Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Similar documents
BEC meets Cavity QED

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Cold fermions, Feshbach resonance, and molecular condensates (II)

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO

A study of the BEC-BCS crossover region with Lithium 6

Reference for most of this talk:

Cooperative Phenomena

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

Confining ultracold atoms on a ring in reduced dimensions

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

Design and realization of exotic quantum phases in atomic gases

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Fermi Condensates ULTRACOLD QUANTUM GASES

NanoKelvin Quantum Engineering. Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014

Few-Body physics with ultracold K and Rb: Efimov physics and the Bose polaron

Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?"

Lecture 3. Bose-Einstein condensation Ultracold molecules

FERMI-HUBBARD PHYSICS WITH ATOMS IN AN OPTICAL LATTICE 1

A Mixture of Bose and Fermi Superfluids. C. Salomon

BEC and superfluidity in ultracold Fermi gases

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Low-dimensional Bose gases Part 1: BEC and interactions

Ultracold Fermi Gases with unbalanced spin populations

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

High-Temperature Superfluidity

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES

Evidence for Efimov Quantum states

A Mixture of Bose and Fermi Superfluids. C. Salomon

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Ultracold molecules - a new frontier for quantum & chemical physics

PHYS598 AQG Introduction to the course

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

From Optical Pumping to Quantum Gases

K two systems. fermionic species mixture of two spin states. K 6 Li mass imbalance! cold atoms: superfluidity in Fermi gases

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014

Superfluidity in interacting Fermi gases

BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP

Loop current order in optical lattices

Momentum-Resolved Bragg Spectroscopy in Optical Lattices

Strongly correlated systems: from electronic materials to cold atoms

Magnetism and Hund s Rule in an Optical Lattice with Cold Fermions

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State

From laser cooling to BEC First experiments of superfluid hydrodynamics

Fluids with dipolar coupling

NanoKelvin Quantum Engineering

III.3 Transport mésoscopique et effets thermoélectriques dans les gaz atomiques ultra-froids

(Noise) correlations in optical lattices

Ana Maria Rey. Okinawa School in Physics 2016: Coherent Quantum Dynamics. Okinawa, Japan, Oct 4-5, 2016

From cavity optomechanics to the Dicke quantum phase transition

Learning about order from noise

Experimental realization of spin-orbit coupling in degenerate Fermi gas. Jing Zhang

Non-equilibrium quantum phase transition with ultracold atoms in optical cavity

F. Chevy Seattle May 2011

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES

Quantum noise studies of ultracold atoms

COPYRIGHTED MATERIAL. Index

Search. Search and Discovery Ultracold Fermionic Atoms Team up as Molecules: Can They Form Cooper Pairs as Well? 1 of 10 11/12/2003 4:57 PM

Bose-Bose mixtures in confined dimensions

6. Interference of BECs

Imaging the Mott Insulator Shells using Atomic Clock Shifts

Bose-Einstein Condensate: A New state of matter

Quantum Computation with Neutral Atoms Lectures 14-15

Super Efimov effect. Sergej Moroz University of Washington. together with Yusuke Nishida and Dam Thanh Son. Tuesday, April 1, 14

Two-dimensional atomic Fermi gases. Michael Köhl Universität Bonn

Disordered Ultracold Gases

Experimental realization of spin-orbit coupled degenerate Fermi gas. Jing Zhang

Microcavity Exciton-Polariton

Introduction to cold atoms and Bose-Einstein condensation (II)

Superfluidity of a 2D Bose gas (arxiv: v1)

Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover

arxiv: v2 [physics.atom-ph] 9 Oct 2008

Experiments with an Ultracold Three-Component Fermi Gas

Quantum phase transitions and the Luttinger theorem.

Learning about order from noise

Quantum optics of many-body systems

Fundamentals and New Frontiers of Bose Einstein Condensation

Quantum superpositions and correlations in coupled atomic-molecular BECs

What are we going to talk about: BEC and Nonlinear Atom Optics

Fermi gases in an optical lattice. Michael Köhl

Workshop on Topics in Quantum Turbulence March Experiments on Bose Condensates

Quantum Transport in Ultracold Atoms. Chih-Chun Chien ( 簡志鈞 ) University of California, Merced

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois

Creating the Toolbox of Mesoscopic Physics for Quantum Gases

Exotic superfluidity in optical lattices

Lecture 4. Feshbach resonances Ultracold molecules

Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons

Measuring atomic NOON-states and using them to make precision measurements

Introduction to Atomic Physics and Quantum Optics

1. Cold Collision Basics

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Contents Ultracold Fermi Gases: Properties and Techniques Index

Bose-Einstein condensates & tests of quantum mechanics

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

Laboratoire Kastler Brossel Collège de France, ENS, UPMC, CNRS. Ultracold quantum gases in optical lattices

Transcription:

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Michael KöhlK ETH Zürich Z (www.quantumoptics.ethz.ch( www.quantumoptics.ethz.ch)

Introduction Why should a condensed matter physicist be interested in experiments with cold atomic gases? Three reasons 1. Purity an excellent system for studying 2. Tunability non-equilibrium physics 3. Long coherence times

Correlated systems in quantum gases Quantum phases in optical lattices BEC-BCS crossover ETH, Hamburg, LENS, Munich/Mainz, MIT, NIST, Yale/Stanford Duke, ENS, Innsbruck, JILA, MIT, Rice, Low-dimensional systems 1D 2D Quantized vortices ENS, ETH, LENS, Mainz, MIT, NIST, Penn State, ENS, JILA, MIT, Oxford, GeorgiaTech, Correlation functions can be measured directly.

Outline 1. Fermionic atoms in a 3D optical lattice with time-dependent interactions 2. Non-equilibrium formation of long-range order during Bose-Einstein condensation

Fermions in a 3D optical lattice

Interaction of an atom with a laser field Induced electric dipole potential: V = 1 2 α E 2 ac polarizability of the atom electric field of the laser Two options: ωl < ωa ωl > ωa red detuned blue detuned Optical lattice λ /2 400nm

Atoms: 40 K Optical lattice: 826 nm

Fermi-Hubbard model H J cˆ cˆ U nˆ nˆ ( μ ) nˆ = + ε i, σ j, σ i i i, σ i, σ < i, j>, σ i i, σ tunneling interactions filling confinement dimensionality time dependent tuning is possible

Observed Fermi surfaces theory experiment conductive state filling band insulator M. Köhl et al., Phys. Rev. Lett. 94, 080403 (2005).

Quantum phases in the lattice band insulator Mott insulator conducting state nn = nn = 0 0< nn < 1 1 study formation of molecules

Molecules in a lattice deep lattice = array of harmonic oscillators energy [ħω] 8 6 4 2 0-2 Two interacting particles in a harmonic oscillator -3-2 -1 0 1 2 3 scattering length a s [a ho ] scattering length [a 0 ] Feshbach resonance 3000 sweep 0-3000 200 220 magnetic field [G]

Radio-frequency spectroscopy noninteracting ground state apply RF pulse bound state m F -9/2-7/2-5/2 E B bound-bound spectroscopy In homogeneous systems: C. Regal et al., Nature 424, 47 (2003) C. Chin et al., Science 305, 1128 (2004) In a one-dimensional system: H. Moritz, T. Stöferle, K. Günter, M. Köhl, T.Esslinger, Phys. Rev. Lett. 94, 210401 (2005)

Results Binding energy Molecule fraction nn T. Stöferle, H. Moritz, K. Günter, M. Köhl, T. Esslinger, Phys. Rev. Lett. 96, 030401 (2006); M. Köhl, Phys. Rev. A 73, 031601(R) (2006).

Going the other direction energy [ħω] 8 6 4 2 0-2 Two interacting particles in a harmonic oscillator -3-2 -1 0 1 2 3 scattering length a s [a ho ] noninteracting scattering length [a 0 ] Feshbach resonance 3000 sweep 0-3000 220 240 magnetic field [G] sweep across Feshbach resonance 1 st Brillouin zone M. Köhl et al., Phys. Rev. Lett. 94, 080403 (2005). Theory: Diener & Ho, cond-mat/0507253, H. G. Katzgraber et al., cond-mat/0510194. observe atoms in higher bands

Bose-Fermi mixtures (in equilibrium )

Adding fermions to a Bose condensate 87 Rb K Similiar to 3 He/ 4 He mixtures (but in a lattice) Depletion of the Bose-Einstein condensate Polarons, fermion-phonon coupling with v F =v S Composite fermions

Experimental results k y -π/a π/ak x k=0: Bose-Einstein condensate k 0: depletion K. Günter, T. Stöferle, H. Moritz, M. Köhl, T. Esslinger, PRL, in press; cond-mat/0604139 (2006)

Non-equilibrium formation of long-range order during Bose-Einstein condensation

Growth of Bose-Einstein condensates Evolution of density is quantitatively understood H. J. Miesner et al., Science 279, 1005 (1998); M. Köhl et al., Phys. Rev. Lett. 88, 080402 (2002). How does long-range order evolve? λ db probe spatial coherence φ 1? φ 2 φ 3 φ 4 φ

Young s double slit experiment ψ ( r ) 1 source ψ ( r ) 2 screen Visibility V measures first order correlation function V g ( r r) = ψ ( r ) ψ( r) (1) 2 1 2 1 } slit separation

Two frequency output coupling T. Bourdel et al., Phys. Rev. A 73, 063618 (2006). I. Bloch, T. Hänsch, T. Esslinger, Nature 403, 166 (2000).

Preparing a non-equilibrium atom cloud Maxwell Boltzmann distribution above T c p(e) evaporation frequency time t=0 E

Interferences during Condensation visibility density

Formation of a Bose condensate

Density growth vs. coherence growth time [ms] no evidence for quasi-condensates.

First order correlation function 1.0 0.8 0.6 Visibility 0.4 0.2 0 275 375 175 75

Conclusion Atomic quantum gases are a great system to study non-equilibrium dynamics. Time-dependent interactions between fermions in lattices. Non-equilibrium dynamics at the Bose-Einstein phase transition.

Acknowledgements Fermions Ken Günter Henning Moritz Thilo Stöferle Cavity QED Thomas Bourdel Tobias Donner Anton Öttl Stephan Ritter Michael Köhl Tilman Esslinger