Carbon Nanotube Electronics

Similar documents
Electrostatics of Nanowire Transistors

A Numerical Study of Scaling Issues for Schottky Barrier Carbon Nanotube Transistors

III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Metallic: 2n 1. +n 2. =3q Armchair structure always metallic = 2

High-Performance Carbon Nanotube Transistors on SrTiO 3 /Si. Substrates

Manufacture of Nanostructures for Power Electronics Applications

Doping-Free Fabrication of Carbon Nanotube Based Ballistic CMOS Devices and Circuits

Electrical Contacts to Carbon Nanotubes Down to 1nm in Diameter

Electric Field-Dependent Charge-Carrier Velocity in Semiconducting Carbon. Nanotubes. Yung-Fu Chen and M. S. Fuhrer

The Role of Metal Nanotube Contact in the Performance of Carbon Nanotube Field-Effect Transistors

Three-Dimensional Electrostatic Effects of Carbon Nanotube Transistors

Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and Ultra-Thin-Body Surface-Channel MOSFETs

Tri-Gate Fully-Depleted CMOS Transistors: Fabrication, Design and Layout

Journal of Electron Devices, Vol. 18, 2013, pp JED [ISSN: ]

Unique Characteristics of Vertical Carbon Nanotube Field-effect Transistors on Silicon

I-V characteristics model for Carbon Nanotube Field Effect Transistors

Lecture 12: MOS Capacitors, transistors. Context

30 nm In 0.7 Ga 0.3 As Inverted-type HEMT with Reduced Gate Leakage Current for Logic Applications

Lecture 5: CMOS Transistor Theory

EECS130 Integrated Circuit Devices

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

3D Simulation of coaxial carbon nanotube field effect transistor

Performance Analysis of Ultra-Scaled InAs HEMTs

The Prospects for III-Vs

Components Research, TMG Intel Corporation *QinetiQ. Contact:

Carbon Nanomaterials

The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices

Prospects for Ge MOSFETs

GHZ ELECTRICAL PROPERTIES OF CARBON NANOTUBES ON SILICON DIOXIDE MICRO BRIDGES

A Multi-Gate CMOS Compact Model BSIMMG

Lecture 4: CMOS Transistor Theory

Lecture 11: MOS Transistor

SEU RADIATION EFFECTS ON GAA-CNTFET BASED DIGITAL LOGIC CIRCUIT

Low Frequency Noise in MoS 2 Negative Capacitance Field-effect Transistor

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Lecture 3: Transistor as an thermonic switch

All-around contact for carbon nanotube field-effect transistors made by ac dielectrophoresis

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Microsystems Technology Laboratories, MIT. Teledyne Scientific Company (TSC)

Metal-oxide-semiconductor field effect transistors (2 lectures)

Device Models (PN Diode, MOSFET )

Diameter Optimization for Highest Degree of Ballisticity of Carbon Nanotube Field Effect Transistors I. Khan, O. Morshed and S. M.

Carbon Nanotubes for Interconnect Applications Franz Kreupl, Andrew P. Graham, Maik Liebau, Georg S. Duesberg, Robert Seidel, Eugen Unger

Lecture 3: CMOS Transistor Theory

MOS Transistor Properties Review

Device Models (PN Diode, MOSFET )

Modeling of Carbon Nanotube Field Effect Transistors

MOS Transistor Theory

High-performance carbon nanotube field-effect transistor with tunable Polarities

ECE-305: Fall 2017 MOS Capacitors and Transistors

1 Carbon Nanotube Electronics and Optoelectronics

Class 05: Device Physics II

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room).

Lecture #27. The Short Channel Effect (SCE)

Emerging Research Devices: A Study of CNTFET and SET as a replacement for SiMOSFET

Supporting Information

Electronics with 2D Crystals: Scaling extender, or harbinger of new functions?

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

Supporting Online Material for

doi: /

Technology Development for InGaAs/InP-channel MOSFETs

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

Subthreshold and scaling of PtSi Schottky barrier MOSFETs

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today MOS MOS. Capacitor. Idea

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

CHAPTER 3 CAPACITANCE MODELLING OF GATE WRAP AROUND DOUBLE-WALLED ARRAY CARBON NANOTUBE FIELD EFFECT TRANSISTOR

Monte Carlo study of coaxially gated CNTFETs: capacitive effects and dynamic performance

Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai

Electrostatics of nanowire transistors

NOVEL STRUCTURES FOR CARBON NANOTUBE FIELD EFFECT TRANSISTORS

Available online at ScienceDirect. Procedia Materials Science 11 (2015 )

Prospect of Ballistic CNFET in High Performance Applications: Modeling and Analysis

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Electrostatic Single-walled Carbon Nanotube (CNT) Field Effect Transistor Device Modeling

EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

Carbon nanotube electronics and photonics

1/f noise in carbon nanotube devices - On the impact of contacts and device geometry

Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches

MOS Transistor I-V Characteristics and Parasitics

Current-Voltage Characteristics of Carbon Nanotube Field Effect Transistor Considering Non-Ballistic Conduction

Nanoscale CMOS Design Issues

EE410 vs. Advanced CMOS Structures

ECE 342 Electronic Circuits. 3. MOS Transistors

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Section 12: Intro to Devices

The Devices: MOS Transistors

EE105 - Fall 2005 Microelectronic Devices and Circuits

Random Telegraph Signal in Carbon Nanotube Device

Beyond Si: Opportunities and Challenges for CMOS Technology Based on High-Mobility Channel Materials T.P. Ma Yale University

CARBON NANOTUBE TRANSISTORS: AN EVALUATION

The World of Carbon Nanotubes

MOSFET: Introduction

Graphene Devices, Interconnect and Circuits Challenges and Opportunities

Device Simulation of SWNT-FETs

Evaluation of Electronic Characteristics of Double Gate Graphene Nanoribbon Field Effect Transistor for Wide Range of Temperatures

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Transcription:

Carbon Nanotube Electronics Jeorg Appenzeller, Phaedon Avouris, Vincent Derycke, Stefan Heinz, Richard Martel, Marko Radosavljevic, Jerry Tersoff, Shalom Wind H.-S. Philip Wong hspwong@us.ibm.com IBM T.J. Watson Research Center Yorktown Heights, New York Outline Carbon nanotube - a three-minute introduction Nanotube transistor summary of key results What needs to be done going forward? 10/23/2002 1

H.-S. Philip Wong The Nanotube Family e.g.: (4,4) Tube Chiral tube a1 Structure (n,m): (5,2) Tube a2 Families and Structure n,m=(10,10) metallic n,m=(10,10) ----metallic STM Image n,m=(10, semiconducting n,m=(10, 0) 0) ----semiconducting Diameter: ~1 nm Length: several µm Bundle of SWNTs 20 nm Multi-wall Carbon Nanotubes (MWNTs) B.I.Yakobson and R.E.Smalley, S.Iijima, Nature 354 (1991) 56 MixtureScientist of semiconducting American 85 (1997) 324 and metallic CNTs [2:1] 10/23/2002 2

H.-S. Philip Wong Electronic Structure of SWNT Eg 1998 Carbon Nanotube FETs Tans et al. Delft University Nature 393, 49 (1998) à P-type, high contact resistance Martel et al. IBM App. Phys. Lett. 73, 2447 (1998) à P-type, high contact resistance 10/23/2002 3

H.-S. Philip Wong Contacts to Carbon Nanotubes Ti-carbide end-bonded contact In-situ x-ray diffraction with temperature R. Martel et al., Phy. Rev. Lett, p. 256805, 2001. Ti + carbon nanotube TiC-nanotube Y. Zhang S. Iijima, Science, vol. 285, p. 1719, 1999. Improved TiC and Co Contacts Source Nanotube Drain R. Martel, H.-S. P. Wong, K. Chan, Ph. Avouris, IEDM, p. 159, 2001 10/23/2002 4

Improved Turn-Off Characteristics Drain Current (I D ) [A] 1E-6 1E-7 1E-8 1E-9 1E-10 1E-11 Top gate Vd = -0.2 - - 1.6 V (0.2 V steps) 1E-12-1.5-1.0-0.5 0.0 0.5 Gate Voltage (Vg) [V] Gate oxide = 20 nm S=130 mv/dec DIBL < 100 mv/v S. Wind et al., Appl. Phys. Lett., p. 3817, 2002 CNFET vs Si FET Carbon nanotube array 4r Drain 1.4 1.2 V g =-0.9, -0.7, -0.5, -0.3V Solid Line=CNFET Dashed line = Si FET Source Drain Current I d [ma/mm] 1.0 0.8 0.6 0.4 0.2 V g =-1.2, -1.0, -0.8, -0.6, -0.4, -0.2V V g =1.2, 1.0, 0.8, 0.6, 0.4, 0.2V 0.0-1.2-0.8-0.4 0.0 0.4 0.8 1.2 Drain Voltage V d [V] S. Huang et al, IEDM, p. 237, 2001. S. Rosenblatt et al., Nano Letters, vol. 2, p.869, 2002. 10/23/2002 5

CNFET vs Si FET Saturation current (Idsat) (ma/µm) Transconductance (ms/µm) Subthreshold slope (mv/dec) Gate geometry Equivalent gate oxide (nm) p-cnfet [e] 1030 nm p-cnfet [f] 260 nm 1.05 (Vdd=1.2V) p-cnfet [g] 1400 nm 1.25 (Vdd=0.8V) 100 nm MOSFET 1.04 (nfet) [a] 0.46 (pfet) [a] (Vdd=1.5V) 50 nm MOSFET [d] 0.95 (nfet) 0.41 (pfet) (Vdd=1.2V) 0.122 1.16 3.33 1.0 (nfet) [a] 0.46 (pfet) [a] 1.10 (nfet) 0.418 (pfet) >2000 130 80 90 87 96 100 Planar, single gate 150 (k=3.9) Planar, single gate 15 (k=3.9) Coaxial 1 (k=80) Planar, single gate 2.0 (Tinv=3.0 nm) Inversion capacitance 0.23 pf/cm 0.57 pf/cm 4 pf/cm (density of states capacitance) Gmsat / C (cm/s) 1.5 % 10 6 5.7 % 10 6 5 % 10 6 8.7 % 10 6 (nfet) 4.0 % 10 6 (pfet) CV/I (ps) 6.7 82 1.65 (nfet) 3.78 (pfet) Charge density at Vg=Vd=Vdd (e/cm 2 ) Planar, single gate 1.4 (Tinv=2.3 nm) 25 nm MOSFET 0.514 (nfet) [b] 0.285 (pfet) [b] (Vdd=0.85V) 1.2 (nfet) [b] 0.64 (pfet) [b] Planar, single gate 0.8 (Tinv=1.8 nm) 1.15 µf/cm 2 1.5 µf/cm 2 1.9 µf/cm 2 7.3 % 10 6 (nfet) 2.8 % 10 6 (pfet) 0.95 (nfet) 2.63 (pfet) 6.3 % 10 6 (nfet) 3.4 % 10 6 (pfet) 1.0 (nfet) 1.7 (pfet) 8.1 % 10 12 1.6 % 10 13 8.6 % 10 12 8 9.4 % 10 12 ~1 % 10 13 H.-S. P. Wong et al., ISSCC, 2003. Carbon Nanotube Inverter Intra-molecular logic gate Complementary (p- and n-channel) operation CMOS 2 1 Gain>1 V OUT (V) 0-1 -2-4 -2 0 2 4 V IN (V) V. Derycke, R. Martel, J. Appenzeller, A. Avouris, Nano Letters, 1 (9), p. 453, 2001 10/23/2002 6

Carbon Nanotube FET is Promising... Because Carrier transport is one-dimensional All bonds are satisfied, stable, and covalent Chemical synthesis controls a key dimension Device is not wed to a particular substrate But much remains to be done: Scalability (ballistic, contact-dominated transport?) Contacts Doping Device stability (charge trapping) High yield, selective growth of nanotubes What Limits Device Performance? Electrostatics Turn-off characteristics Induced charge density Carrier transport in a carbon nanotube transistor Scattering within the tube? Contact-dominated? What makes a carbon nanotube transistor p-type or n-type? 10/23/2002 7

Contact-Dominated Device Interchanging source/drain terminals: 600 500 Vgs : +0.5V to -1.5V steps: -0.2V 400 I d [na] 300 200 100 0-1.4-1.2-1.0-0.8-0.6-0.4-0.2 0.0 V ds [V] J. Appenzeller et al., Phys. Rev. Lett., Vol. 89, p. 126801, 2002 Ambipolar FET Outgassing changes p-type into ambipolar A Schottky barrier model of the contact region may explain the results TiC Ti 1. Low temperature oxide 2. Outgasing at 800 C R. Martel et al., Phys. Rev. Lett., Vol. 87, No. 205, p. 256805, 2001 10/23/2002 8

H.-S. Philip Wong Schottky Barrier Nanotube FET J. Appenzeller et al., Phys. Rev. Lett., Vol. 89, p. 126801, 2002 Nanotube Technology? How do you get from here to there? 100µm Au CNT 10/23/2002 9

The Horowitz Filter Sphere of successful influence: +/- one layer device «materials «physics/chemistry circuit «device «materials system «circuit «device architecture «system «circuit application «architecture «system Hide imperfections Black-box representation to layer above, e.g. BSIM device models for circuit design VHDL for system design M. Horowitz, in Focus Center Research Program (MARCO) MSD-C2S2 Topical Workshop, Nov. 12, 2001 The Fun Ahead Science: Electrostatics, electrodynamics Plenty of room for improvement! No new architecture! Scalability (ballistic? contact-dominated transport?) Contacts, doping Gate insulator, interface traps? High yield, selective growth/synthesis of nanotubes with correct electrical properties... Engineering: Device structure with minimized parasitic resistance and capacitance Fabrication processes leading to high device density (e.g. size of contacts commensurate with gate length, means to connect one device to another) Demonstrate device/circuits which satisfies ALL performance metrics (not just some metrics) Reliability Manufacturing tools and infrastructure, integration with silicon... 10/23/2002 10