Vibration Covariate Regression Analysis of Failure Time Data with the Proportional Hazards Model

Similar documents
Abstract. 1. Introduction

5.1 Transition Probability Matrices

Generalised density function estimation using moments and the characteristic function

WTW 263 NUMERIESE METODES / NUMERICAL METHODS

November 2005 TYD/TIME: 90 min PUNTE / MARKS: 35 VAN/SURNAME: VOORNAME/FIRST NAMES: STUDENTENOMMER/STUDENT NUMBER: HANDTEKENING/SIGNATURE:

Government Gazette Staatskoerant

Eksterne eksaminator / External examiner: Dr. P Ntumba Interne eksaminatore / Internal examiners: Prof. I Broere, Prof. JE vd Berg, Dr.

UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA WTW263 NUMERIESE METODES WTW263 NUMERICAL METHODS EKSAMEN / EXAMINATION

EXAMINATION / EKSAMEN 19 JUNE/JUNIE 2013 AT / OM 08:00

VAN / SURNAME: VOORNAME / FIRST NAMES: STUDENTENOMMER / STUDENT NUMBER: FOONNO. GEDURENDE EKSAMENPERIODE / PHONE NO. DURING EXAM PERIOD:

Oplos van kwadratiese vergelykings: die vind van die vergelyking *

3. How many gadgets must he make and sell to make a profit of R1000?

SEMESTERTOETS 1 / SEMESTER TEST 1

CAMI EDUCATION. Graad 12 Vraestel I : Rekord eksamen Punte. Lees die volgende instruksies noukeurig deur voordat die vrae beantwoord word:

Kwadratiese rye - Graad 11

JUNE 2005 TYD/TIME: 90 min PUNTE / MARKS: 50 VAN/SURNAME: VOORNAME/FIRST NAMES: STUDENTENOMMER/STUDENT NUMBER:

WTW 158 : CALCULUS EKSAMEN / EXAMINATION Eksterne eksaminator / External examiner: Prof NFJ van Rensburg

Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde

Introduction to Reliability Theory (part 2)

DR. J ROSSOUW Pro In9

VAN/SURNAME: VOORNAME/FIRST NAMES: STUDENTENOMMER/STUDENT NUMBER: Totaal / Total:

WTW 158 : CALCULUS EKSAMEN / EXAMINATION Eksterne eksaminator / External examiner: Me/Ms R Möller

UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS

EXAMINATION / EKSAMEN 17 JUNE/JUNIE 2011 AT / OM 12:00 Q1 Q2 Q3 Q4 Q5 Q6 TOTAL

UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS

EKSAMEN / EXAMINATION Q1 Q2 Q3 Q4 Q5 TOTAL. 2. No pencil work or any work in red ink will be marked.

ASSESSMENT OF FREQUENCY DOMAIN FORCE IDENTIFICATION PROCEDURES

3. (d) None of these / Geen van hierdie

THE EFFECT OF HABITAT CHANGE ON THE STRUCTURE OF DUNG BEETLE ASSEMBLAGES IN THE NORTH-EASTERN FREE STATE: A COMPARISON OF CONSERVED AND FARMED LAND

a b

Government Gazette Staatskoerant

Funksies en Verwantskappe

A Data-driven Approach for Remaining Useful Life Prediction of Critical Components

[1a] 1, 3 [1b] 1, 0 [1c] 1, 3 en / and 1, 5 [1d] 1, 0 en / and 1, 0 [1e] Geen van hierdie / None of these

Multi-component Determinations using Sequential Injection Analysis

Examination Copyright reserved. Eksamen Kopiereg voorbehou. Module EBN122 Elektrisiteit en Elektronika 13 November 2009

TW 214 TOETS 2 - VOORBEREIDING 2018 TEST 2 - PREPARATION

Evaluating the value of structural heath monitoring with longitudinal performance indicators and hazard functions using Bayesian dynamic predictions

The application of Eulerian laser Doppler vibrometry to the on-line condition monitoring of axial-flow turbomachinery blades

FAKULTEIT INGENIEURSWESE FACULTY OF ENGINEERING. Volpunte: Full marks: Instruksies / Instructions

Feasibility of thin seam coal mining at Dorstfontein Coal Mine. Petrus C. Meyer. University of Pretoria

KOPIEREG VOORBEHOU / COPYRIGHT RESERVED

GRAAD 11 NOVEMBER 2012 WISKUNDIGE GELETTERDHEID V1 MEMORANDUM

GRADE 11 - FINAL ROUND QUESTIONS GRAAD 11 - FINALE RONDTE VRAE

UNIVERSITY OF PRETORIA DEPT SlVlELE INGENIEURSWESE / DEPT OF CIVIL ENGINEERING

Hoofstuk 29 Magnetiese Velde a.g.v Elektriese Strome

Punte: Intern Marks: Internal WTW 168 : CALCULUS. EKSAMEN / EXAMINATION Eksterne eksaminator / External examiner: Me / Ms R Möller

DEPRESSIE101. panic attacks - inside the brain TALKING about anxiety attacks. hanteer angstigheid beter snellers vir 'n paniekaanval

GRADE 9 - FINAL ROUND QUESTIONS GRAAD 9 - FINALE RONDTE VRAE

NASIONALE SENIOR SERTIFIKAAT GRAAD 10

STATISTICAL INFERENCE IN ACCELERATED LIFE TESTING WITH GEOMETRIC PROCESS MODEL. A Thesis. Presented to the. Faculty of. San Diego State University

Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde

Compiled by Korbitec in association with Jan S de Villiers. Afrikaans text of the guidelines edited by Jan S de Villiers.

Fusion of Phoneme Recognisers for South African English

Aspects of the determination of the platinum group elements and arsenic by inductively. coupled plasma mass spectrometry

Reliability of Technical Systems

Semiparametric Regression

UNIVERSITY OF PRETORIA / UNIVERSITEIT VAN PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS

The Proportional Hazard Model and the Modelling of Recurrent Failure Data: Analysis of a Disconnector Population in Sweden. Sweden

Bayesian approaches of Markov models embedded in unbalanced panel data

Examination paper for TMA4275 Lifetime Analysis

SEEKING SPATIAL JUSTICE

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

Graad 12: Rye en Reekse

Accelerated Failure Time Models: A Review

Time-varying failure rate for system reliability analysis in large-scale railway risk assessment simulation

Key Words: Lifetime Data Analysis (LDA), Probability Density Function (PDF), Goodness of fit methods, Chi-square method.

DATA MEASURES THAT CHARACTERISE

A CONDITION-BASED MAINTENANCE MODEL FOR AVAILABILITY OPTIMIZATION FOR STOCHASTIC DEGRADING SYSTEMS

Modelling of Multi-State Panel Data:

An Integral Measure of Aging/Rejuvenation for Repairable and Non-repairable Systems

An optical study of the high mass star forming region RCW 34

A COMPARISON OF PHASE I CONTROL CHARTS. University of Pretoria, South Africa 1 4

NATIONAL SENIOR CERTIFICATE EXAMINATION GRADE 12 PHYSICAL SCIENCES: PHYSICS (P1) SEPTEMBER 2015 MEMORANDUM

MATHEMATICS GRADE 10 TASK 1 INVESTIGATION Marks: 55

49th European Organization for Quality Congress. Topic: Quality Improvement. Service Reliability in Electrical Distribution Networks

Two statistical problems related to credit scoring

VAN / SURNAME: VOORNAME / FIRST NAMES: STUDENTENOMMER / STUDENT NUMBER: HANDTEKENING / SIGNATURE: TELEFOON / TELEPHONE:

Calculation of the reliability function and the remaining life for equipment with unobservable states

NATIONAL SENIOR CERTIFICATE GRADE 10 MATHEMATICS P3 PREPARATORY EXAMINATION 2008 NOVEMBER 2008

NATIONAL SENIOR CERTIFICATE GRADE 11

Step-Stress Models and Associated Inference

Cox s proportional hazards model and Cox s partial likelihood

Mahdi karbasian* & Zoubi Ibrahim

e 4β e 4β + e β ˆβ =0.765

NATIONAL SENIOR CERTIFICATE/NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 10

Reliability Engineering I

GRADE 11 - FINAL ROUND QUESTIONS GRAAD 11 - FINALE RONDTE VRAE

3003 Cure. F. P. Treasure

SCATTERING BY A STRIP IN A HOMOGENEOUS MEDIUM

Huiswerk Hoofstuk 22 Elektriese velde Homework Chapter 22 Electric fields

TRANSPORTE EN VERBANDE/TRANSFERS AND BONDS

Lecture 5 Models and methods for recurrent event data

Cox regression: Estimation

Question 1. The van der Waals equation of state is given by the equation: a

PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA

Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde

rraxonomy, phylogeny and population biology of Ceratocystis species with particular reference to Ceratocystis fimbriata

Accelerated Failure Time Models

Technical Condition Indexes and Remaining Useful Life of Aggregated Systems

Transcription:

Vibration Covariate Regression Analysis of Failure Time Data with the Proportional Hazards Model by Pieter-J an Vlok Submitted as partial fulfillment of the requirements for tbe degree Master in Engineering (Mechanical Engineering) Department of Mechanical and Aeronautical Engineering Faculty of Engineering University of Pretoria Supervisor: Mr. J.L. Coetzee Co-supervisors: Prof. A.K.S. Jardine and Prof. J.L. van Niekerk October, 1999 University of Pretoria

Acknowledgements I would like to express my sincere gratitude towards, Mr. Jasper Coetzee, my study leader, for hi s support, guidance and encouragement througbout this study; Prof. Andrew Jardine of the University of Toronto for partially sponsoring and coordinating this research project; Dr. Dragan Banjevic of the CBM lab at the University of Toronto for giving me technical support and evaluating my results; Prof. Wikus van Niekerk for his co-supervision; SASOL, Secunda for supplying me with suitable data and permitting me to publish the results; My father and sister, for their continued interest in my work; Our heavenly Father, for giving me the strength and perseverance to complete this task which He laid upon me. The Author October, 1999

Summary Vibration Covariate Regression Analysis of Failure Time Data with the Proportional Hazards Model by Pieter-Jan Vlok Supervisor: Mr. J.L. Coetzee Co-supervisors: Prof. AX.S. Jardine & Prof. 1.L. van Niekerk Master in Engineering Department of Mechanical and Aeronautical Engineering Universi ty of Pretoria There is no doubt about the potential economical advantages of preventive renewals based on statistical failure analysis or vibration monitoring, if performed correctly. Despite their advantageous abilities to produce economical benefits, both techniques have shortcomings. Vibration monitoring strategies recommend renewal based on short term vibration information only (often by waterfall plots or other short term trending techniques) and no scientific technique exists with which long term vibration information can be included in recommendations. Conventional statistical failure analysis techniques, on the contrary, utilizes the statistical long term life cycle cost optimum to base renewal decisions on and do not take diagnostic information (like vibration information) into account. The mentioned techniques complement each other extremely well and in this dissertation a scientific method to integrate these techniques was searched for with the emphasis on practicality. Regression models with the ability to handle covariates (explanatory variables) was found to be the most logical route to the dissertation objectives. After an extensive literature study, the Proportional Hazards Model (PHM) was selected as the most suitable model for this application because of its sound theoretical foundation, numerical tractability and previous successes. The PHM was thoroughly researched including the investigation of different model forms, numerical parameter estimation techniques, covariate behavior and goodness-of-fit tests. A decision model utilizing the PHM, with the ability to handle non-monotonic covariates (like vibration parameters) through Markovian chains, was also identified and studied. Data obtained from a typical South African industrial concern was collected and modeled with the studied theory, with promising results. Keywords: Proportional Hazards Model, Vibration Monitoring, Failure Analysis, Preventive Maintenance, Renewal

Opsomming Vibrasie Verklarende Veranderlike Analise van Falingstyd Data met die Proporsionele Gevaarkoers Model deur Pieter-Jan Vlok Leier: Mnr. J.L. Coetzee Mede-Leiers: Prof. A.K.S. Jardine & Prof. J.L. van Niekerk Magister in Ingenieurswese Dcpartement van Meganiese en Lugvaartkundige Ingenieurswese Universiteit van Pretoria Daar is geen twyfel oor die potensiele ekonomiese voordele van voorkomende hemuwing gebaseer op statistiese falingsanalise of vibrasie monitering nie, mits dit korrek bedryf word. Ten spyte van hul vermoens wat groot finansiele voordele inhou, het beide tegnieke tekortkominge. Vibrasie monitering strategiee beveel hemuwing aan alleenlik gebaseer op korttermyn vibrasie inligting (tipies deur waterval grafieke of ander korttermyn tendens identifiseringstegnieke) en geen wetenskaplike tegniek bestaan waarmee langtermyn vibrasie inligting in besluite geynkorporeer kan word nie. In teenstelling biermee, neem konvensionele statistiese fajingsanalises geen diagnostiese inligting (so os vibrasie inligting) in ag in hemuwings aanbevelings nie, maar grand besluite op die minimum statistiese langtermyn lewenssikluskoste. Die bogenoemde tegnieke komplimenteer mekaar uitstekend en in hierdie studie is daar gesoek na 'n wetenskaplike metode waarmee die!wee tegnieke geintegreer kan word met die klem op praktiese toepasjikbeid. Regressie modelle met die vermoe om verklarende veranderlikes te banteer, het geblyk om die mees logiese raete na die studiedoelwitte te wees. Na ' n deeglike literatuurstudie is besluit dat die Proporsionele Gevaarkoersmodel (pgm) die mees geskikte model is vir die genoemde toepassing van wee sy bree teoretiese fondasie, numeriese implementeerbaarheid, asook vorige suksesse wat behaal is in soortgelyke toepassings. Die PGM is in diepte bestudeer, onder andere verskillende modelvorms, numeriese parameter beramingstegnieke, verklarende veranderlike gedrag en pasgehalte toetse. ' n Besluitnemingsmodel wat op die PGM gebasseer is met die vermoe om nie-monotone verklarende veranderlikes (soos vibrasie parameters) te hanteer deur Markov kettings is ook gerdentifiseer en bestudeer. Data is verkry uit 'n tipiese Suid-Afrikaanse industriele situasie en IS gebruik om die bestudeerde teorie te toets, met belowende resultate. Sleutelwoorde: Proporsionele Gevaarkoersmodel, Vibrasie Monitering, Falingsanalise, Voorkomende Instandbouding, Hernuwing

Table of Contents Notation Chapter 1: Problem Statement 1 1 2 3 4 Introduction Use Based Preventive Renewal 1.1 Failure Data 1.2 Incomplete Observations or Censored Data 1.3 Renewal Theory 1.4 Optimal Use Based Preventive Renewal Decision Models 1.5 Concluding Remarks Preventive Renewal Based on Vibration Monitoring Predictions 3.1 Methodology 3.2 Vibration Parameters 3.3 Shortcomings of Preventive Renewal Based on Vibration Monitoring Integrating Use Based Preventive Renewal and Vibration Monitoring 4.1 Literature Study 4.2 Identification of Most Suitable Model 4.3 Thorough Study on Chosen Model 4.4 Practical Evaluation of the Model 1 3 3 6 7 15 16 16 17 17 17 19 20 20 20 20 Chapter 2: Regression Models in Renewal Theory 21 1 2 3 4 5 6 Introduction Accelerated Failure Time Model 2.1 Mathematical Model 2.2 Comments Proportional Hazards Model 3.1 Mathematical Model 3.2 Comments Prentice Williams Peterson Model 4.1 Mathematical Model 4.2 Comments Proportional Odds Model 5.1 Mathematical Model 5.2 Comments Additive Hazards Model 6.1 Mathematical Model 6.2 Comments 21 22 22 22 23 24 25 26 26 27 28 28 29 29 29 30

7 Selection of Most Suitable Model 30 Chapter 3: Proportional Hazards Modelling 32 1 Introduction 2 The Proportional Hazards Model 2.1 2.2 Assumptions of the Model The Semi-Parametric PHM 2.3 The Fully Parametric PHM 3 Covariates 3.1 3.2 3.3 Effects ofinteraction and Omission of Covariates Effects of Measurement Error and Misspecification of Covariates Effects of Monotonicity and Multicolinearity of Co variates 3.4 Time-dependent Covariates 44 4 Numerical Model Fitting Procedures 45 4.1 Snyman's Dynamic Trajectory Optimization Method 46 4.2 Modified Newton-Raphson Optimization Method 48 5 Goodness-of-fit Tests 52 5.1 Graphical Methods 53 5.2 Analytical Goodness-of-Fit Tests 56 6 Optimal Decision Making with the Proportional Hazards Model 59 6.1 6.2 The Long Term Life Cycle Cost Concept Prediction of Covariate Behavior 59 61 32 33 34 35 39 42 42 43 44 Chapter 4: Vibration Covariate PHM Application 68 1 Introduction 2 Preliminaries for PHM Analysis 2.1 Requirements for a Vibration Covariate PHM Analysis 2.2 Shortcomings 2.3 Concluding Remark 3 SASOL Data 3.1 Background 3.2 Covariates 3.3 Data 4 Weibull PHM Fit 4.1 Phase 1: Simple Weibull Model 4.2 Phase 2: Weibull PHM with Subjective Covariates Excluded 4.3 Phase 3: Weibull PHM With All Covariates 4.4 Final Model 5 Decision Model 68 69 69 70 71 71 72 74 76 79 80 82 85 86 86

5.1 5.2 Transition Probability Matrices Cost Function and Optimal Replacement Policy 5.3 Evaluation of Optimal Policy 6 Conclusion Appendix 87 89 90 93 94 Chapter 5: Closure 1 Overview 2 Recommendations References 99 99 100 102

Notation z / z(t) 2(z(l)) z; / z;(i) r Pi} L1 jj '1 ~ []T AFTM CBM C f CM C p d f F g(t) h H 110 lid KS L I LCC L, MTTF NHPP PO PDF PHM PL POM PWP Q(d) Covariate vector dependent / independent of time Functional term dependent on time and covariates i th covariate dependent / independent of time Vector of regression coefficients Transition probability estimate Inspection interval Weibull shape parameter Weihull scale parameter Transition rate from state i to j Transposed vector Accelerated failure time model Condition Based Maintenance Cost of unexpected failure renewal Condition monitoring Cost of planned preventive renewal Threshold risk level Unreliability function / Cumulative failure density function Failure density function Warning level function Hazard rate Cumulative hazard rate Baseline hazard rate Independent and identically distributed Kolmogorov-Smimov Likelihood Log-likelihood Long term life cycle cost Expected life Mean time to failure Non Homogeneous Poison Process Probability Probability density function Proportional hazards model / modelling Partial likelihood Proportional odds model Prentice Williams Peterson model Probability offailure renewal

11 R Ro ROCOF T, T, TPM W(d) Reliability / Survivor function Baseline survivor function Rate of occurrence offailure Continuous time ;th Observed renewal time ith Random renewal time variable Transition probability matrix Expected time to renewal