Quantum jumps of light: birth and death of a photon in a cavity

Similar documents
Lecture 3 Quantum non-demolition photon counting and quantum jumps of light

Lecture 2: Quantum measurement, Schrödinger cat and decoherence

Des mesures quantiques non-destructives et des bruits quantiques.

The Nobel Prize in Physics 2012

Introduction to Cavity QED: fundamental tests and application to quantum information Serge Haroche July 2004

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Real Time Imaging of Quantum and Thermal Fluctuations

Introduction to Cavity QED

Chapter 6. Exploring Decoherence in Cavity QED

Cavity Quantum Electrodynamics Lecture 2: entanglement engineering with quantum gates

Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris

Counting non-destructively photons in a cavity, reconstructing Schrödinger cat states of light & realizing movies of their decoherence

Exploring the quantum nature of light in a cavity

Mesoscopic field state superpositions in Cavity QED: present status and perspectives

Collège de France abroad Lectures Quantum information with real or artificial atoms and photons in cavities

Cavity QED with Rydberg Atoms

Measuring and controlling non destructively photons in cavities. J.M. Raimond Université Pierre et Marie Curie

Open Quantum Systems

Cavity Quantum Electrodynamics Lecture 1

Cavity QED in Atomic Physics

Requirements for scaleable QIP

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University

Content of the lectures

Preparation of a GHZ state

Niels Bohr Institute Copenhagen University. Eugene Polzik

Quantum Computation with Neutral Atoms Lectures 14-15

The Quantum Mechanics Solver

Controlling Photons in a Box and Exploring the Quantum to Classical Boundary

Feedback control of atomic coherent spin states

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Distributing Quantum Information with Microwave Resonators in Circuit QED

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology

THEORY ON SCHRÖDINGER CLOUD EQUATION

Detection of Single Photon Emission by Hanbury-Brown Twiss Interferometry

Dipole-coupling a single-electron double quantum dot to a microwave resonator

arxiv: v1 [quant-ph] 11 Nov 2014

TELEPORTATION OF ATOMIC STATES VIA CAVITY QUANTUM ELECTRODYNAMICS

Amplification, entanglement and storage of microwave radiation using superconducting circuits

Practical realization of Quantum Computation

Cooperative atom-light interaction in a blockaded Rydberg ensemble

Towards Quantum Computation with Trapped Ions

Quantum Computation with Neutral Atoms

MODERN OPTICS. P47 Optics: Unit 9

Quantum Logic Spectroscopy and Precision Measurements

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions

Radiation-matter interaction.

Advanced Workshop on Nanomechanics September Optomechanics with micro and nano-mirrors

Circuit Quantum Electrodynamics

Quantum computation with trapped ions

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Manipulating Single Atoms

Lectures on Quantum Optics and Quantum Information

Bohr s Legacy in Cavity QED

Radiation pressure effects in interferometric measurements

Hong Ou Mandel experiment with atoms

ATOMIC, MOLECULAR, AND OPTICAL PHYSICS RAPID COMMUNICATIONS. Teleportation of an atomic state between two cavities using nonlocal microwave fields

Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK

Les Puces à Atomes. Jakob Reichel. Laboratoire Kastler Brossel de l E.N.S., Paris

Stabilization of discrete-time quantum systems subject to non-demolition measurements with imperfections and delays

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

Quantum Zeno dynamics of a field in a cavity

From trapped ions to macroscopic quantum systems

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara

Open Quantum Systems. Sabrina Maniscalco. Turku Centre for Quantum Physics, University of Turku Centre for Quantum Engineering, Aalto University

Electrical Quantum Engineering with Superconducting Circuits

FOUNDATIONAL EXPERIMENTS IN QUANTUM MECHANICS

Elements of Quantum Optics

Prospects for a superradiant laser

Rydberg atoms: excitation, interactions, trapping

10.5 Circuit quantum electrodynamics

Wolfgang Demtroder. Laser Spectroscopy. Basic Concepts and Instrumentation. Second Enlarged Edition With 644 Figures and 91 Problems.

Quantum information processing in optical lattices and magnetic microtraps 1

Quantum Optics and Quantum Information Laboratory

ATOMIC AND LASER SPECTROSCOPY

Quantum Physics and Quantum Information with Atoms, Photons, Electrical Circuits, and Spins

Laser MEOP of 3 He: Basic Concepts, Current Achievements, and Challenging Prospects

Fundamental Constants and Units

Quantum computation and quantum information

LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS

INTRIQ. Coherent Manipulation of single nuclear spin

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations.

Thermal Excitation of Multi-Photon Dressed States in Circuit Quantum Electrodynamics

Mechanical Quantum Systems

Quantum teleportation

Quantum Optics and Quantum Informatics FKA173

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

Nonlinear optics with single quanta

Entanglement. arnoldzwicky.org. Presented by: Joseph Chapman. Created by: Gina Lorenz with adapted PHYS403 content from Paul Kwiat, Brad Christensen

What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light

Circuit QED: A promising advance towards quantum computing

Florent Lecocq. Control and measurement of an optomechanical system using a superconducting qubit. Funding NIST NSA/LPS DARPA.

Slow and stored light using Rydberg atoms

Dissipation in Transmon

Quantum optics of many-body systems

Contents Classical and Quantum Interference and Coherence Quantum Interference in Atomic Systems: Mathematical Formalism

Fermi polaron-polaritons in MoSe 2

Modern Optical Spectroscopy

Short Course in Quantum Information Lecture 8 Physical Implementations

Transcription:

QCCC Workshop Aschau, 27 Oct 27 Quantum jumps of light: birth and death of a photon in a cavity Stefan Kuhr Johannes-Gutenberg Universität Mainz S. Gleyzes, C. Guerlin, J. Bernu, S. Deléglise, U. Hoff, M. Brune, J. M. Raimond, S. Haroche Laboratoire Kastler Brossel École Normale Supérieure, Paris Durch wiederholte Messungen an einem QS ist es uns Lebensgeschichte eines Photons in einer Cavity zu beobachten. Die Experimente habe ich durchgeführt in der Gruppe von Serge Haroche an der ENS in Paris, 1

Quantum Jumps Fluorescence of a Ba + -Ion: Ion jumps into and out of a metastable state Quantum jumps! Dehmelt, Toschek (1986) electromagnetic field observe? massive particles Can one observe quantum jumps of non-massive particles? 2 Quantensprünge stellen einenen fundamentalen quantenmechanischen Effekt dar. Dieser Effekt, dass ein mikroskopisches System zufällig von einem Quantenzustand in den anderen springen kann, wurde zuerst An einzelnen gespeicherten Ionen beobachtet. Das Ion konnen von einem erlaubten Übergang, wo es Fluoreszenzlicht aussendet, in einen metastabilen Zustand springen und dort wieder in den ursprünglichen Zustand. Diese Quqntensprünge manifestierten sich als ein abruptes Aufhören und Wiederaufleben des Fluoreszenzsignals. also: molecules, electrons 2

Quantum jumps of light? Difficulties: - Storage of one photon? - Seeing a photon without destroying it? superconducting microwave cavity Rydberg atom Atom g QND e g if 1 photon if photons (= CNOT gate) T c > 1 ms Several hundreds of atoms can interact with the same photon 3 Massive particles very difficult experiments - isolation and trapping of a single particle Ü: Wie könne wir das tun? 3

Outline Experimental setup QND measurement of a field in a cavity: Life and death of a photon Photon cascade Perspectives 4 4

Experimental setup Rydberg atoms Microwave cavity 5 5

Circular Rydberg atoms 85 Rb n = 51 51.99 GHz n = 5 g e n big, l = m = n -1 lifetime: 3 ms huge dipole two-level system small dissipation large atom-field coupling But: very complicated preparation needs electric field E open cavity 6 6

Microwave cavity Fabry-Pérot cavity 28 mm TEM 9 @ 51,1 GHz 5 mm Niobium mirrors (superconducting) Very small surface resistance Small dissipation Small mode volume (some λ 3 ) Increases coupling 7 7

The cavity atoms piezos 5 cm 8 8

Temps de vie Damping time: T c =.13 s @.8 K!!! (previously: T c =.1 s) quality factor: Q = ω T c = 4.2 1 1 finesse: F = 4.6 1 9 One photon bounces 1.1 billion times (3 km) 415 ms 3 times around the earth Enough time to send > 1 atoms across the cavity 9 9

circularization box ² Ramsey zones 5 cm Detectors atoms Shielding box (thermal field, B field) Cavities 1 1

11 11

² atoms Too far from resonance 12 12

2. QND measurement of a cavity field: Observing birth, life and death of a photon 13 13

Dispersive Interaction e g δ ω cav e g π 2 2 Ω Δ Ee= ( n+ 1) 4δ π 2 2 Ω ΔEg = n 4δ Dephasing between e and g : ( e g ) + iδφ( ) ( e e n g ) n + n ( e Δ g) ΔΦ ( n) = ΔE - E dt = velocity Ω 2 t ( n +1 /2 ) 2δ light shift Lamb shift 14 14

Detecting a single photon by Ramsey interferometry g π 2 e: 1 photon π 2 g: photon 1. P g π Operation point Empty.8 cavity 2 Cavity with 1 photon Transfer.6.4.2. phase Ω t ΔΦ ( n) = ( n+1/2) 2δ = π 15 15

Repeated measurement of a thermal field Thermal field at.8 K R1 R2 position R2 π/2 π/2 1 probe atom pulses π/2 π/2 π/2 π/2 π/2 cavity R1 π/2 π/2 π/2 π/2 π/2 π/2 π/2 π/2 7 µs time 16 16

Birth and death of a photon e g 1,,5 1, 1,5 2, 2,5 time (s) S. Gleyzes, S. Kuhr et al., Nature 446, 297 (27) 17 17

Birth and death of a photon e,9,95 1, 1,5 1,1 1,15 1,2 g e g 1,,5 1, 1,5 2, 2,5 time (s) S. Gleyzes, S. Kuhr et al., Nature 446, 297 (27) 18 18

Birth and death of a photon e g 1,,5 1, 1,5 2, 2,5 time (s) S. Gleyzes, S. Kuhr et al., Nature 446, 297 (27) 19 19

Birth and death of a photon 1..8 Transfer.6.4 contrast.2. e g 1 Majority vote of 8 atoms,,5 1, 1,5 2, 2,5 time (s) S. Gleyzes, S. Kuhr et al., Nature 446, 297 (27) 2 2

Birth and death of other photons 1..5 1. 1.5 2. 2.5 3. 3.5 S. Gleyzes, S. Kuhr et al., Nature 446, 297 (27) 21 21

Measurement of a photon initially prepared in the cavity 22 22

Deposition of a photon in the cavity e g ω cav e, Ω g,1 P g 1..8 g,1.6 e,.4.2 Ω t = π produces a photon. 5 1 15 2 25 interaction time t (µs) 23 23

Observing a photon absorb the field sweeper atoms deposit a photon emitter atom field measurement 35 probe atom pulses position R2 π/2 π/2 π/2 π/2 π/2 π/2 π/2 cavity π R1 π/2 π/2 π/2 π/2 π/2 π/2 π/2 π/2 g g e g g g g g 7 µs time 24 24

Quantum jumps: : a single photon T =.8 K n th =.5 deposition of a photon 1 1 1 2 3 4 5 6 7 photon number Nombre de photon 1 1 2 3 4 5 6 7 1 1 2 3 4 5 6 7 1 1 2 3 4 5 6 7 1 1 2 3 4 5 6 7 1 2 3 4 5 6 7 Time (ms) time (ms) 25 25

Lifetime of n=1> 1 sequence : 1..2.4.6.8 Time (s) 26 26

Lifetime of n=1> 5 sequences: 1..2.4.6.8 Time (s) 27 27

Lifetime of n=1> 15 sequences: 1 damping time: 19(5) ms t cav = 13 ms!?..2.4.6.8 28 28

Lifetime of n=1> 94 sequences: 1 damping time: 19(5) ms t cav = 13 ms!?..2.4.6.8 Time (s) 29 29

Lifetime of n=1> 94 sequences: n = 2 1 damping time: 19(5) ms t cav = 13 ms!? 2 n / t th cav n = 1 ( nth + 1)/tt 1/ cav cav..2.4.6.8 Time (s) n th =.5 thermal photons T = T.8 = K n = We measure parity: impossible to distinguish between n= and n=2 n = 1 Lifetime of : t /(3n + 1) 13 ms cav th 3 3

Observing n = 2? 31 31

Measuring, 1 or 2 photons dephasing: π/2 per photon Pg 1..8.6.4 photon 1 photon 2 photons [extrapolated].2. 1 2 3 4 5 Phase (x π) 32 32

Measuring, 1 or 2 photons dephasing: π/2 per photon e photon number g 2 1 1 2 3 4 5 6 time (ms) majority vote of 24 atoms 33 33

Seeing more photons? 34 34

Principle of QND counting A clock whose ticking rate is determined by the number of photons in a box Clock hand s position directly measures the photon number 35 35

Detecting n > 1 n e> g> π 2 π/2 pulse interaction with cavity field z 4 3 5 6 7 n = y x 2 1 Φ = π 4 36 36

A step-by by-step acquisition of information Idea: 4 n = 4 n = 5 n = 6 n = 7 Change direction of spin detection to decimate different photon numbers 3 n = 3 2 n = 2 1 n = 1 n = Example: Detection along axis 4: optimal decimation between n= and n=4 37 37

Information acquisition by detecting 1 atom 1. e P(n/e),2,1.2 P(n).1. 1 2 3 4 5 6 7 photon number n.5. g P(n/g),,2,1 1 2 3 4 5 6 7 photon number n Repeating the measurement with other values of ϕ decimates other photon numbers, 1 2 3 4 5 6 7 photon number n Probabilities P(n) that are incompatible with the measurement result are cancelled. 38 38

Convergence of coherent state towards Fock state: wave function collapse in real time! Spin reading 111111111 Direction 124314232143112321342 Pn ( ) δ ( n n) Wave function collapse due to progressive acquisition of information Flat initial distribution Pn ( ) P( n) δ ( n n ) C. Guerlin et al., Nature (to be published) 39 This is real data, not a simulation! 39

Evolution of mean photon number n = n np( n) Repeated measurements confirm n=5 Projection of coherent state on n=5 Quantum jumps towards vacuum due to field decay in cavity 4 Here counting 5 photons 4

Reconstructing the photon number statistics n /2 e 2 Coherent field: n = 3.4 ±.8 α α α >= n > n n! 2 n α α pn ( ) = e n! 41 41

And even n = 8! Finally jumps to 7: it was not but 8! n = 8 n = Interferometer counts n modulo 8: does not distinguish and 8? c + c 8 8 42 42

Perspectives 43 43

Non-local Schrödinger cat + α, +, α A mesoscopic state delocalized in two boxes! Complete characterization and monitoring of decoherence T c = 13 ms violation of Bell s inequalities Teleportation of atomic quantum states from one cavity to the other 44 44

Conclusion Fabry-Pérot rot cavities: t c = 13 ms Quantum jumps of light Direct measurement of photon number number of photons 5 4 3 2 1 1 2 3 4 5 6 7 time (ms) Two-cavity experiments within reach 45 45

The Team Sébastien Gleyzes Christine Guerlin Julien Bernu Samuel Deléglise Clément Sayrin Ulrich Hoff Stefan Kuhr Jean-Michel Raimond Michel Brune Serge Haroche Laboratoire Kastler Brossel École Normale Supérieure, Paris 46 46

47 47

Ramsey zones - principle Constraints Spatially well-defined mode (addressing individual atoms) cavity with high Q Solution S «High Q» cavity (Q = 2) filter TEM mode Gold coated glass plate Avoid enhancement of spontaneous emission cavity with low Q Low Q cavity (Q = 2) Microwave absorber 48 48

Ramsey zones - principle Contraintes mode spatialement bien défini (adresser des atomes) cavité à grand Q éviter d augmenter l émission spontanée atoms cavité à faible Q Solution S «High Q» cavity (Q = 2) filter TEM mode Gold coated glass plate Low Q cavity (Q = 2) Microwave absorber 49 49