 160, 70, 24 µm Spitzer IRAC 8, 6, 5, 4, 3 µm CFHT Wircam K VLA 20 cm IRAM -30m 1.2 mm Subaru SCam B,V,r,i,z, NB816 NOAO Ks CSO Bolocam 1.1 mm

COSMOS: A panchromatic survey X-ray group selection XMM 0.5-10 kev CHANDRA GALEX FUV, NUV Magellan - IMAX HST-ACS I814W VLT-VIRMOS CFHT Megacam u*, i* Spitzer MIPS 160, 70, 24 µm Spitzer IRAC 8, 6, 5, 4, 3 µm CFHT Wircam K VLA 20 cm IRAM -30m 1.2 mm Subaru SCam B,V,r,i,z, NB816 NOAO Ks CSO Bolocam 1.1 mm

COSMOS: A panchromatic survey X-ray group selection XMM 0.5-10 kev CHANDRA GALEX FUV, NUV Magellan - IMAX HST-ACS I814W VLT-VIRMOS CFHT Megacam u*, i* ACS imaging for lensing Spitzer MIPS 160, 70, 24 µm Spitzer IRAC 8, 6, 5, 4, 3 µm CFHT Wircam K VLA 20 cm IRAM -30m 1.2 mm Subaru SCam B,V,r,i,z, NB816 NOAO Ks CSO Bolocam 1.1 mm

XMM 0.5-10 kev CHANDRA COSMOS: A panchromatic survey UV/Opt/IR SEDs for photometric redshifts and stellar masses ACS imaging for lensing X-ray group selection GALEX FUV, NUV Magellan - IMAX HST-ACS I814W VLT-VIRMOS CFHT Megacam u*, i* Spitzer MIPS 160, 70, 24 µm Spitzer IRAC 8, 6, 5, 4, 3 µm CFHT Wircam K VLA 20 cm IRAM -30m 1.2 mm Subaru SCam B,V,r,i,z, NB816 NOAO Ks CSO Bolocam 1.1 mm

X-ray Selected Groups Mass (M ) Finoguenov et al. 2007 (+2010 in prep) X-ray Luminosity (10 42 erg/s) Leauthaud et al. 2010 X-ray position gives RA, Dec (uncertain by up to 32 ) Red sequence overdensity gives z, refined w/ spectroscopic z MWL-LX relation gives radius assuming a mass-conc. relation Remove groups with possible projections or overlap

Member Selection with Photometric Redshifts dn/dz (group), dn/dz (field), P(zphot) z dn/dz (group), dn/dz (field), P(zphot) z Identify members using photoz probability distribution + measured field/group densities

Photometric Redshifts Photometry in 31 UV/Opt/IR bands σ(zspec-zphot) 0.01 for mi < 24 ~94000 galaxies with 0<z<1, mf814w < 24.2 ~3500 total members in 120 groups PDF gives good estimate of redshift uncertainty Ilbert et al. 2009

Photometric Redshifts Photometry in 31 UV/Opt/IR bands σ(zspec-zphot) 0.01 for mi < 24 ~94000 galaxies with 0<z<1, mf814w < 24.2 ~3500 total members in 120 groups PDF gives good estimate of redshift uncertainty Ilbert et al. 2009 dn/dm/10 4 0 1 2 3 4 5 26! z med σz PDF dn/dc/10 4 0 5 10 15 6! z med σz PDF F814W magnitude 25 24 23 22 21 0.30 0.10 0.03 M(NUV)-M(R) color 5 4 3 2 1 0 0.30 0.10 0.03 20 dn/dz/10 5 2 1 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 z z 0.01-1 dn/dm/10 4 4 2 0 20 21 22 23 24 25 26 F814W magnitude F814W magnitude 0.01

Characterizing the Member Selection Test purity and completeness using spectroscopic redshifts ~20% of photoz-selected members have spectra Spectroscopic member zgal-zgroup < 0.005(1+zgroup) Purity = fraction of selected objects that are members Completeness = fraction of members that are selected

Characterizing the Member Selection Test purity and completeness using spectroscopic redshifts ~20% of photoz-selected members have spectra Spectroscopic member zgal-zgroup < 0.005(1+zgroup) Purity = fraction of selected objects that are members Completeness = fraction of members that are selected Caveats: membership criterion is ~3-5σv for groups varying uncertainties for zgal and zgroup mocks will improve our characterization of selection (Peter Behroozi, Michael Busha, Risa Wechsler)

1.0 Purity and Completeness 1.0 0.8 0.8 Fraction 0.6 0.4 Fraction 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 z spec 0.2 0.0 Bright Faint 16 18 20 22 24 F814W 1.0 1.0 0.8 0.8 Fraction 0.6 0.4 Fraction 0.6 0.4 0.2 0.0 Blue Green Red -1 0 1 2 3 4 5 6 M(NUV)-M(R) 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 Distance to X-ray center (R/R 200 )

1.0 Purity and Completeness 1.0 0.8 0.8 Fraction 0.6 0.4 Fraction 0.6 0.4 0.2 0.2 0.0 0.0 Bright Faint 0.0 0.2 0.4 0.6 0.8 1.0 16 18 20 22 24 F814W z spec Field Contamination 1.0 1.0 0.8 0.8 Fraction 0.6 0.4 Fraction 0.6 0.4 0.2 0.0 Blue Green Red -1 0 1 2 3 4 5 6 M(NUV)-M(R) 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 Distance to X-ray center (R/R 200 )

1.0 Purity and Completeness 1.0 0.8 0.8 Fraction 0.6 0.4 Fraction 0.6 0.4 0.2 0.2 0.0 0.0 Bright Faint 0.0 0.2 0.4 0.6 0.8 1.0 16 18 20 22 24 F814W 1.0 0.8 z spec Poisson Uncertainties (~700 members with spectra) 1.0 0.8 Fraction 0.6 0.4 Fraction 0.6 0.4 0.2 0.0 Blue Green Red -1 0 1 2 3 4 5 6 M(NUV)-M(R) 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 Distance to X-ray center (R/R 200 )

Bullet Cluster Finding Group Centers A2390 Oguri et al. 2010

Stacked Weak Lensing Cluster 1 Cluster 2 Cluster 3 1. Find members

Stacked Weak Lensing Cluster 1 Cluster 2 Cluster 3 1. Find members 2. Determine centers

Stacked Weak Lensing Cluster 1 Cluster 2 Cluster 3 1. Find members 2. Determine centers 3. Measure shapes of background sources

Stacked Weak Lensing Cluster 1 Cluster 2 Cluster 3 1. Find members 2. Determine centers 3. Measure shapes of background sources

Stacked Weak Lensing 1. Find members 2. Determine centers 3. Measure shapes of background sources 4. Stack on centers

Stacked Weak Lensing Good center Bad center 1. Find members 2. Determine centers 3. Measure shapes of background sources 4. Stack on centers 5. Measure tangential shear in radial bins

Preliminary Results 400 BCG galaxy with largest stellar mass within NFW scale radius of X-ray center Weak Lensing Signal!" = = "(<R) - "(R) (h 72 M O pc -2 ) 300 200 100 0-100 N Lens : 88 Redshift: 0.60-200 0.1 1-1 Physical transverse distance, R (h 72 Mpc)

BCG X-ray 400!" = = "(<R) - "(R) (h 72 M O pc -2 ) 300 200 100 0-100 N Lens : 88 Redshift: 0.60 N Lens : 88 Redshift: 0.60-200 0.1 1-1 Physical transverse distance, R (h 72 Mpc) 0.1 1-1 Physical transverse distance, R (h 72 Mpc)

BCG X-ray 400!" = = "(<R) - "(R) (h 72 M O pc -2 ) 300 200 100 0-100 N Lens : 88 Redshift: 0.60 log 10 (M 200 ): 13.10 Concentration: 4.19 # 2 : 5.22 d.o.f.: 7 N Lens : 88 Redshift: 0.60-200 0.1 1-1 Physical transverse distance, R (h 72 Mpc) 0.1 1-1 Physical transverse distance, R (h 72 Mpc) NFW Central Galaxy Offset NFW Total

BCG X-ray 400!" = = "(<R) - "(R) (h 72 M O pc -2 ) 300 200 100 0-100 N Lens : 88 Redshift: 0.60 log 10 (M 200 ): 13.10 Concentration: 4.19 # 2 : 5.22 d.o.f.: 7 N Lens : 88 Redshift: 0.60 log 10 (M 200 ): 13.10 Concentration: 4.19 # 2 : 20.24 d.o.f.: 7-200 0.1 1-1 Physical transverse distance, R (h 72 Mpc) 0.1 1-1 Physical transverse distance, R (h 72 Mpc) 60 NFW 50 Distribution of offsets Central Galaxy Offset NFW Total N groups 40 30 20 10 0 0 100 200 300 400 500 600 Radial Offset (kpc)

BCG Luminosity-Weighted Centroid 400!" = = "(<R) - "(R) (h 72 M O pc -2 ) 300 200 100 0-100 N Lens : 103 Redshift: 0.59 log 10 (M 200 ): 13.36 Concentration: 3.99 # 2 : 7.83 d.o.f.: 7 N Lens : 103 Redshift: 0.59 log 10 (M 200 ): 13.36 Concentration: 3.99 # 2 : 11.35 d.o.f.: 7-200 0.1 1-1 Physical transverse distance, R (h 72 Mpc) 0.1 1-1 Physical transverse distance, R (h 72 Mpc) 60 NFW 50 Distribution of offsets Central Galaxy Offset NFW Total N groups 40 30 20 10 0 0 100 200 300 400 500 600 Radial Offset (kpc)

BCG SM-Weighted Centroid 400!" = = "(<R) - "(R) (h 72 M O pc -2 ) 300 200 100 0-100 N Lens : 97 Redshift: 0.58 log 10 (M 200 ): 13.33 Concentration: 4.01 # 2 : 6.34 d.o.f.: 7 N Lens : 97 Redshift: 0.58 log 10 (M 200 ): 13.33 Concentration: 4.01 # 2 : 11.13 d.o.f.: 7-200 0.1 1-1 Physical transverse distance, R (h 72 Mpc) 0.1 1-1 Physical transverse distance, R (h 72 Mpc) 60 NFW 50 Distribution of offsets Central Galaxy Offset NFW Total N groups 40 30 20 10 0 0 100 200 300 400 500 600 Radial Offset (kpc)

BCG 2nd Most Massive Member 400!" = = "(<R) - "(R) (h 72 M O pc -2 ) 300 200 100 0-100 N Lens : 101 Redshift: 0.57 log 10 (M 200 ): 13.49 Concentration: 3.91 # 2 : 1.84 d.o.f.: 7 N Lens : 101 Redshift: 0.57 log 10 (M 200 ): 13.49 Concentration: 3.91 # 2 : 14.25 d.o.f.: 7-200 0.1 1-1 Physical transverse distance, R (h 72 Mpc) 0.1 1-1 Physical transverse distance, R (h 72 Mpc) 60 NFW 50 Distribution of offsets Central Galaxy Offset NFW Total N groups 40 30 20 10 0 0 100 200 300 400 500 600 Radial Offset (kpc)

Summary Galaxy with highest stellar mass near X-ray center appears to be the best tracer of CM for this catalog Other tracers can be offset by ~few hundred kpc Offsets can be due to: interlopers and incompleteness scatter in observables intrinsic separation? To do: study offset-dependent properties satellite and halo concentration