Size-dependent Metal-insulator Transition Random Materials Crystalline & Amorphous Purely Electronic Switching

Similar documents
Electrical and Reliability Characteristics of RRAM for Cross-point Memory Applications. Hyunsang Hwang

Influence of electrode materials on CeO x based resistive switching

Flexible nonvolatile polymer memory array on

Resistive Memories Based on Amorphous Films

Mechanism of Switching and Related Challenges in Transition Metal Oxide Based RRAM Devices

Low Power Phase Change Memory via Block Copolymer Self-assembly Technology

NRAM: High Performance, Highly Reliable Emerging Memory

Novel Devices and Circuits for Computing

Supplementary Materials for

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation

Bipolar resistive switching in amorphous titanium oxide thin films

An interfacial investigation of high-dielectric constant material hafnium oxide on Si substrate B

Scaling behaviors of RESET voltages and currents in unipolar

Supporting Information

Analysis of charge-transport properties in GST materials for next generation phase-change memory devices. Fabio Giovanardi Tutor: Prof.

Introduction to Molecular Electronics. Lecture 1: Basic concepts

Novel Devices and Circuits for Computing

Supporting Information

Planar Organic Photovoltaic Device. Saiful I. Khondaker

J. Price, 1,2 Y. Q. An, 1 M. C. Downer 1 1 The university of Texas at Austin, Department of Physics, Austin, TX

Experimental and Theoretical Study of Electrode Effects in HfO2 based RRAM

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

Stabilizing the forming process in unipolar resistance switching

Thermal Oxidation of Si

Neuromorphic computing with Memristive devices. NCM group

Supplementary Figures

cermets), the bulk percolation limit (when the slope is zero) ranges from 0.40 to 0.65 for

Gold Nanoparticles Floating Gate MISFET for Non-Volatile Memory Applications

MIT Amorphous Materials

Song and Feng Pan b) * Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering,

1 Ionic Memory Technology

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University

Carbon Nanotube Thin-Films & Nanoparticle Assembly

RRAM technology: From material physics to devices. Fabien ALIBART IEMN-CNRS, Lille

Moores Law for DRAM. 2x increase in capacity every 18 months 2006: 4GB

Large Storage Window in a-sinx/nc-si/a-sinx Sandwiched Structure

Thermal Resistance (measurements & simulations) In Electronic Devices

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently,

Strong-electric-field effects and antenna resonances in single-wall carbon nanotube films

Optimization of the Dielectric Constant of a Blocking Dielectric in the Nonvolatile Memory Based on Silicon Nitride

Quantum Mechanical Simulation for Ultra-thin High-k Gate Dielectrics Metal Oxide Semiconductor Field Effect Transistors

CONDUCTIVITY MECHANISMS AND BREAKDOWN CHARACTERISTICS OF NIOBIUM OXIDE CAPACITORS

Fabrication and Characteristic Investigation of Multifunctional Oxide p-n Heterojunctions

2 Title: "Ultrathin flexible electronic device based on tunneling effect: a flexible ferroelectric tunnel

Computational Materials Design and Discovery Energy and Electronic Applications Synthesis Structure Properties

Electrical Properties of Ti/Au/SiO,/InP Structures

RC Studies Relaxation Oscillator

AN ABSTRACT OF THE THESIS OF

Frequency dispersion effect and parameters. extraction method for novel HfO 2 as gate dielectric

Computational Science Studies toward Future Nano-Devices. Kenji Shiraishi. University of Tsukuba

Tunneling transport. Courtesy Prof. S. Sawyer, RPI Also Davies Ch. 5

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013

ECE 340 Lecture 39 : MOS Capacitor II

Enhancing the Performance of Organic Thin-Film Transistor using a Buffer Layer

Metallic: 2n 1. +n 2. =3q Armchair structure always metallic = 2

1. Depleted heterojunction solar cells. 2. Deposition of semiconductor layers with solution process. June 7, Yonghui Lee

Supplementary Information. All Nanocellulose Nonvolatile Resistive Memory

Solar cells operation

Electrical measurements of voltage stressed Al 2 O 3 /GaAs MOSFET

Photovoltage phenomena in nanoscaled materials. Thomas Dittrich Hahn-Meitner-Institute Berlin

The goal of this project is to enhance the power density and lowtemperature efficiency of solid oxide fuel cells (SOFC) manufactured by atomic layer

Analysis of Band-to-band. Tunneling Structures. Title of Talk. Dimitri Antoniadis and Judy Hoyt (PIs) Jamie Teherani and Tao Yu (Students) 8/21/2012

DISTRIBUTION OF POTENTIAL BARRIER HEIGHT LOCAL VALUES AT Al-SiO 2 AND Si-SiO 2 INTERFACES OF THE METAL-OXIDE-SEMICONDUCTOR (MOS) STRUCTURES

Experimental and theoretical understanding of Forming, SET and RESET operations in Conductive Bridge RAM (CBRAM) for memory stack optimization

Symetrix Corporation Background

1. HP's memristor and applications 2. Models of resistance switching. 4. 3D circuit architectures 5. Proposal for evaluation framework

23.0 Review Introduction

SUPPLEMENTARY INFORMATION

CONSTANT CURRENT STRESS OF ULTRATHIN GATE DIELECTRICS

Thermoelectric Oxide Materials For Electric Power Generation

Lecture 6: 2D FET Electrostatics

Chapter 6 ELECTRICAL CONDUCTIVITY ANALYSIS

Redefining the Speed Limit of Phase Change Memory Revealed by Time-resolved Steep Threshold-Switching Dynamics of AgInSbTe Devices

Gate Carrier Injection and NC-Non- Volatile Memories

Electronic Supplementary Information

Nanostrukturphysik (Nanostructure Physics)

Resistive Random Access Memories (RRAMs)

Ferroelectrics. Spartak Gevorgian. Department of Microtechnology and Nanoscience Chalmers University of Technology Gothenburg, Sweden

H-treatment impact on conductivefilament. formation and stability in

MOS Transistor Properties Review

A Low-Noise Solid-State Nanopore Platform Based on a Highly Insulating Substrate

Diamond-like carbon film deposition on PZT ferroelectrics and YBCO superconducting films using KrF excimer laser deposition

Semester Length Glass Courses and Glass Schools

High Performance, Low Operating Voltage n-type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System

Experimental and theoretical study of ultra-thin oxides

Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper

VI. EIS STUDIES LEAD NANOPOWDER

SPICE Modeling of STT-RAM for Resilient Design. Zihan Xu, Ketul Sutaria, Chengen Yang, Chaitali Chakrabarti, Yu (Kevin) Cao School of ECEE, ASU

Large-Scale and Precise Nanoparticle Placement via Electrostatic Funneling

Introduction to Thermoelectric Materials and Devices

Reliability of semiconductor I Cs. Reliability of semiconductor I Cs plus

Starting solution. Hydrolysis reaction under thermostatic conditions. Check of viscosity and deposition test SOL. Deposition by spin coating

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Steady-state diffusion is diffusion in which the concentration of the diffusing atoms at

Ovshinsky Effect by Quantum Mechanics

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

N ano scale l S il ii lco i n B ased N o nvo lat l i atl ie l M em ory r Chungwoo Kim, Ph.D.

single-electron electron tunneling (SET)

an introduction to Semiconductor Devices

Nanomaterials for Plasmonic Devices. Lih J. Chen

Transcription:

Nanometallic RRAM I-Wei Chen Department of Materials Science and Engineering University of Pennsylvania Philadelphia, PA 19104 Nature Nano, 6, 237 (2011) Adv Mater,, 23, 3847 (2011) Adv Func Mater,, 22, 546 (2012)

Size-dependent Metal-insulator Transition Random Materials Crystalline & Amorphous Purely Electronic Switching

A Metal? An Insulator?

Periodic System With a band gap, or without Insulator: : infinite resistivity at 0K Metal: : finite resistivity at 0K

Random System Aperiodic: No sharp band edge Mott : Mobility edge (k space) Anderson: = diffusion i distance @ 0K (elastic tunneling) = extent of wave function Metallic if if < Metal: Insulator: < < Insulating if > Sample size (thickness) =

An insulator, small enough, is a metal! Conducting Insulating

Long- Random Insulator Atomically mixing metal into insulator

Nanometallic Thin Film: Crystalline Top electrode Nanometallic Film Bottom electrode Substrate [001] 10 [100] I (m ma) 5 0-5 30 nm 20 nm -10-3 -2-1 0 1 2 3 Voltage (V) 75%CaZrO 3-25%LaNiO 3 Insulator Metal

After switching (0) 1M ( ) Resis stance ( 100k 10k HR 1k 100 10 0 10 20 30 Voltage-controlled MIT ~ ~ 25 nm 10 6 LR Thickness (nm) As fabricated (1) 0.02 0.01 ( ) Res sistance 20 nm 10 5 Thickness 10 4 30 nm 10 3 20 nm 10 nm 10 2 2.5 nm 10 1-3 -2-1 0 1 2 3 Voltage (V) (1) Low resistance Ohmic I (A) 0.00-0.01 001-0.02-3 -2-1 0 1 2 3 Voltage (V) (0) High resistance non-ohmic

Mechanism for Switching (on/off) LRS TE HRS TE T2 T2 T3 T3 T1 electron flow T1 electron flow BE BE Free electron path ( > ) Isolated traps Filled traps < Repulsion Change Diffusion Length: on/off

Switching: A Metal-Insulator Transition rrent ( A A) Cu High resistance HR state Insulating 8 4 0-4 -8 300K 100 K 7K -0.2-0.1 0.0 0.1 0.2 Temp Cu urrent (m ma) Low resistance LR state Metallic Voltage (V) Voltage (V) Resistan nce ( ) 10 6 10 5 10 4 10 3 200K 300K 10 5 0-5 -10 10 2-3 -2-1 0 1 2 3 Voltage (V) 7K 100 K -0.2-0.1 0.0 0.1 0.2 Temp 300 K Temp

Nanometallic Glasses SiO 2 :Pt SrRuO 3 15 Pt Si Random SiO 2 :f Pt alloy Insulator Metal 10 I [ma A] 5 0-5 -10 5.5 nm 21 nm -15-6 -3 0 3 6 V [V] 2 293K I (ma) 1 0-1 10K -2-4 -2 0 2 4 V (V)

-triggered (SiO 2 :0.2 Pt) Nanoscale MIT 100M f-triggered ( ~20 nm) ) R ( 1M 10k 7 nm 100 5.5 nm -6-3 0 3 6 V (V) 21 nm 100M 12 nm 9 nm 1M R ( ) 10k 7% 13% 20% 25% 30% -6-3 0 3 6 V (V)

Random Nanometallic Materials Insulator : Metal [001] LaAlO 3 :LaNiO 3 [100] LaAlO 3 :SrRuO 3 CaZrO 3 :LaNiO 3 CaZrO 3 :SrRuO 3 Si 3 N 4 :metal A LaNiO 3 -CaZrO 3 Si 3 N 4 :metal B Si 3 N 4 :metal C Si 3 N 4 :Pt SiO 2 :Pt Oxide A:Pt etc. SiO 2 :Pt

Nanometallicity Percolation (kohm-c cm) Res sistivity 10 1 0.1 001 0.01 40%Pt 45%Pt SiO 2 :Pt f c (mol %) f Percolation (mol%) 30%Pt SiO 2 :Pt 20 38 100 150 200 250 300 Temperature (K) Bulk percolation: f ~ 0.4 SiN 3/4 :Pt <<38 38 SiN 3/4 :metal A <<40 40 LaAlO 3 :LaNiO 3 12 - LaAlO 3 :SrRuO 3 11 86 CaZrO 3 :LaNiO 3 25 - CaZrO 3 :SrRuO 3 5.5 75 Not percolation-induced induced d metallicity it

f- Map for MIT Percolation Threshold (nm) 50 25 Insulating 0 000 0.00 025 0.25 050 0.50 f Conducting Nanometallicity I (ma) V-triggered MIT 20 1M R-V 10 0-10 I-V 100k 10k 1k -20 100-6 -3 0 3 6 V (V) R ( )

Nanostructure?

SiN:metal A System: 10 nm TEM Films Insulating Switching Switching Switching 5 nm SiN SiN+ x1% metal SiN+x2% metal SiN+x3%metal SiN+x4% metal SiN+x5% metal SiN+x6% metal metal Switching Switching Conducting Metal-rich Nanoparticles (Percolating) Conducting

Oxide A:Pt System 5 nm Insulating Oxide Oxide+ x1% Pt Oxide+x2% Pt Oxide +x3% Pt Switching Switching Conducting (percolating) Metal-rich Nanoparticles Irrelevant for Nanometallic Switching

Metallic Nanoparticle? (SiO 2 :f Pt) Calibr rated Reflectio on (%) f Pt 16 14 12 10 8 6 4 f ~ 0.2 Fused Silica f ~ 0.5 f ~ 0.37 f ~ 0.3 f ~ 0.33 400 600 800 1000 Wavelength (nm) Pt < 0.3: No Metallic Nanoparticle Plasmon Resonance: Signature of Metallic Nanoparticles

Capacitance (HR): SiN:Metal A f critical C = C diel + C met NP I C met NP ~ n met NP r 2 met NP r Switching % ~ n met NP r 3 met NP % Metal C met NP ~ %/r met NP f metal < f critical : No Metallic Nanoparticle

Reality Check Scaling: x nm times x nm Endurance: >10 7 cycles

Electronic Transition?

Fundamentally Different Features T Initial State Electrode s Work Functions, B UV R C Pulse Width,

Initial State No forming Initial state: metal High breakdown voltage >15 V

Top & Bottom Electrodes Must Be Different ø TE (ev) ø BE (ev) V s Polarity SiO 2 :Pt Pt 5.65 SRO 5.0 + 20 Pt 5.65 Mo 4.6 + 10 10 5 Mo 4.6 SRO 5.0 - I (ma) 0-10 10 4 10 3 R ( ) Ag 4.26 Pt 5.65 - Pt 5.65 Ta 4.25 + -20 10 2-4 -2 0 2 4 6 V (V) + : Counter clockwise SiN 3/4 :Pt Pt 5.65 SRO 5.0 + LaAlO 3 : Pt 5.65 SRO 5.0 + LaNiO 3 Au 5.10 SRO 5.0 + Ag 4.26 SRO 5.0 - LaAlO 3 : Pt 5.65 SRO 5.0 + SrRuO 3 CaZrO 3 : Pt 5.65 SRO 5.0 + LaNiO 3 CaZrO 3 : Pt 5.65 SRO 5.0 + SrRuO 3 I (ma) 10 5 0-5 -10-6 -3 0 3 6 V (V) -: Clockwise 10 5 10 4 10 3 R ( )

UV Resets Memory: Electronic Pt, 5.6eV CaZrO 3 :LaNiO 3 SrTiO 3 SrRuO 3, 5.0eV Inten nsity 100 80 60 40 20 0 UV light 4.2 ev 3.4 ev 3.0 ev 200 300 400 500 600 Wavelength (nm) Res sistance ( ) 1000 500 0 UV off UV on LR UV off 0 100 200 300 Time (sec) UV off UV on HR UV off 0 100 200 300 Time (sec) Not an ionic effect

Electronic Transition: UV-triggered Pt SiO 2 :Pt Fused SiO 2 SrRuO 3 or Mo UV light 100k 100k R 10k UV on R ( 10k 1k UV on 1k 0 20 40 60 100 0 50 100 Time (sec) Time (sec) Not an ionic effect

R HR Dependence Resis stance ( ) 10 9 10 7 10 5 10 9 (100 m) 2 (60 m) 2 (40 m) 2 (20 m) 2 (10 m) 2 10 8 10 3-6 -4-2 0 2 4 6 Voltage (V) Resist tivity ( cm m) 10 7 10 6 10 5 27nm 20nm 17nm 10-6 10-5 10-4 Area (cm 2 ) Obeys Ohm s law (R HRS 1/A) Extreme thickness dependence!

Non-Ohmic Thickness Dependence mm 2 ) A ( m 10 7 10 5 10 3 R ~ exp(δ/ HR ) R x 10 1 5 10 15 (nm) > (HR State) t Wave Function ~ exp(- / HR ) HR Violates Ohm s Law

ζ : Decreased by trapped charge mm 2 ) A ( m 10 7 10 5 10 3 R ~ exp( / ) (nm) )20 10 R x 10 1 5 10 15 (nm) Diffusion length ( ) : HR and LR 0 0.00 0.25 0.50 f f 0.2 0.23 0.26 0.28 0.33 ζ HR (nm) 1.1 1.7 2.1 2.5 2.8 ζ LR (nm) 10.8 13.5 15.9 17.5 20.5

Symmetric Capacitance: Higher for HRS Equivalent Circuit 6000 Line & BE & Film / connecti interface Device on -Z im ( ) 3000 HRS@0V HRS@0.4V HRS@0.8V HRS@1.2V LRS Only at very high 0 0 3000 6000 Z real ( ) No Interface Barrier: Symmetric C(V)

No Pulse Width Effect (>RC time) No Rate Dependence: Not AMemristor! > RC: Same switching voltage regardless of < < RC: Increasing switching voltage at smaller Same observations for HR-LR and LR-HR switching RC Time = R Line Line C Cell Cell ~ Cell Area Prediction: Same switching voltage down to ps in sub- m devices

Device Performance Retention Variance

Memory Retention Resist tance ( ) 10 7 10 6 10 5 10 4 10 3 Retention @85 C HRS: >10ms 100ns LRS: >10ms 100ns Resist tance ( ) t retention /t write 10 7 10 6 10 5 10 4 10 3 HRS: >10ms 100ns LRS: >10ms 100ns 10yr 10 2 10 0 10 1 10 2 10 3 10 4 10 5 10 6 time (sec) 10 2 10 0 10 3 10 6 10 9 10 12 10 15 t retention /t write Good retention regardless of programming speed

Retention per Constant Voltage Stressing Test (sec) LR to HR 10000 V + *= 20 1.1V 1.6V 16 100 2.3V 27V 2.7V 12 4.4V 5.5V 8 1 4 0 0.01 0.6 0.9 1.2 1.5 V m+ (V) 2 ) ln( V m+ -4 10 years 1.1V 1.6V V + *= 2.3V 2.7V 45V 4.5V 5.5V 0.5 1.0 1.5 2.0 2.5 1/V m+ (V -1 ) Read @ < 0.4 V >10 year data retention t Fowler-Nordheim Tunneling over Barrier d: 15nm~ 1.5 26nmthick 2.6

Retention per Constant Voltage Stressing Test HR to LR (sec c) 10000 V *= 1.25V 1000 100 10 1 1.7V 2.6V 3.6V 0.1 0.50 0.75 1.00 1.25 V m (V) Read @ < 0.4 V >10 year data retention

Switching Uniformity R distribution rrent (A) Cu 10-2 100k 1.0 10-3 10-4 10-5 10-6 50 cycles -4-2 0 2 4 Applied voltage (V).1V ( ) R @0 10k 1k ±4V, 100ns 0 250 500 750 1000 # of switching F(x) Cumulative probability, 0.8 0.6 0.4 0.2 0.0 LRS HRS 10 2 10 3 10 4 10 5 Resistance, x ( ) Highly reproducible on-offoff Narrowly distributed resistance

Switching Uniformity: Weibull plot Weibull plot (R) F( x) 1 exp( ( x / x0) k ) Ln(-Ln(1-F(x) )) 2 0-2 -4-6 LRS HRS V off (LRS HRS) -V on (HRS LRS) 6 7 8 9 10 11 12 Ln(x) () k /μ R HRS 50 0.0233 R LRS 145 0.0086 19.2 0.0602 9.8 0.1135 Higher Weibull exponent k: more uniformity (lower /μ)

Switching Uniformity: R HRS & V switching Weibull distribution (analytic relation) / [ (1 2 2 / k) (1 1/ (1 1/ k) k)] 1/ 2 k 100 10 1 0.1 Our Device R HRS 0.01 0.1 1 / TiO 2 (DC) [1] TiO 2 :Pt (DC) [1] HfO 2 (AC) [2] HfO 2 :Al (AC) [2] NiO (DC) [3] NiO (AC) [3] NiO:Ti (DC) [4] NiO:Ti (AC) [4] Cu x O (AC) [5] ZnO:Mn (DC) [6] TaO (AC) [7] x PCMO (DC) [8] our device Weibull plot k 100 TiO 10 2 [1] TiO 2 :Pt [1] HfO 2 [2] HfO 1 2 :Al [2] NiO [3] NiO:Ti [4] ZnO:Mn [6] our device (V off ) 0.1 our device (-V on ) Weibull plot V switching 0.01 0.1 1 / 1.K. Tsunoda et al., Tech. Dig. International Electron Devices Meeting 2007, 767. 2.B. Gao et al., Tech. Dig. Symposium on VLSI Technology 2009, 30. 3.M.-J. Lee et al.,, Tech. Dig. International Electron Devices Meeting 2007, 771. 4.A. Chen et al., Tech. Dig. International Electron Devices Meeting 2005, 746. 5.Y. C. Yang et al., Nano Lett. 2009, 9, 1636. 6.W.-Y. Chang et al., Appl. Phys. Lett. 2009, 95, 042104. 7.Z. Wei et al., Tech. Dig. International Electron Devices Meeting 2008, 293. 8.D. -J. Seong et al., Tech. Dig. International Electron Devices Meeting 2009, 5.4.1.

Intermediate States: Metals or Insulators?

Intermediate States Insulator or Metal? Cur rrent (ma) 15 L1 0-15 1 2 0 3 4-2 0 2 Voltage (V) Resis stance ( ) 10 9 10 7 10 5 L2 0 1 2 3 10 3 4 L1 10 1 0 100 200 300 Temperature (K) Resis stance ( ) 10 9 10 7 L2 10 5 0 1 2 10 3 3 4 10 1 1 10 100 Temperature (K) FIT: Fluctuation-induced Tunneling Elastic tunneling 0 0 l 2 =area R/2 R/2 G ( T) G exp GV ( ) G 0, T C n T w G (1/ ) 10-2 (1/ ) 10-2 10-2 Experimental FIT fitting 10-3 10-4 Experimental Fitting 1 10-5 T T0 10-3 300K 250K 10 1 10 2 10 3 exp( V / V0 ) 1 h exp( V / V ) 1 V 0 G 0.01 0.1 1 Voltage (V) T(K) FIT

Intermediate States Insulator or Metal? Cur rrent (ma) Resis stance ( ) 10 9 L2 15 L1 10 7 10 7 0 1 0 10 5 0 2 1 3 10 5 0 2 1-15 4 10 3 2 3 10 3 3-2 0 2 4 L1 Voltage (V) 10 1 4 0 100 200 300 10 1 1 10 100 Temperature (K) Resist tance ( ) 10 9 L2 Temperature (K) Reduced Activation Energy 10 1 L2 0 Insulator W T dln ( T) dt W 10 0 Metal 1 10-1 2 3 10 100 Temperature (K) Multi-step on-switching: insulator-bad metal-metal transition Multi-state Multi-filament

Nanometallic RRAM Size-dependent d Nanometallicity it Metal Insulator Transition Random Materials Purely Electronic Switching

Conclusions Nanometallicty t : a size effect unique to random materials MIT: : triggered via δ, f, V, & photon; switching due to changing localization length, direction controlled by electrode work function Thank You Device properties: highly reproducible switching parameters, short read/write time independent of voltage, long retention time, adjustable switching parameters Nanostructure: metallic nanoparticles irrelevant