Digital Integrated Circuits

Similar documents
Digital Integrated Circuits. Inverter. YuZhuo Fu. Digital IC. Introduction

YuZhuo Fu Office location:417 room WeiDianZi building,no 800 DongChuan road,minhang Campus

Digital Integrated Circuits

EEC 118 Lecture #4: CMOS Inverters. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Regenerative Property

MORE TUTORIALS FOR VERILOG DIGITAL ELECTRONICS SYSTEM DESIGN HOMEWORK ASSIGNMENTS DATASHEETS FOR PARTS 10/3/2018

DATASHEETS FOR PARTS DIGITAL ELECTRONICS SYSTEM DESIGN NMOS I-V SUMMARY EXAM SCHEDULE 10/5/2018. cutoff V V. linear.

LECTURE 5 PART 2 MOS INVERTERS STATIC DESIGN CMOS. CMOS STATIC PARAMETERS The Inverter Circuit and Operating Regions

CMOS Inverter (static view)

Minimum Source/Drain Area AS,AD = (0.48µm)(0.60µm) - (0.12µm)(0.12µm) = µm 2

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

Lecture #25. Amplifier Types

CMOS. Dynamic Logic Circuits. Chapter 9. Digital Integrated Circuits Analysis and Design

DC and Transient Responses (i.e. delay) (some comments on power too!)

EEE 421 VLSI Circuits

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

THE INVERTER. Inverter

DC & Transient Responses

Monolithic semiconductor technology

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Digital Integrated Circuits

2.CMOS Transistor Theory

VLSI Design and Simulation

Lecture 5: DC & Transient Response

Lecture 4: DC & Transient Response

Lecture 5: DC & Transient Response

Lecture 12 Circuits numériques (II)

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

Lecture 6: DC & Transient Response

EE5780 Advanced VLSI CAD

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003

Lecture 9. NMOS Field Effect Transistor (NMOSFET or NFET)

Parasitic Resistance L R W. Polysilicon gate. Drain. contact L D. V GS,eff R S R D. Drain

ECE 546 Lecture 10 MOS Transistors

Integrated Circuits & Systems

MOS Transistor Theory

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003

Experiments #6 & #7: The Operational Amplifier

Introduction to Microelectronics

EE 330 Lecture 36. Digital Circuits. Transfer Characteristics of the Inverter Pair One device sizing strategy Multiple-input gates

CMOS Technology for Computer Architects

MOS Transistor Theory

P-MOS Device and CMOS Inverters

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Transistors - CPE213 - [4] Bipolar Junction Transistors. Bipolar Junction Transistors (BJTs) Modes of Operation

Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate

5. CMOS Gate Characteristics CS755

CD4070 CD4077 CMOS Quad Exclusive OR and Exclusive NOR Gates

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ECE321 Electronics I

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

MOSFET and CMOS Gate. Copy Right by Wentai Liu

CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Inverter: A First Look

EE5311- Digital IC Design

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

EE 434 Lecture 33. Logic Design

CMOS Inverter: CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Properties.

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

The CMOS Inverter: A First Glance

DATASHEET CD4030BMS. Features. Pinout. Functional Diagram. Applications. Description. CMOS Quad Exclusive-OR Gate. FN3305 Rev 0.

Key Questions. ECE 340 Lecture 36 : MOSFET II 4/28/14

The CMOS Inverter: A First Glance

Quiz #3 Practice Problem Set

VLSI Design Issues. ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: CMOS Inverter: Visual VTC. Review: CMOS Inverter: Visual VTC

Classification of DT signals

Diode in electronic circuits. (+) (-) i D

Integrated Circuit Design ELCT 701 (Winter 2017) Lecture 2: Resistive Load Inverter

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

Name: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

EE415/515 Fundamentals of Semiconductor Devices Fall 2012

High-to-Low Propagation Delay t PHL

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]

Lecture 4: CMOS review & Dynamic Logic

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

MOS Inverters. Digital Electronics - INEL Prof. Manuel Jiménez. With contributions by: Rafael A. Arce Nazario

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective

EE C245 - ME C218 Introduction to MEMS Design Fall Today s Lecture

CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic

Topic 4. The CMOS Inverter

NTE4501 Integrated Circuit CMOS, Dual 4 Input NAND Gate, 2 Input NOR/OR Gate, 8 Input AND/NAND Gate

732 Appendix E: Previous EEE480 Exams. Rules: One sheet permitted, calculators permitted. GWC 352,

EE141Microelettronica. CMOS Logic

EE5311- Digital IC Design

1. pn junction under bias 2. I-Vcharacteristics

4.10 The CMOS Digital Logic Inverter

The Physical Structure (NMOS)

UNIVERSITY OF CALIFORNIA

9/18/2008 GMU, ECE 680 Physical VLSI Design

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Transcription:

Digital Itegrated Circuits YuZhuo Fu cotact:fuyuzhuo@ic.sjtu.edu.c Office locatio:417 room WeiDiaZi buildig,no 800 DogChua road,mihag Camus Itroductio

outlie CMOS at a glace CMOS static behavior CMOS dyamic behavior Power, Eergy, ad Eergy Delay Persective tech. /48

A trasistor Activity 1) If the width icreases, the curret will icrease decrease ot chage ) If the legth icreases, the curret will icrease decrease ot chage 3) If the suly voltage icreases, the maximum trasistor curret will icrease decrease ot chage 4) If the width icreases, its gate caacitace will icrease decrease ot chage 5) If the legth icreases, its gate caacitace will icrease decrease ot chage 6) If the suly voltage, the gate caacitace of each trasistor will icrease decrease ot chage 3/48

A trasistor Activity 1) If the width icreases, the curret will icrease decrease ot chage ) If the legth icreases, the curret will icrease decrease ot chage 3) If the suly voltage icreases, the maximum trasistor curret will icrease decrease ot chage 4) If the width icreases, its gate caacitace will icrease decrease ot chage 5) If the legth icreases, its gate caacitace will icrease decrease ot chage 6) If the suly voltage, the gate caacitace of each trasistor will icrease decrease ot chage 4/48

CMOS Iverter DD N Well DD I PMOS Out PMOS l Cotacts NMOS Polysilico I Out Metal 1 NMOS GND 5/48

A First Glace of CMOS A switch with ifiite off-resistace ad a fiite oresistace Whe gs < t,mos is off whe gs > t,mos is o just like a resistace R o whe i =dd,mos o,mos off Whe i =0,MOS off,mos o GS R o GS < T GS > T 6

CMOS Iverter First-Order DC Aalysis DD DD out R out OL = 0 OH = DD M = f(r, R ) R i = DD i = 0 7/48

CMOS Iverter: Trasiet Resose DD DD R t HL = f(r o.c L ) = 0.69 R o C L out out C L C L R i = 0 (a) Low-to-high i = DD (b) High-to-low 8/48

DC Resose DD Whe i = 0 => out = DD Whe i = DD => out = 0 I betwee, out deeds o trasistor size ad curret By KCL, must settle such that I ds = I ds We could solve equatios,but grahical solutio gives more isight i I ds I ds out 9/48

Trasistor Oeratio For what i ad out are MOS ad MOS i Cutoff? Liear? Saturatio? 10/48

MOS Oeratio Cutoff Liear Saturated gs < gs > ds < gs > ds > DD i I ds I ds out 11/48

MOS Oeratio Cutoff Liear Saturated gs < t gs > t ds < gs t gs > t ds > gs t DD i I ds I ds out 1/48

MOS Oeratio Cutoff Liear Saturated gs < t gs > t gs > t ds < gs t ds > gs t DD gs = i i I ds out ds = out I ds 13/48

MOS Oeratio Cutoff Liear Saturated gs < t i < t gs > t i > t ds < gs t out < i - t gs > t i > t ds > gs t out > i - t DD gs = i i I ds out ds = out I ds 14/48

MOS Oeratio Cutoff Liear Saturated gs > gs < ds > gs < ds < DD i I ds I ds out 15/48

MOS Oeratio Cutoff Liear Saturated gs > t gs < t ds > gs t gs < t ds < gs t DD i I ds I ds out 16/48

MOS Oeratio Cutoff Liear Saturated gs > t gs < t ds > gs t gs < t ds < gs t DD gs = i - DD t < 0 ds = out - DD i I ds I ds out 17/48

MOS Oeratio Cutoff Liear Saturated gs > t i > DD + t gs < t i < DD + t ds > gs t out > i - t gs < t i < DD + t ds < gs t out < i - t gs = i - DD ds = out - DD t < 0 i DD I ds out I ds 18/48

CMOS roerties High oise margis, the voltage swig is equal to the suly voltage Ratioless circuit structure Low outut imedace High iut resistace Low ower 19/48

PMOS Load Lies i = DD + GS I D = - I D out = DD + DS I D out I D i =0 I D I D i =0 i =1.5 i =1.5 GS =-1 DS DS out GS =-.5 i = DD + GS I D = - I D out = DD + DS 0/48

CMOS Iverter Load Characteristics I D i = 0 i =.5 PMOS i = 0.5 i = NMOS i = 1 i = 1.5 i = 1.5 i = 1 i = i = 1.5 i = 1 i = 0.5 i =.5 i = 0 out 1/48

CMOS Iverter TC Summary of CMOS iverter oeratio Regio Coditio P-device N-device outut A [0,t] liear cutoff DD B [t,dd/] liear saturated DD/ C =DD/ saturated saturated X dro D [DD/,DD- TP ] saturated liear <DD/ E [DD- TP, DD] cutoff liear 0 /48

TTL NAND 3/48

Other iverters 4/48

outlie CMOS at a glace CMOS static behavior CMOS dyamic behavior Power, Eergy, ad Eergy Delay Persective tech. 5/48

CMOS static behavior CMOS threshold voltage CMOS oise margi CMOS gai DC robust 6/48

I D Switchig Threshold as a fuctio of k C M M ox Trasistor Ratio ( M T ) k ( ) M DD T ( W ( L T GS r 1 r DD ) ) r( DD 1 r SAT cl GT T Lv T ( W ( W ) L ) L k ) ' v k r ' sat C k k ( ox W DD GS M v v sat sat T T W W ( M T ) ) 0 7

Switchig threshold of CMOS iverter Assumig W /W =8, calculatig M =? r k k ' ' W W L L 30*( 1) *8 3.3 115*0.63 ( r T ) ( DD T ) M 1 r 0.63 0.4 (0.43 ) 3.3(.5 0.4 ) 0.75 3.3*1.9 1 3.3 1 3.3 1.63 8/48

Switchig threshold of CMOS iverter ( W ( W ) L ) L ' k k ' ( ( DD M M ) T T ) 6 0.63 11510 0.63(1.5 0.43 ) 6 3010 1(1.5 0.4 1 ) 3.5 This rate let M = dd /! 9/48

Switchig Threshold as a fuctio of Trasistor Ratio M 1.8 1.7 1.6 1.5 1.4 1.3 1. 1.1 1 M is relatively isesitive to variatios i the device ratio Icreasig the width of the PMOS or NMOS moves M toward DD or GND (3, 1.) (.5, 1.18) (, 1.13) 0.9 0.8 10 0 10 1 W/W 30/48

CMOS static behavior CMOS threshold voltage CMOS oise margi CMOS gai DC robust 31/48

Noise Margi NM L The differece i maximum LOW iut voltage recogized by the receivig gate ad the maximum LOW outut voltage roduced by the drivig gate NM L = IL - OL NM H The differece i miimum HIGH iut voltage recogized by the receivig gate ad the miimum HIGH outut voltage roduced by the drivig gate NM H = OH - IH 3/48

Noise Margi IH=miimum HIGH iut voltage IL=maximum LOW iut voltage OH=miimum HIGH outut voltage OL=maximum LOW outut voltage Logical High Outut Rage Outut Characteristics DD OH NM H Iut Characteristics Logical High Iut Rage IH IL Idetermiate Regio Logical Low Outut Rage OL NM L GND Logical Low Iut Rage 33/48

Determiig IH ad IL 34/48

Determiig IH ad IL out A simlified aroach! OH IH IL ( OH g OL ) g DD M IH M g M, IL M DD g M NM H DD IH, NM L IL i OL IL IH 35/48

Determiig IH ad IL i out OH t M out OL IL IH i t 36/48

Examle g=-30, dd =.5, M =1.0 Please estimate NM H ad NM L IH = M - M /G=1.0*(1+1/30)=1.03 IL =( DD - M )/G+ M =-1.5/30+1.0=0.95 NM H = OH - IH =.5-1.03=1.47 NM L = IL - OL =0.95 37/48

CMOS static behavior CMOS threshold voltage CMOS oise margi CMOS gai DC robust 38/48

0 0.5 1 1.5.5-18 -16-14 -1-10 -8-6 -4-0 i () gai Iverter Gai ) )( ( 1 ) ( 1 ) ( ) ( ) (1 ) (1 T M T M T DD i T i DD out out i out M i k k k k k k k d d g l l l l l l l l l 39/48 0 )) ( ()1 ( ) ()1 ( out DD T DD i out T i k k l l

A examle Assume a iverter i the geeric 0.5um CMOS techology desiged with a PMOS-to-NMOS ratio of 3.4 ad with the NMOS trasistor miimum size (W=0.375um, L=0.5um,W/L=1.5),Please give the gai of M, ad IL, IH,NM L,NM H, TC curve 40/48

A examle:iverter Gai ID(M ) k (M T )(1 l ) out 6 0.375 11510 0.63(1.5 0.43 0.63 ) (1 0.061.5) 5910 0.5 1 k k g I ( ) l l D 1 5910 M 6 11510 6 0.375 0.63 3010 0.5 0.06 0.1 6 6 A 3.40.375 1.0 0.5 7.5 The gai is almost urely determied by techology arameters! 41/48

A examle : oise margi G=-M/(IH-M) IH=M-M/G=1.5*(1+1/7.5)=1.3 G=-(DD-M)/(M-IL) IL=(DD-M)/G+M=-1.5/7.5+1.5=1. NMH=OH-IH=.5-1.3=1. NML=IL-OL=1. Simulated valued IL=1.03 IH=1.45 out OH M Gai is overestimated Liear aroximatio of TC OL IL IH i 4/48

CMOS static behavior CMOS threshold voltage CMOS oise margi CMOS gai DC robust 43/48

Imact of Process ariatios out ().5 1.5 1 Good NMOS Bad PMOS The variatios of device maily cause a shift i the switchig threshold, this robust behavior esures fuctioality of the gate over a wide rage of coditios Nomial Good PMOS Bad NMOS 0.5 0 0 0.5 1 1.5.5 i () 44/48

Trasfer characteristics of skewed iverter uskewed HI-Skewed LOW-Skewed 45/48

Gai as a fuctio of DD.5 kt DD ~ 4 ~ 4 5m mi q 0. out () g 1.5 1 0.5 10% 17% 0 0 0.5 1 1.5.5 () i ( M T 1 )( l l ) out () 0.15 0.1 0.05 Gai=-1 0 0 0.05 0.1 0.15 0. () i Low ower voltage is useful! But ot too low 46/48