The SARAF CW 40 MeV Proton/Deuteron Accelerator

Similar documents
The SARAF 40 MeV Proton/Deuteron Accelerator

Beam dynamics simulation in SARAF phase-i proton/deuteron 4 MeV linac commissioning

PIP-II Injector Test s Low Energy Beam Transport: Commissioning and Selected Measurements

The SARAF project present and future

The status of the SARAF phase I linac. Leo Weissman Soreq Nuclear Research Center Yavne, Israel

Diagnostics at SARAF

The Accelerator System for ReA3 the New Re-accelerated RIBs Facility at MSU

IFMIF mini-workshop on Beam Instrumentation. Ciemat, Madrid (Spain) 2-3 July 2007

Gitai Feinberg. November Thesis submitted for the degree of "Doctor of Philosophy" Submitted to the Senate of the Hebrew University of Jerusalem

arxiv: v2 [physics.acc-ph] 21 Jun 2017

SPIRAL 2 Commissioning Status

The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun

Status & Plans for the TRIUMF ISAC Facility

Report on PIAVE G. Bisoffi

Proton LINAC for the Frankfurt Neutron Source FRANZ

Developmental Studies of High Current Proton Linac for ADS Program

A Low Energy Beam Transport Design with high SCC for TAC Proton Accelerator

IFMIF High energy beam line design and beam expansion using non-linear multipole lenses and "step-like" magnet

OVERVIEW OF RECENT RFQ PROJECTS *

Beam Diagnostics for Low Energy Proton and H - Accelerators. Vic Scarpine Fermilab 2012 BIW April 16-19, 2012

Design Status of the PEFP RCS

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE*

Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem

Accelerator Option for Neutron Sources & the

Chopping High-Intensity Ion Beams at FRANZ

A high intensity p-linac and the FAIR Project

CHOPPING HIGH-INTENSITY ION BEAMS AT FRANZ

Review of proposals of ERL injector cryomodules. S. Belomestnykh

Linac JUAS lecture summary

STATUS OF THE NOVOSIBIRSK ENERGY RECOVERY LINAC

LATTICE BEAM DYNAMICS STUDY AT LOW Β FOR SARAF/EURISOL DRIVER 40/60 MEV 4 MA D&P SUPERCONDUCTING LINAC

Front end, linac upgrade, and commissioning of J-PARC. Y. Liu KEK/J-PARC, Japan

FIRST NUCLEAR-ASTROPHYSICS EXPERIMENTS WITH HIGH-INTENSITY NEUTRONS FROM THE LIQUID-LITHIUM TARGET LiLiT

Advanced Linac Solutions for Hadrontherapy

Design of a Low-Energy Chopper System for FRANZ

Commissioning of the SNS Beam Instrumentation

Introduction Frankfurt Neutron Source at Stern-Gerlach-Zentrum FRANZ Development of new accelerator concepts for intense proton and ion beams. High in

Cornell Injector Performance

PIP-II Injector Test Warm Front End: Commissioning Update

HIGH CURRENT PROTON BEAM INVESTIGATIONS AT THE SILHI-LEBT AT CEA/SACLAY

Status of the EBIT in the ReA3 reaccelerator at NSCL

Design of an RF Photo-Gun (PHIN)

Novel, Hybrid RF Injector as a High-average. Dinh Nguyen. Lloyd Young

Progress of RAON Heavy Ion Accelerator Project in Korea

Preliminary design studies of a 100 MeV H /H + LINAC as injector for SNS synchrotron/ads LINAC

SARAF Phase I linac in 2012

HIGH POWER PROTON ACCELERATOR IN KOREA*

R&D on µ-lom monitors for High intensity Linacs like LIPAc

RFQ BEAM DYNAMICS DESIGN FOR LARGE SCIENCE FACILITIES AND ACCELERATOR-DRIVEN SYSTEMS

LCLS Injector Prototyping at the GTF

Heavy Ion Accelerators for RIKEN RI Beam Factory and Upgrade Plans. Upgrade Injector

Accelerators for the Advanced Exotic Beam Facility

ICFA ERL Workshop Jefferson Laboratory March 19-23, 2005 Working Group 1 summary Ilan Ben-Zvi & Ivan Bazarov

Beam Dynamics for CSNS Linac. Jun Peng September. 18, 2012

Notes on the HIE-ISOLDE HEBT

Multi-Purpose Accelerator-Accumulator ITEP-TWAC for Nuclear Physics and Practical Applications

Development of the UNILAC towards a Megawatt Beam Injector

TEST MEASUREMENTS WITH THE REX-ISOLDE LINAC STRUCTURES*

Investigation of the Effect of Space Charge in the compact-energy Recovery Linac

NEW DEVELOPMENT IN HIGH POWER RFQ ACCELERATORS*

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

SPES Conceptual Design Report

Simulation of H ion source extraction systems for the Spallation Neutron Source with IBSimu

BEAM DYNAMICS ISSUES IN THE SNS LINAC

An Electron Linac Photo-Fission Driver for the Rare Isotope Program at TRIUMF

Operational Experience in PIAVI-ALPI Complex. E. Fagotti INFN-LNL

In-Flight Fragment Separator and ISOL Cyclotron for RISP

ERL FACILITY AT CERN FOR APPLICATIONS

POLARIZED DEUTERONS AT THE NUCLOTRON 1

A Multi-beamlet Injector for Heavy Ion Fusion: Experiments and Modeling

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland

Diagnostics Needs for Energy Recovery Linacs

DEVELOPMENT OF LARGE SCALE OPTIMIZATION TOOLS FOR BEAM TRACKING CODES*

SPIRAL-2 FOR NEUTRON PRODUCTION

Linac4: From Initial Design to Final Commissioning

GANIL STATUS REPORT. B. Jacquot, F. Chautard, A.Savalle, & Ganil Staff GANIL-DSM/CEA,IN2P3/CNRS, BP 55027, Caen Cedex, France.

Multiparameter optimization of an ERL. injector

Development and application of the RFQs for FAIR and GSI Projects

$)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV

Beam Diagnostics and Instrumentation JUAS, Archamps Peter Forck Gesellschaft für Schwerionenforschnung (GSI)

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CTF3 DRIVE BEAM INJECTOR OPTIMISATION

Diagnostics Requirements for the ARIEL Low Energy Beam Transport

Tools of Particle Physics I Accelerators

Design of a Fast Chopper System for High Intensity Applications

Compact Linac for Deuterons (Based on IH Structures with PMQ Focusing)

Beam Diagnostics for RIBF in RIKEN

Development status of non-destructive assay of nuclear material by using laser Compton scattered gamma-rays

Dark Current at Injector. Jang-Hui Han 27 November 2006 XFEL Beam Dynamics Meeting

ERL FOR LOW ENERGY ELECTRON COOLING AT RHIC (LEREC)*

Physics design of a CW high-power proton Linac for accelerator-driven system

Low Energy RHIC electron Cooling (LEReC)

UPGRADE AND COMMISSIONING OF THE PIAVE-ALPI ECR INJECTOR AT LNL

X-band Experience at FEL

The TESLA Dogbone Damping Ring

Proton LINAC for the Frankfurt Neutron Source FRANZ

Developments of the RCNP cyclotron cascade

BEAM DYNAMICS IN A HIGH FREQUENCY RFQ

A Project to convert TLS Booster to hadron accelerator 1. Basic design. 2. The injection systems:

THE DESIGN AND COMMISSIONING OF THE ACCELERATOR SYSTEM OF THE RARE ISOTOPE REACCELERATOR ReA3 AT MICHIGAN STATE UNIVERSITY*

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics

Transcription:

The SARAF CW 40 MeV Proton/Deuteron Accelerator A. Nagler, D. Berkovits, I. Gertz, I. Mardor, J. Rodnizki, L. Weissman Soreq NRC, Yavne, Israel K. Dunkel, M. Pekeler, F. Kremer, C. Piel, P. vom Stein Accel Instruments, Bergisch Gladbach, Germany LINAC08, MO203, September 29 th, 2008

SARAF Soreq Applied Research Accelerator Facility To modernize the source of neutrons at Soreq and extend neutron based research and applications. To develop and produce radioisotopes primarily for bio-medical applications. To enlarge the experimental nuclear science infrastructure and promote the research in Israel. 9/29/2008 A. Nagler et al., LINAC08, MO203 2

Accelerator Basic Characteristics A RF Superconducting Linear Accelerator Parameter Value Comment Ion Species Protons/Deuterons M/q 2 Energy Range 5 40 MeV Current Range 0.04 2 ma Upgradeable to 4 ma Operation mode CW and Pulsed PW: 0.1-1 ms; rep. rate: 0.1-1000 Hz Operation 6000 hours/year Reliability 90% Maintenance Hands-On beam loss < 1 na/m 9/29/2008 A. Nagler et al., LINAC08, MO203 3

SARAF Layout RF Superconducting Linear Accelerator Target Hall A. Nagler et al., LINAC 2006 9/29/2008 A. Nagler et al., LINAC08, MO203 4

SARAF project organization Construction and Commissioning of a (Beyond-)State-of-the-Art accelerator within an international business collaboration Accelerator Accel Instruments (Germany) Cryogenics Linde Kryotechnik (Switzerland) Building and Infrastructure U. Doron (Israel) Applications - Soreq Overall Integration Soreq 9/29/2008 A. Nagler et al., LINAC08, MO203 5

SARAF Phase I Upstream View PSM MEBT RFQ LEBT EIS 9/29/2008 A. Nagler et al., LINAC08, MO203 6

SARAF Phase I Downstream View PSM D-Plate Beam Dump 2 Beam Dump 1 9/29/2008 A. Nagler et al., LINAC08, MO203 7

ECR Ion Source (ECRIS) Plasma chamber Magnetic solenoid High voltage extractor Focusing solenoid C. Piel EPAC 2006 F. Kremer ICIS 2007 K. Dunkel PAC 2007 RF Waveguide & DC-breaker Vacuum pump 5x10-6 mbar beam magnetic coils on ground cooling water RF power 800 W RF power supply gas inlet 1 sccm 107 mm extraction electrodes 20 kv/u insulator 9/29/2008 A. Nagler et al., LINAC08, MO203 8

LEBT emittance measurement magnetic mass analyzer FC C. Piel EPAC 2006 F. Kremer ICIS 2007 K. Dunkel PAC 2007 aperture ECR P. Forck JUAS 2003 aperture slit wire ECR 5 ma proton beam optics RFQ entrance 9/29/2008 A. Nagler et al., LINAC08, MO203 9

EIS: measured emittance values ε rms_norm._100% [π mm mrad] Particles Beam current Protons X / Y H2 + X / Y Deuterons X / Y 5.0 ma 0.20 / 0.17 0.34 / 0.36 0.13 / 0.12 20mA 2.0 013/013 0.13 0.13 030/034 0.30 0.34 014/013 0.14 0.13 0.04 ma 0.18 / 0.19 0.05 / 0.05 Specified value = 0.2 / 0.2 [π mm mrad] 9/29/2008 A. Nagler et al., LINAC08, MO203 10

deuterons emittance results 2D plot current scale is enhanced in order to present the tail 30 10-1 0-3 0 x' [mrad] Norm. RMS Emit. 0.3 0.25 02 0.2 0.15 0.1 0.05 π mm mrad Elliptical Exclusion deuterons 6.1 ma open aperture -5 0-30 -10 10 30 x [ m m ] 0 0 1400 2800 4200 5600 7000 Exclusion Ellipse SAP 30 10-1 0-3 0 x' [mrad d] Norm. RMS Emit. 0.12 0.1 0.08 006 0.06 0.04 0.02 SCUBEEx Analysis B. Bazak JINST 2008 aperture cut to 5.0 ma -5 0-30 -10 10 30 x [ m m ] 0 0 1400 2800 4200 5600 7000 Exclusion Ellipse SAP emittance analysis with the SCUBEEx code by M. P. Stockli and R.F. Welton, Rev. Sci. Instr. 75 (2004) 1646 9/29/2008 A. Nagler et al., LINAC08, MO203 11

176 MHz Radio Frequency Quadrupole On site 2006 In factory 2005 P. Fischer EPAC 2006 9/29/2008 A. Nagler et al., LINAC08, MO203 12

RFQ commissioning results Parameter Output energy [MeV/u] Maximal CW current [ma] Transverse emittance, r.m.s., normalized, 100% [π mm mrad] mrad] (at 0.5 ma, closed LEBT aperture) (at 4.0 ma, open LEBT aperture) Longitudinal emittance, r.m.s [π kev deg/u] Specifications in parentheses Protons 1.5 (1.5) 4.0 (4.0) 0.17 (0.30) 0.25 / 0.29 (0.30) (at 3.0 ma) 30 (120) Transmission [%] (at 0.5 ma) 80 (90) (at 2.0 ma) (at 4.0 ma) Required RF power (protons) [kw] (deuterons) [kw] 70 (90) 65 (90) 62 (55) 248 (220) 9/29/2008 A. Nagler et al., LINAC08, MO203 13

Diagnostic plate (D-Plate) for beam commissioning 9/29/2008 A. Nagler et al., LINAC08, MO203 14

Proton energy at RFQ exit by TOF Beam Energy Measurement using TOF between 2 BPMs sum signals, 145 mm apart, E = 1.504 ± 0.012 012 MeV C. Piel PAC 2007 Button pickup for 2 ma pulse and 15 mm bore radius gives a signal high above noise. Bunch width measured at β=0.056 is larger than the predicted value due to the induced charge broadening. 9/29/2008 A. Nagler et al., LINAC08, MO203 15

Current downstream RFQ vs. RFQ forward power for 3 ma injection 2.5 2.0 D-Plate_MPCT [ma] A_MBPM1 [V_p] A_MBPM2 [V_p] Optimum power for p = 61.5 kw sum of 4 BPM current signals Beam current 1.5 1.0 4D-WB simulation [ma] MPCT current 0.5 J. Rodnizki et al. EPAC 2008 0.0 45 50 55 60 65 70 75 RFQ power (PS forward) [kw] 9/29/2008 A. Nagler et al., LINAC08, MO203 16

RFQ: Bunch profiles measurements counts curren nt (arb.) 1 0.8 0.6 0.4 0.2 mean m 0.00 cm FWHM s 0.40 cm FWHM m 0.46 cm MEBT Entrance 61.5 kw 32.0 kv mean m 0.00 cm FWHM s 3.70 cm FWHM m 3.57 cm D-Plate 0-4 -2 0 2 4-2 0 2 4 position (cm) position (cm) 1.2 gauss fit gauss fit FFC1 FFC1 simulated measurement 1.0 gauss fit 0.8 0.6 0.4 Simulation Measured 32.5 kv 63.5 kw Wire scan profiles C. Piel PAC 2007 Measurement results are backed up by simulations (TRACK) FFC time profiles 0.2 0.0 0 100 200 300 proton relative phase (deg) 0 100 200 300 proton relative phase (deg) Rodnizki et al. EPAC 2008 9/29/2008 A. Nagler et al., LINAC08, MO203 17

Approximated rms ε Z extracted from bunch width measurements 90 ez (RFQ) [pi deg kev] 1s at FFC1 [deg] 75 1s at FFC2 [deg] s_f at RFQ [deg] s_e at RFQ [kev] 60 C. Piel EPAC 2008 45 Optimum power for p = 61.5 kw 30 15 0 55 60 65 70 75 power RFQ [kw] Specified rms ε Z = 120 π deg kev Value for simulations = 74 π deg kev 9/29/2008 A. Nagler et al., LINAC08, MO203 18

RFQ voltage squared vs. forward power Pickup V^ ^2(kW) 300 250 200 150 100 4-Jul 08 9July 08 10July 08 Linear 50 0 0 50 100 150 200 250 300 Forward FPower power (kv) (kw) Parting from the linear relation indicates onset of dark current due to poor conditioning 9/29/2008 A. Nagler et al., LINAC08, MO203 19

RFQ Conditioning current status A few hundred conditioning hours for two years Conditioning schemes Set maximum m power and increase duty cyclecle Set CW duty cycle and increase power Special actions to improve conditioning rate: Rounding off sharp edges of rods bottom part Cleaning of rods Installation of circuit for fast recovery after sparks Maximal power reached so far: 195 kw CW 280 kw with duty cycle of 15% 75 C baking performed recently for 3 days. Effect on conditioning tp be measured soon 9/29/2008 A. Nagler et al., LINAC08, MO203 20

Prototype SC Module (PSM) General Design: Houses 6 HWR and 3 superconducting solenoids Accelerates protons and deuterons from 1.5 MeV/u on Very compact design in longitudinal direction Cavity vacuum and insulation vacuum separated M. Peiniger, LINAC 2004 M. Pekeler, SRF 2003 M. Pekeler, LINAC 2006 9/29/2008 A. Nagler et al., LINAC08, MO203 21

HWR Basic parameters f = 176 MHz & bandwidth ~ 130 Hz height ~ 85 cm high Optimized for β=0.09 09 @first12 cavities (2 modules) β=0.15 @ 32 cavities (4 modules) Bulk Nb 3 mm @ 4.4545 K E peak, max = 25 MV/m & E peak / E acc ~ 2.5 Q 0 ~ 10 9 Designed cryogenic Load < 10 W (@E max ) 9/29/2008 A. Nagler et al., LINAC08, MO203 22

HWR measured fields and dissipated power At Accel (single cavity) Closed loop operation with a voltage controlled oscillator (VCO) At Soreq (inside PSM) max field limit Q at Q at losses at losses at 20 MV/m 25 MV/m 20 MV/m 25 MV/m [MV/m] [W] [W] 30 8,0E+08 7,0E+08 3,5 6,3 28 coupler temp. 2,0E+08 1,4E+08 14,1 31,4 32 4,0E+08 2,0E+08 7,0 22,0 29 4,0E+08 2,0E+08 7,0 22,0 31 7,0E+08 4,0E+08 4,0 11,0 29 coupler temp. 7,0E+08 3,0E+08 4,0 14,7 Σ 39,7 107,3 Target values 25 4.7E+08 25 4.7E+08 72 C. Piel et al. EPAC 2008 9/29/2008 A. Nagler et al., LINAC08, MO203 23

Phase and amplitude stability results SARAF LLRF: Generator driven resonator (GDR) cavity tuning loop Above results are for operation of one cavity at a time Stability measurement period was a few minutes for each cavity Stability values are peak-to-peak and are limited by ADC least significant bit Recent commissioning: simultaneous operation of 6 HWRs at ~20 MV/m for several hours 9/29/2008 A. Nagler et al., LINAC08, MO203 24

Residual activation from beam loss A beam loss value of 0.4 na/m at 40 MeV generates 2 mrem/hr after a 1 year irradiation 40 MeV Linac (22 m) Beam line (10 m) Conditions 30 cm from beam line 4 hours after shutdown Effects of 40 MeV applied for entire linac Accelerator is operating 365 days per year (~65%) Run deuterons at 40 MeV all the time (25-50%) Accelerator made entirely of stainless steel (~50% Nb) 9/29/2008 A. Nagler et al., LINAC08, MO203 25

SARAF Phase II simulations with error analysis Simulations shown in next slides: 4 ma deuterons at RFQ entrance. Last macro-particle=1 na B. Bazak et al., Submitted for Publication J. Rodnizki et al., HB2008 Errors are double than in: J. Rodnizki et al. LINAC 2006, M. Pekeler HPSL 2005 9/29/2008 A. Nagler et al., LINAC08, MO203 26

Deuteron beam envelope radius at SARAF SC Linac Solenoids 19 Tail emphasis simulations 200 realizations 70 realizations Bore r max nominal RFQ exit B. Bazak et al., Submitted for Publication J. Rodnizki et al., HB2008 3.4 ma deuterons 32k/193k particles in core/tail Last macro-particle = 1 na 9/29/2008 A. Nagler et al., LINAC08, MO203 27 r RM General Particle Tracer 2.80 2006, Pulsar Physics S.B. van der Geer, M.J. de Loos http://www.pulsar.nl/ S

Summary and Outlook SARAF Phase I Commissioning status: Extensive proton beam commissioning through RFQ performed First deuteron and H 2+ beams accelerated in RFQ On-going RFQ RF conditioning to enable CW deuteron and H 2+ beams RF commissioning of the PSM to enable beam acceleration through it Simulations of Phase II Beam loss criterion for hands-on maintenance is 0.4 na/m at 40 MeV Tail emphasis simulations indicate beam loss below 1 na/m 9/29/2008 A. Nagler et al., LINAC08, MO203 28