Quantum computer: basics, gates, algorithms

Similar documents
Motion and motional qubit

Quantum Information Processing with Trapped Ions. Experimental implementation of quantum information processing with trapped ions

Lecture 11, May 11, 2017

Quantum information processing with trapped atoms

Ion trap quantum processor

Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions

ION TRAPS STATE OF THE ART QUANTUM GATES

Ion trap quantum processor

Towards Quantum Computation with Trapped Ions

Which technology? Quantum processor. Cavity QED NMR. Superconducting qubits Quantum dots. Trapped atoms/ions. A. Ekert

Quantum information processing with trapped ions

Quantum information processing with trapped ions

Quantum Computation with Neutral Atoms

Quantum teleportation

Quantum computation with trapped ions

arxiv:quant-ph/ v3 19 May 1997

arxiv:quant-ph/ v2 26 Jan 1999

Exploring the Quantum with Ion Traps

Quantum Logic Spectroscopy and Precision Measurements

Short Course in Quantum Information Lecture 8 Physical Implementations

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018

Cold Ions and their Applications for Quantum Computing and Frequency Standards

QUANTUM INFORMATION PROCESSING AND RAMSEY SPECTROSCOPY WITH TRAPPED IONS

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles

Kenneth Brown, Georgia Tech

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0

IBM quantum experience: Experimental implementations, scope, and limitations

Experimental Realization of Shor s Quantum Factoring Algorithm

Atom trifft Photon. Rydberg blockade. July 10th 2013 Michael Rips

example: e.g. electron spin in a field: on the Bloch sphere: this is a rotation around the equator with Larmor precession frequency ω

arxiv:quant-ph/ v1 29 Apr 2003

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Quantum information processing with trapped Ca+ ions

Zero-point cooling and low heating of trapped 111 Cd + ions

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information

Quantum Simulation with Rydberg Atoms

One-Step Generation of Scalable Multiparticle Entanglement for Hot Ions Driven by a Standing-Wave Laser

Cooling Using the Stark Shift Gate

Quantum information processing and cavity QED experiments with trapped Ca + ions

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Quantum Computing with neutral atoms and artificial ions

The Nobel Prize in Physics 2012

Scalable creation of multi-particle entanglement

Superconducting Qubits Lecture 4

Supporting Online Material for

arxiv: v2 [quant-ph] 9 Jan 2009

Experimental Quantum Computing: A technology overview

Trapped ion quantum control. Jonathan Home IDEAS league school,

Rydberg excited Calcium Ions for quantum interactions

arxiv: v1 [quant-ph] 25 Sep 2008

A central problem in cryptography: the key distribution problem.

Quantum gates in rare-earth-ion doped crystals

Ming-Shien Chang. Institute of Atomic and Molecular Sciences Academia Sinica

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum teleportation with atoms: quantum process tomography

A SINGLE-ION STOCHASTIC QUANTUM PROCESSOR

arxiv: v1 [quant-ph] 9 May 2011

Ion crystallisation. computing

Quantum computing with cavity QED

Brian King. SQuInT summer school June, Dept. Physics and Astronomy, McMaster University

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

Optimal Controlled Phasegates for Trapped Neutral Atoms at the Quantum Speed Limit

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

Quantum Memory with Atomic Ensembles

Quantum computation with trapped ions and atoms

Towards Scalable Linear-Optical Quantum Computers

Europe PMC Funders Group Author Manuscript Nat Photonics. Author manuscript; available in PMC 2013 September 01.

Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK

Rydberg excited Calcium Ions for quantum interactions. Innsbruck Mainz Nottingham

Quantum computation and quantum information

Scheme for teleportation of unknown states of trapped ion

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Controlling the Interaction of Light and Matter...

!. 2) 3. '45 ( !"#!$%!&&' 9,.. : Cavity QED . / 3., /*. Ion trap 6..,%, Magnetic resonance Superconductor

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation

Quantum Networks with Atomic Ensembles

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Physics is becoming too difficult for physicists. David Hilbert (mathematician)

Generation and classification of robust remote symmetric Dicke states

arxiv: v1 [quant-ph] 14 Mar 2014

Principles of Quantum Mechanics Pt. 2

Quantum computing and quantum communication with atoms. 1 Introduction. 2 Universal Quantum Simulator with Cold Atoms in Optical Lattices

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state.

Quantum Information NV Centers in Diamond General Introduction. Zlatko Minev & Nate Earnest April 2011

QUANTUM COMPUTING. Part II. Jean V. Bellissard. Georgia Institute of Technology & Institut Universitaire de France

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013

Teleportation of a two-atom entangled state via cavity decay

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations.

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York

Quantum Information and Metrology with RF Traps at NIST D. J. Wineland, NIST, Boulder, CO

Graduate Class, Atomic and Laser Physics: Rabi flopping and quantum logic gates

quantum mechanics is a hugely successful theory... QSIT08.V01 Page 1

arxiv:quant-ph/ v2 25 Jul 2005

Entanglement creation and characterization in a trapped-ion quantum simulator

Quantum Repeaters and Memories

Requirements for scaleable QIP

arxiv:quant-ph/ Mar 2006

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Introduction to Cavity QED: fundamental tests and application to quantum information Serge Haroche July 2004

Quantum Computers. Todd A. Brun Communication Sciences Institute USC

Transcription:

Quantum computer: basics, gates, algorithms single qubit gate various two qubit gates baby-steps shown so far with ion quantum processors and how to reach a scalable device in future Ulm, Germany: 40 Ca +

Laser coupling 2-level-atom harmonic trap D S dressed system D energy ladder picture molecular Franck Condon picture... n 1, D n 1, S n, D n, S n +1, n +1, D S... S

Laser coupling 2-level-atom harmonic trap D S dressed system D energy ladder picture molecular Franck Condon picture... n 1, D n 1, S n, D n, S n +1, n +1, D S... S

Coherent qubit rotation Carrier flops electronic excitation Prob. for D D,0 laser pulse length in µs S,0 electronic excitation

Coherent qubit rotation Vibrational quanta Carrier flops D,0 D,1 S,0 S,1 internal electronic state laser pulse length in µs

Basics of a quantum computer INPUT Temporal sequence of quantum logic operations OUTPUT Single qubit gate time two-qubit gate

Why? applications in physics and informatics P. Shor, 1994: factorization of large numbers, L digits, is much more efficient on a quantum computer than with a classical computer: classical computer: ~exp(l 1/3 ), quantum computer: ~ L 2 L. Grover, 1997: search data base - quantum computer: ~ L simulation of Schrödinger equations or any unitary evolution spin interactions, quantum phase transitions quantum cryptography / repeaters / quantum links improved atomic clocks understanding the fundamentals of quantum mechanics / Gedanken-Experimente Experiments with entangled matter

The requirements for experimental qc Qubits store superposition information, scalable physical system Ability to initialize the state of the qubits ψ = α 0 + β 1 Universal set of quantum gates: Single bit and two bit gates Long coherence times, much longer than gate operation time Qubit-specific measurement capability D. P. DiVincenzo, Quant. Inf. Comp. 1 (Special), 1 (2001) Qubit Transformation

Experimental status Scalable device? Quantum Information Roadmaps http://qist.ect.it/ http://qist.lanl.gov/

Quantum gate proposal W. Paul J. I. Cirac P. Zoller single bit rotations and quantum gates small decoherence unity detection efficiency scalable control bit bit target bit bit

Quantum gate proposal Controlled NOT : ε ε ε ε ε 1 2 1 1 2 J. I. Cirac P. Zoller 0 0 0 1 0 0 0 1 single bit rotations and quantum gates small decoherence 1 0 1 1 unity detection efficiency 1 1 1 0 scalable control bit bit target bit bit

Cirac & Zoller gate with two ions

Controlled-NOT operation ε1 ε 2 S S S S S D S D D S D D D D D S ion 1 motion ion 2 S S,, D 0 0 D SWAP control control target target control qubit target qubit

Controlled-NOT operation ε1 ε 2 S S S S S D S D D S D D D D D S ion 1 motion ion 2 S, D 0 0 S, D 0>, 1> control qubit target qubit

Controlled-NOT operation ε1 ε 2 S S S S S D S D D S D D D D D S ion 1 motion ion 2 S, D S, D 0>, 1> SWAP -1 0 0 control qubit target qubit

SWAP and SWAP -1 starting with n=0> phonons, write into and read from the common vibrational mode π-pulse on blue SB control bit control bit D,0 D,1 D,0 D,1 π π S,0 S,1 S,0 S,1 SWAP SWAP -1

Conditional phase gate target bit Composite pulse phase gate I.Chuang, MIT Boston 2π 2π Rabi frequency: Blue SB: Ω η n +1 Effect: phase factor of -1 for all, except D,0 >

Composite phase gate (2π rotation) ( ) ( ) ( ) ( ) R( θφ, ) = R ππ, 2 R π 2,0 R ππ, 2 R π 2,0 + + + + 1 1 1 1 1 2π on S,0 D,1 3 2 4

Population of S,1> - D,2> remains unaffected ( ) ( ) ( ) ( ) R( θφ, ) = R π 2, π 2 R π,0 R π 2, π 2 R π,0 + + + + 1 1 1 1 2 4 3 1

Controlled-NOT operation ion 1 motion ion 2 S S, D, D SWAP SWAP -1 0 0 control bit target bit pulse sequence: Ion 1 laser frequency pulse duration optical phase Ion 2

Fidelity of Cirac-Zoller CNOT <Y exp Y ideal > 2 F. Schmidt-Kaler et al., Nature 422, 408 (2003) Fidelity : 73% M. Riebe et al., PRL 97, 220407 (2006) Fidelity : 92,6% input output

Bichromatic two-qubit gate DS1 DS0 DD1 DD0......... SD1 SD0 Milburn, arxiv:quantph/9908037. Milburn, Schneider, and James, Fortschr. Phys. 48, 801 (2000). Sörensen and Mölmer, PRL 82, 1971 (1999). Sörensen and Mölmer, PRA 62, 022311 (2000). SS1 SS0... Optical qubit theory (manual): Roos C.F., New J. Phys. 10 No 1, 2008, 013002 The common absorption of red and blue detuned light leads to a coherent evolution SS> to DD>. No excitation of DS> states. Requires only Lamb Dicke limit Bell state with F=83% Sackett et al., Nature 406, 256 (2000)

Mølmer-Sørensen interaction time evolution Probabilities 13000 measurements Detuning δ = 20 khz gate time 50 µs Pulse length τ [µs] p 0 +p 2 = 0.9965(4) J. Benhelm, G. Kirchmair, C. F. Roos, R. Blatt, Nature Physics 4, 463 (2008)

Fidelity of the created Bell state Parity flops 29400 measurements in 35 min Phase φ of analysis pulse A = 0.990(1) p 0 +p 2 = 0.9965(4) F = 99.3(1)% F 21 =80% J. Benhelm, G. Kirchmair, C. F. Roos, R. Blatt, Nature Physics 4, 463 (2008)

Mølmer-Sørensen interaction Entangle Disentangle Detuning δ = 20 khz gate time 50 µs pulse shaping 2 µs Equivalent to 17 gate operations

Experimentelle Höhepunkte von QIPC Quantengatter Verschränkte Zustände MICROTRAP SCALA AQUTE mit 2 bis 8 Ionen Teleportation Quanten Simulation Frequenzstandards Photon-Atom Schnittstellen Quantensensoren Quanten-Phasenübergänge

Wesentlicher Milestone für STREP-MICROTRAP Partner

Vision Laserpulse erzeugen verschränkte Zustände Segmentierte Mikrofalle erlaubt das Positionieren vieler Ionen Skalierbarer Quantenprozessor

Seite 30 DPG AMOP Düsseldorf 21.03.2007 Vision Laserpulse erzeugen verschränkte Zustände Segmentierte Mikrofalle erlaubt das Positionieren vieler Ionen Skalierbarer Quantenprozessor