Comparing Cells. A nerve cell in your leg could be a meter long. A human egg cell is no bigger than the dot on an i. A human red blood cell is

Similar documents
2.1 Cell Structure. Learning Objectives:

Chapter: Life's Structure and Classification

Cell Theory. The cell is the basic unit of structure and function for all living things, but no one knew they existed before the 17 th century!

II. Eukaryotic Cell Structure A. Boundaries 1. plasma membrane a. serves as a boundary b/w the cell and its environment b. controls movement of

Discovery of the Cell

Discovery of the Cell

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Introduction to Cells. Intro to Cells. Scientists who contributed to cell theory. Cell Theory. There are 2 types of cells: All Cells:

Chapter Life Is Cellular

Chapter 4 Cells: The Basic Units of Life The Big Idea All organisms are composed of one or more cells.


LIFE SCIENCE CHAPTER 3 FLASHCARDS

Name: Class: Date: ID: A

Cell Structure: What cells are made of. Can you pick out the cells from this picture?

What is a cell? Recall your work yesterday. When classifying cells, what are the two groups scientists separate cells into?

What in the Cell is Going On?

The Basic Unit of Life Copyright Amy Brown Science Stuff

Ask yourself. Chapter 3 Cell Structure and Function. Examples of Cells. A is cell the smallest unit that is capable of performing life functions.

Biology I. Chapter 7

Van Leeuwenhoek. 1 st crude microscope made by the Dutchman

THE CELL THEORY (R+R+R+E+G+N+T+S) 3).

STUDY GUIDE SECTION 4-1 The History of Cell Biology

protein synthesis cell theory Centrioles specialization. unicellular ribosomes. mitochondria cell interdependence prokaryotes

7-1 Life Is Cellular. Copyright Pearson Prentice Hall

CELL STRUCTURE & FUNCTION

Cells. Modified by the MHJHS SD. [Adopted from James Holden & Clint Tucker]

Name Hour. Section 7-1 Life Is Cellular (pages )

BIO.A.1 Basic Biological Principles

CELL HISTORY, STRUCTURE AND FUNCTION

CELLS STRUCTURE AND FUNCTION

Biology Test 2 The Cell. For questions 1 15, choose ONLY ONE correct answer and fill in that choice on your Scantron form.

STEMscopedia: CELL STRUCTURES AND HOMEOSTASIS B1A

Cell Structure and Function

7 Characteristics of Life

Anaphase. Third phase of mitosis in which the chromosomes separate and move to opposite ends of the cell. Animal Cell

Mid-Unit 1 Study Guide

Cells Cytology = the study of cells. Nonliving Levels. Organization Levels of Life. Living Levels 11/14/13. More Living Levels

Discovering Cell/ The Cell Theory. * Cells are the basic, smallest units of structure and function of living things.

Biology. Mrs. Michaelsen. Types of cells. Cells & Cell Organelles. Cell size comparison. The Cell. Doing Life s Work. Hooke first viewed cork 1600 s

Chapter 7. Cell Structure & Function

BIOLOGY Cell Review Notes (source: SW Biology 11)

Life is Cellular. At the cellular level, what is the difference between animal cells and bacterial cells? How do microscopes work?

CELL THEORY & FUNCTION

BASIC BIOLOGICAL PRINCIPLES

Cell Organelles Tutorial

Day 1. What You ll Learn. 1. Organisms are living things. 2. All organisms are made of one or more cells.

CELL STRUCTURE. What are the basic units of life? What are the structures within a cell and what are they capable of? How and why do cells divide?

Microscope History Robert Hooke

Function and Illustration. Nucleus. Nucleolus. Cell membrane. Cell wall. Capsule. Mitochondrion

It helps scientists understand the workings of the human body and of other animals and plants

8.1 Life is cellular

It took more than years for scientists to develop that would allow them to really study.

Microorganisms Answer Key

CHARACTERISTICS OF LIFE ORGANIZATION OF LIFE CELL THEORY TIMELINE

Bio-CP Chapter 7 Cell Notes

Biology Slide 1 of 31

Biology Cell Test. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Cell Theory Essential Questions

Chapter 7: Cell Structure and Function 7.1: Life is Cellular

Cell Structure and Function. Chapter 4

CELL PART Expanded Definition Cell Structure Illustration Function Summary Location ALL CELLS DNA Common in Animals Uncommon in Plants Lysosome

3.2. Eukaryotic Cells and Cell Organelles. Teacher Notes and Answers. section

Cells. basic structure of life

Cell Organelles. 2. Cells are the basic unit of organization in an organism Cells tissues organ organ system organism

Life is Cellular. Cell Structure and Function. The First Microscope Janssen Brothers/Galileo. Leeuwenhoek s Microscope

7-2 Eukaryotic Cell Structure

Life is Cellular Section 7.1

Biology. Introduction to Cells. Sunday, November 8, 15

Eukaryotic Cells. Cell Wall. Key Concept Eukaryotic cells have organelles that perform important functions.

Chapter 4. Table of Contents. Section 1 The History of Cell Biology. Section 2 Introduction to Cells. Section 3 Cell Organelles and Features

Basic Structure of a Cell

A D A E J (L) J(s) K L

Chapter 3. Chapter 3. Bellringer. Objectives. Chapter 3. Chapter 3. Vocabulary. Objectives, continued

Cell Theory and Structure. Discoveries What are Cells? Cell Theory Cell Structures Organelles

The Discovery of Cells

NAME: PERIOD: DATE: A View of the Cell. Use Chapter 8 of your book to complete the chart of eukaryotic cell components.

Life is Cellular. Discovery of the Cell. Chapter 7 Cell Structure & Function. Exploring the Cell. Introduction. The Discovery of the Cell

Cell Structure and Function

CELL THEORY & FUNCTION

Eubacteria Archaea Eukarya

Explain your answer:

What is a cell? (*Know the parts of the microscope!)

How do we define what it means to be alive?

The Discovery of the Cell

Some history. Now, we know that Robert Hooke was not looking at living cells, but the remains of dead cell walls.

Living Things. Chapter 2

Biology. Introduction to Cells. Tuesday, February 9, 16

I m knocking on this cell wall to see what s inside. He doesn t look happy with me.

CHAPTER 7 LECTURE NOTES STRUCTURE AND FUNCTION OF THE CELL. I. Discovery of the Cell. Kennedy biol. 1ab

8/25/ Opening Questions: Are all living things made of cells? What are at least five things you know about cells?

Dr. Dina A. A. Hassan Associate Professor, Pharmacology

7.L.1.2 Plant and Animal Cells. Plant and Animal Cells

All living things are made of cells

What is a cell? 2 Exceptions to The Cell Theory. Famous People. Can You Identify This Object? Basic Unit of all forms of Life. 1.

Basic Structure of a Cell

Topic 3: Cells Ch. 6. Microscopes pp Microscopes. Microscopes. Microscopes. Microscopes

Unit 3: Cells. Objective: To be able to compare and contrast the differences between Prokaryotic and Eukaryotic Cells.

The Cell. The basic unit of all living things

UNIT 3 CP BIOLOGY: Cell Structure

Transcription:

Common Cell Traits The smallest unit that is capable of performing life functions. All cells have an outer covering called a cell membrane. Inside every cell is a gelatin-like material called Cytoplasm

Comparing Cells A nerve cell in your leg could be a meter long. A human egg cell is no bigger than the dot on an i. A human red blood cell is about onetenth the size of a human egg cell.

Cell Types Cells can be separated into two groups. Cells without membrane-bound structures are called prokaryotic cells. Cells with membrane-bound structures are called eukaryotic cells.

Cell Types Cells with membrane-bound structures are called eukaryotic cells.

Cell Organization Cell Wall The cells of plants, algae, fungi, and most bacteria have cell walls. Cell walls are tough, rigid outer coverings that protect the cell and give it shape. A cell wall mostly is made up of a carbohydrate called cellulose.

Cell Membrane The protective layer around all cells is the cell membrane. If cells have cell walls, the cell membrane is inside of it. The cell membrane regulates interactions between the cell and the environment.

Cytoplasm Cells are filled with a gelatin-like substance called cytoplasm. Throughout the cytoplasm is a framework called the cytoskeleton, which helps the cell maintain or change its shape. The cytoskeleton is made up of thin, hollow tubes of protein and thin, solid protein fibers.

Cell Structure 1 Cytoplasm Within the cytoplasm of eukaryotic cells are structures called organelles. Some organelles process energy and others manufacture substances needed by the cell or other cells. Most organelles are surrounded by membranes. The nucleus is usually the largest organelle in a cell.

1 Nucleus Cell Structure The nucleus directs all cell activities and is separated from the cytoplasm by a membrane. The nucleus contains the instructions for everything the cell does.

1 Nucleus Cell Structure These instructions are found on long, threadlike, hereditary material made of DNA. DNA is the chemical that contains the code for the cell s structure and activities. A structure called a nucleolus also is found in the nucleus.

1 Cell Structure Energy-Processing Organelles In plant cells, food is made in green organelles in the cytoplasm called chloroplasts Chloroplasts contain the green pigment chlorophyll, which gives many leaves and stems their green color.

Cell Structure 1 Energy-Processing Organelles Chlorophyll captures light energy that is used to make a sugar called glucose. Glucose molecules store the captured light energy as chemical energy. Many cells, including animal cells, do not have chloroplasts for making food. They must get food from their environment.

1 Cell Structure Energy-Processing Organelles The energy in food is stored until it is released by the mitochondria. Mitochondria (singular, mitochondrion) are organelles where energy is released from breaking down food into carbon dioxide and water.

Cell Structure 1 Manufacturing Organelles Proteins are part of cell membranes. Other proteins are needed for chemical reactions that take place in the cytoplasm. Cells make their own proteins on small structures called ribosomes.

Cell Structure 1 Manufacturing Organelles Some ribosomes float freely in the cytoplasm; others are attached to the endoplasmic reticulum. Ribosomes receive directions from hereditary material on how, when, and in what order to make specific proteins.

Cell Structure 1 Processing, Transporting, and Storing Organelles The endoplasmic reticulum (en duh PLAZ nuhk rih TIHK yuh lum), or ER, extends from the nucleus to the cell membrane. It is a series of folded membranes in which materials can be processed and moved around inside of the cell.

Cell Structure 1 Processing, Transporting, and Storing Organelles The endoplasmic reticulum may be rough or smooth. ER that has no attached ribosomes is called smooth endoplasmic reticulum. This type of ER processes other cellular substances such as lipids that store energy. Ribosomes are attached to areas on the rough ER where they carry out their job of making proteins.

Cell Structure 1 Processing, Transporting, and Storing Organelles After proteins are made in a cell, they are transferred to another type of cell organelle called the Golgi bodies. The Golgi bodies sort proteins and other cellular substances and package them into membrane-bound structures called vesicles.

Cell Structure 1 Processing, Transporting, and Storing Organelles The vesicles deliver cellular substances to areas inside the cell. They also carry cellular substances to the cell membrane where they are released to the outside of the cell.

Cell Structure 1 Processing, Transporting, and Storing Organelles Cells have membrane-bound spaces called vacuoles for the temporary storage of materials. A vacuole can store water, waste products, food, and other cellular materials.

Cell Structure 1 Recycling Organelles Organelles called lysosomes contain digestive chemicals that help break down food molecules, cell wastes, and wornout cell parts. When a cell dies, a lysosome s membrane disintegrates. This releases digestive chemicals that allow the quick breakdown of the cell s contents.

Cell Structure 1 From Cell to Organism A tissue is a group of similar cells that work together to do one job. Tissues are organized into organs.

Cell Structure 1 From Cell to Organism An organ is a structure made up of two or more different types of tissues that work together. Your heart is an organ made up of cardiac muscle tissue, nerve tissue, and blood tissues.

Cell Structure 1 From Cell to Organism A group of organs working together to perform a certain function is an organ system. Your heart, arteries, veins, and capillaries make up your cardiovascular system. Click box to view movie.

Section Check 1 Question 1 Which of these cells is found in a bacterium? NC: 7.01

Section Check 1 Answer Prokaryotic cells are only found in onecelled organisms, such as bacteria. Prokaryotic cells are cells without membrane-bound structures. NC: 7.01

Section Check 1 Question 2 Which part of the cell protects the cell and gives it shape? Answer Cell walls are tough, rigid outer coverings that protect the cell and give it shape. The cells of plants, algae, fungi, and most bacteria are enclosed in a cell wall. NC: 7.01

Section Check 1 Question 3 In what part of the cell is the cytoskeleton found? Answer Cytoplasm is the gelatin like substance within the cell. The cytoskeleton is found throughout the cytoplasm. NC: 6.02

Viewing Cells 2 Magnifying Cells To see most cells, you need to use a microscope. A microscope has one or more lenses that enlarge the image of an object as though you are walking closer to it.

Viewing Cells 2 Early Microscopes In the late 1500s, the first microscope was made by a Dutch maker of reading glasses. In the mid 1600s, Antonie van Leeuwenhoek, a Dutch fabric merchant, made a simple microscope with a tiny glass bead for a lens.

Viewing Cells 2 Early Microscopes His microscope could magnify up to 270 times. Today you would say his lens had a power of 270.

Viewing Cells 2 Modern Microscopes Depending on how many lenses a microscope contains, it is called simple or compound. A simple microscope is similar to a magnifying lens. It has only one lens. A microscope s lens makes an enlarged image of an object and directs light toward your eye. The change in apparent size produced by a microscope is called magnification.

Viewing Cells 2 Modern Microscopes The compound light microscope has two sets of lenses eyepiece lenses and objective lenses. The eyepiece lenses are mounted in one or two tube like structures. Compound light microscopes usually have two to four movable objective lenses.

Viewing Cells 2 Magnification The powers of the eyepiece and objective lenses determine the total magnifications of a microscope. If the eyepiece lens has a power of 10 and the objective lens has a power of 43, then the total magnification is 430 (10 times 43 ).

Viewing Cells 2 Electron Microscopes Things that are too small to be seen with other microscopes can be viewed with an electron microscope. Instead of using lenses to direct beams of light, an electron microscope used a magnetic field in a vacuum to direct beams of electrons.

Viewing Cells 2 Electron Microscopes Scanning electron microscopes (SEM) produce a realistic, three-dimensional image. Only the surface of the specimen can be observed using an SEM.

2 Viewing Cells Electron Microscopes Transmission electron microscopes (TEM) produce a two-dimensional image of a thinlysliced specimen. Scanning tunneling microscopes (STM) are able to show the arrangement of atoms on the surface of a molecule.

Viewing Cells 2 Electron Microscopes A metal probe is placed near the surface of the specimen and electrons flow from the tip. The hills and valleys of the specimen s surface are mapped.

2 Cell Theory Viewing Cells Cells weren t discovered until the microscope was improved. In 1665, Robert Hooke cut a thin slice of cork and looked at it under his microscope. To Hooke, the cork seemed to be made up of empty little boxes, which he named cells.

Viewing Cells 2 Cell Theory In the 1830s, Matthias Schleiden used a microscope to study plants and concluded that all plants are made of cells. Theodor Schwann, after observing different animal cells, concluded that all animals are made up of cells. Eventually, they combined their ideas and became convinced that all living things are made of cells.

2 Viewing Cells Cell Theory Several years later, Rudolph Virchow hypothesized that cells divide to form new cells. His observations and conclusions and those of others are summarized in the cell theory.

Section Check 2 Question 1 Who developed a microscope using a tiny glass bead for a lens? A. Antonie van Leeuwenhoek B. Edward Jenner C. Matthias Schleiden D. Theodor Schwann NC: 7.04

Section Check 2 Answer The answer is A. His microscope could magnify up to 270 times. NC: 7.04

Section Check 2 Question 2 How many lenses does a simple microscope have? A. 0 B. 1 C. 2 D. 4 NC: 7.04

Section Check 2 Answer The answer is B. A simple microscope is similar to a magnifying glass. NC: 7.04

Section Check 2 Question 3 The conclusions listed in this table are known as the. NC: 6.01

Section Check 2 A. Cell Theory B. Koch s Rules C. Law of Independent Assortment D. Principles of Natural Selection NC: 6.01

Section Check 2 Answer The answer is A. The research and conclusions of Robert Hooke, Matthias Schleiden, Theodor Schwann, and Rudolf Virchow contributed to the development of the cell theory. NC: 6.01

Viruses 3 What are viruses? A virus is a strand of hereditary material surrounded by a protein coating. Viruses don t have a nucleus, other organelles, or a cell membrane. Viruses have a variety of shapes.

Viruses 3 How do viruses multiply? All viruses can do is make copies of themselves. They can t do that without the help of a living cell called a host cell. Crystallized forms of some viruses can be stored for years.

Viruses 3 How do viruses multiply? Then, if they enter an organism, they can multiply quickly. Once a virus is inside of a host cell, the virus can act in two ways. It can either be active or it can become latent, which is an inactive stage

Viruses 3 Active Viruses When a virus enters a cell and is active, it causes the host cell to make new viruses. This process destroys the host cell. Click image to view movie.

Viruses 3 Latent Viruses Some viruses can be latent, which means that after it enters a cell, its hereditary material can become part of the cell s. It does not immediately make new viruses or destroy the cell. As the host cell reproduces, the viral DNA is copied. Click image to view movie.

Viruses 3 Latent Viruses A virus can be latent for many years. Then, at any time, certain conditions can activate the virus. If you have had a cold sore on your lip, a latent virus in your body has become active.

Viruses 3 How do viruses affect organisms? Viruses attack animals, plants, fungi, protists, and all prokaryotes. Some viruses can infect only specific kinds of cells. Many viruses are limited to 1 host species or to 1 type of tissue within that species. A few viruses affect a broad range of hosts.

Viruses 3 How do viruses affect organisms? A virus cannot move by itself, but it can reach a host s body in several ways. It can be carried onto a plant s surface by the wind or it can be inhaled by an animal. In a viral infection, the virus first attaches to the surface of the host cell.

Viruses 3 How do viruses affect organisms? The virus and the place where it attaches must fit together exactly. Because of this, most viruses attack only one kind of host cell.

3 Viruses How do viruses affect organisms? Viruses that infect bacteria are called bacteriophages (bak TIHR ee uh fay jihz). They differ from other kinds of viruses in the way that they enter bacteria and release their hereditary material. Bacteriophages attach to a bacterium and inject their hereditary material. The entire cycle takes about 20 min, and each virus-infected cell releases an average of 100 viruses.

3 Viruses Fighting Viruses Vaccines are used to prevent disease. A vaccine is made from weakened virus particles that can t cause disease anymore. Vaccines have been made to prevent many diseases, including measles, mumps, smallpox, chicken pox, polio, and rabies.

Viruses 3 The First Vaccine Edward Jenner is credited with developing the first vaccine in 1796. He developed a vaccine for smallpox, a disease that was still feared in the early twentieth century. Jenner noticed that people who got a disease called cowpox didn t get smallpox.

3 Viruses The First Vaccine He prepared a vaccine from the sores of people who had cowpox. When injected into healthy people, the cowpox vaccine protected them from smallpox. Jenner didn t know he was fighting a virus. At that time, no one understood what caused disease or how the body fought disease.

Viruses 3 Treating Viral Diseases Antibiotics treat bacterial infections but are not effective against viral diseases. One way your body can stop viral infections is by making interferons. Interferons are proteins that are produced rapidly by virus-infected cells and move to noninfected cells in the host.

Viruses 3 Treating Viral Diseases Interferons cause the noninfected cells to produce protective substances. Antiviral drugs can be given to infected patients to help fight a virus. A few drugs show some effectiveness against viruses but some have limited use because of their adverse side effects.

3 Viruses Preventing Viral Diseases Public health measures for preventing viral diseases includes: Vaccinating people Improving sanitary conditions Quarantining patients Controlling animals that spread disease

Viruses 3 Preventing Viral Diseases Annual rabies vaccinations of pets and farm animals protect them and humans from infection. To control the spread of rabies in wild animals such as coyotes and wolves, wildlife workers place bait containing an oral rabies vaccine where wild animals will find it.

Viruses 3 Research with Viruses Through research, scientists are discovering helpful uses for some viruses. Gene therapy substitutes normal hereditary material for a cell s defective hereditary material. The normal material is enclosed in viruses that infect targeted cells.

Viruses 3 Research with Viruses The new hereditary material replaces the defective hereditary material. Using gene therapy, scientists hope to help people with genetic disorders and find a cure for cancer.

Section Check 3 Question 1 A is a nonliving strand of hereditary material surround by a protein coating. Answer The answer is virus. Viruses do not have a nucleus or other organelles. NC: 7.01

Section Check 3 Question 2 Which happens to the host cell after the active virus is duplicated? A. It divides through cell division B. It is destroyed C. It functions normally 1.It continues to produce more and more new viruses NC: 7.01

Section Check 3 Answer The answer is B. Latent, or inactive, viruses do not destroy the host cell until they become active. NC: 7.01

Section Check 3 Question 3 Who developed the first vaccine? A. Edward Jenner B. Gregor Mendel C. Reginald C. Punnett D. Theodor Schwann NC: 7.04

Section Check 3 Answer The answer is A. A vaccine is made from weakened virus particles that can t cause disease anymore. NC: 7.04