Institutional Opportunities and Constraints. Michael F. Goodchild

Similar documents
The Case for Space in the Social Sciences

A spatial literacy initiative for undergraduate education at UCSB

Fundamental Spatial Concepts. Michael F. Goodchild University of California Santa Barbara

Pathways. Pathways through the Geography Major

CSISS Resources for Research and Teaching

GRADUATE CERTIFICATE PROGRAM

Techniques for Science Teachers: Using GIS in Science Classrooms.

SPACE Workshop NSF NCGIA CSISS UCGIS SDSU. Aldstadt, Getis, Jankowski, Rey, Weeks SDSU F. Goodchild, M. Goodchild, Janelle, Rebich UCSB

GIS and Spatial Statistics: One World View or Two? Michael F. Goodchild University of California Santa Barbara

Joanne N. Halls, PhD Dept. of Geography & Geology David Kirk Information Technology Services

Diffusion of GIS in Public Policy Doctoral Program

What is GIS? ESRI Canada. August 2011

STUDY GUIDE. Exploring Geography. Chapter 1, Section 1. Terms to Know DRAWING FROM EXPERIENCE ORGANIZING YOUR THOUGHTS

Advanced Algorithms for Geographic Information Systems CPSC 695

An Introduction to Geographic Information System

What is GIS? G: Geographic, Geospatial, Geo

Spatial Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University

What is Human Geography? HUMAN GEOGRAPHY. Human Geography. Human Geography 5/18/2015. Example of Differences: Hurricane Katrina

The Importance of Spatial Literacy

GIST 4302/5302: Spatial Analysis and Modeling

ENV208/ENV508 Applied GIS. Week 1: What is GIS?

Spatial Data, Spatial Analysis and Spatial Data Science

WELCOME. To GEOG 350 / 550 Introduction to Geographic Information Science

PLANNING (PLAN) Planning (PLAN) 1

Esri and GIS Education

FUNDAMENTALS OF GEOINFORMATICS PART-II (CLASS: FYBSc SEM- II)

GIST 4302/5302: Spatial Analysis and Modeling

GIST 4302/5302: Spatial Analysis and Modeling

Geography involves the study of places: their locations, their characteristics, and how humans use and move around them.

ESSENTIAL CONCEPTS AND SKILL SETS OF THE IOWA CORE CURRICULUM

Chapter 10: The Future of GIS Why Speculate? 10.2 Future Data 10.3 Future Hardware 10.4 Future Software 10.5 Some Future Issues and Problems

GIS = Geographic Information Systems;

Introduction to GIS. Dr. M.S. Ganesh Prasad

FUTURE DATA. Future data Future hardware Future software Future issues. Getting Started With GIS. Chapter 10

Advanced Placement Human Geography

Geography. Programme of study for key stage 3 and attainment target (This is an extract from The National Curriculum 2007)

SOCIAL SCIENCES. WORLD GEOGRAPHY LH Grade(s): 9 Pre-Req: N/A

Spatial Analysis 1. Introduction

8/28/2011. Contents. Lecture 1: Introduction to GIS. Dr. Bo Wu Learning Outcomes. Map A Geographic Language.

LAND INFORMATION SYSTEM A TOOL TO KEEP THE REGISTRY OF PLANNING PERMISSION. CASE STUDY OF THE SZCZUTOWO COMMUNE

BACHELOR OF ARTS GEOGRAPHY

GEOGRAPHY, ENVIRONMENT, AND SUSTAINABILITY (GES)

Advanced Placement Human Geography

Belfairs Academy GEOGRAPHY Fundamentals Map

WELCOME. To GEOG 350 / 550 Introduction to Geographic Information Science: Third Lecture

Introductory Seminar Ⅰ Humans and Society in the Age of Internationalization. French(Beginner)Ⅱ. French(Basic)Ⅱ. German(Beginner)Ⅱ.

GIScience in Urban Planning Education - Experience from University of Maryland

GIS and Forest Engineering Applications FE 357 Lecture: 2 hours Lab: 2 hours 3 credits

Dr. Stephen J. Walsh Department of Geography, UNC-CH Fall, 2007 Monday 3:30-6:00 pm Saunders Hall Room 220. Introduction

Michael Harrigan Office hours: Fridays 2:00-4:00pm Holden Hall

LEHMAN COLLEGE OF THE CITY UNIVERSITY OF NEW YORK. 1. Type of Change: Change in Degree Requirements

Software. People. Data. Network. What is GIS? Procedures. Hardware. Chapter 1

Introduction to GIS. Geol 4048 Geological Applications of Remote Sensing

Investigation, Conceptualization and Abstraction in Geographic Information Science: Some Methodological Parallels with Human Geography

GEOBIA state of the art, science or technology

Introduction to Geographic Information Science. Updates/News. Last Lecture 1/23/2017. Geography 4103 / Spatial Data Representations

Minnesota K-12 Academic Standards in Social Studies. Grade 4: Geography of North America

LEHMAN COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF ENVIRONMENTAL, GEOGRAPHIC, AND GEOLOGICAL SCIENCES CURRICULAR CHANGE

Environmental Studies Seminar

Application of GIS in Public Transportation Case-study: Almada, Portugal

Introduction to Geographic Information Systems (GIS): Environmental Science Focus

CHAPTER 1: KEY ISSUE 1 How Do Geographers Describe Where Things Are? p. 4-13

Spatial Modeling, Regional Science, Arthur Getis Emeritus, San Diego State University March 1, 2016

Space Syntax: Architecture and Cities MRes This programme information sheet includes details of the structure and content of the course.

INDIANA ACADEMIC STANDARDS FOR SOCIAL STUDIES, WORLD GEOGRAPHY. PAGE(S) WHERE TAUGHT (If submission is not a book, cite appropriate location(s))

TEMPLATE FOR CMaP PROJECT

GIScience: Current Technology. Michael F. Goodchild University of California Santa Barbara

GIS Changing the World GIS Day November 15, 2017

Geospatial Analysis in Cultural Anthropology

Welcome to GST 101: Introduction to Geospatial Technology. This course will introduce you to Geographic Information Systems (GIS), cartography,

COURSE INTRODUCTION & COURSE OVERVIEW

GOVERNMENT MAPPING WORKSHOP RECOVER Edmonton s Urban Wellness Plan Mapping Workshop December 4, 2017

Overview of Statistical Analysis of Spatial Data

GIS at UCAR. The evolution of NCAR s GIS Initiative. Olga Wilhelmi ESIG-NCAR Unidata Workshop 24 June, 2003

Introduction to GIS I

Purpose Study conducted to determine the needs of the health care workforce related to GIS use, incorporation and training.

NR402 GIS Applications in Natural Resources

GEOGRAPHY (GEOGRPHY) Geography (GEOGRPHY) 1

enny Mills chool of Civil ngineering & eosciences ewcastle University

MIDDLE TENNESSEE STATE UNIVERSITY Global Studies / Cultural Geography Major Matrix Page 1 of 7

Location/Distance Geographers Coordinate use system these to establish location Parallels and distance:

Chapter 1: Basic Concepts

Syllabus Reminders. Geographic Information Systems. Components of GIS. Lecture 1 Outline. Lecture 1 Introduction to Geographic Information Systems

CAS GE 365 Introduction to Geographical Information Systems. The Applications of GIS are endless

Lecture 1 Introduction to GIS. Dr. Zhang Spring, 2017

Global Studies at Benedictine University

Geography Faculty: S. Tsutsui, Departmental Chair; G. Berlin, J. Byrkit, A. Lew, H. Salisbury, S. Swarts, G. Van Often.

GIS Spatial Statistics for Public Opinion Survey Response Rates

The FIG - Questionnaire on NSDI

Unit of Study: Physical Geography & Settlement Patterns; Culture & Civilizations; and The Spread of Ideas

Delta School District 1

Spatial Analysis I. Spatial data analysis Spatial analysis and inference

geographic patterns and processes are captured and represented using computer technologies

ADVANCED PLACEMENT HUMAN GEOGRAPHY

INTRODUCTION TO HUMAN GEOGRAPHY. Chapter 1

Types of spatial data. The Nature of Geographic Data. Types of spatial data. Spatial Autocorrelation. Continuous spatial data: geostatistics

DRAFT SYLLABUS. Please use Blackboard to send messages.

GEOGRAPHY MA, ASSESSMENT REPORT AY

This Week s Topics. GIS and Forest Engineering Applications. FE 257. GIS and Forest Engineering Applications. Instructor Information.

School of Geography and Geosciences. Head of School Degree Programmes. Programme Requirements. Modules. Geography and Geosciences 5000 Level Modules

Transcription:

Institutional Opportunities and Constraints Michael F. Goodchild

A conceptual framework Nomothetic science knowledge that is true everywhere in space and time Idiographic science the study of the unique new planets liquid lakes of Antarctica descriptive, anectodal can be pejorative

the natural, social world planning, decision making nomothetic science abstracted knowledge

A spatial turn in science Adding space to theory the New Economic Geography space impeding flows of information, operation of markets transport costs Spatial Ecology a heterogeneous resource base space impeding interactions, breeding metapopulations Reasoning from spatial data cross-sectional new tools to overcome methodological problems impacts in all social, environmental disciplines

A growing literature Spatially Integrated Social Science (Goodchild and Janelle, OUP, 2004)

The drivers New technologies, new data geographic information systems (GIS) remote sensing positioning (GPS) delivery mechanisms Place-based analysis Applications of science in policy, decision making

Table 1 Eight Foundation Concepts in Spatial Thinking for STEM Disciplines 1. Location Places abstracted as points, lines, and areas, and represented as points, polylines, and polygons. Rasters and grid cells. Mathematical approximations to the geoid, map projections, coordinate systems. Measurement and tracking of location: GPS. Location in human discourse: placenames, prepositions, and movement verbs. Positional accuracy. The characteristics or attributes of places: scales of measurement. Concepts of land ownership in different cultures, administrative hierarchies, postcodes, linear referencing. 2. Distance Metrics of distance on the plane and globe. Travel cost, travel time, and impacts on interaction and spatial behavior by humans and other organisms. Distance decay and spatial interaction models. Buffers. Weights matrices and their applications in spatial analysis and modeling. Geodesics, potential fields, and optimum paths. 3. Network Linear networks for transportation, communication, and social interaction. Network metrics. Models of network development and design. Small worlds and degrees of separation. Representation of networks in spatial databases. Models of network flow assignment. 4. Neighborhood and Region Definitions of neighborhood based on human spatial behavior. Formal and functional regions and concepts of territory. Models of region design and political districting. The modifiable areal unit problem and the ecological fallacy. Techniques of areal interpolation. Metrics of fragmentation and shape.

5. Scale Level of detail in spatial data sets. Definitions of scale: extent and resolution. Scale-related concepts: self-similarity (fractals), generalization and down-scaling, line and surface smoothing, recursive subdivision, variance decomposition, and multi-level analysis. The role of scale in process. 6. Spatial Heterogeneity Heterogeneity as a fundamental characteristic of spatial data. First-order effects, non-stationarity, and uncontrolled variance. Implications of spatial heterogeneity for sampling and statistical inference. Place-based analysis, local indicators of spatial association, and geographically weighted regression. 7. Spatial Dependence Metrics of spatial dependence: Moran and Geary indices. Geostatistics as a theoretical framework for spatial data. Spatial interpolation. Statistical inference in the presence of spatial dependence; explicit models of spatial dependence. Analysis of point patterns and cluster detection. The role of spatial dependence in uncertainty. 8. Objects and Fields Discrete objects and continuous fields as fundamental conceptualizations of space and as the basis for models of process. The dichotomy as an underpinning of methods of representation and analysis. Spatial correlation. Concepts of uncertainty in both conceptualizations.

By understanding how life unfolds through space in the design of cities, in the spread of disease, in the workings of the economy, in the movement of popular culture, in the location of businesses, in the use of the lands and forests we see how all of the parts come together to create the world we share. Returning to geography is part of Harvard s commitment to responding to the challenges humanity faces globally and locally.

The events and players: 1948 Neil Smith, 1987. Academic war over the field of geography: the elimination of geography at Harvard, 1947-1951. Annals of the Association of American Geographers 77(2): 155-172. personalities Whittlesey, Ullman, Ackerman, Bowman general weakness in the discipline financial Gottmann, 1982: a terrible blow to American geography (from which) it has never completely recovered

Early GIS Harvard Laboratory for Computer Graphics Howard Fisher SYMAP, 1967

1968

William Warntz, 1967-1971 Laboratory for Computer Graphics and Spatial Analysis Harvard Papers in Theoretical Geography Bunge s Theoretical Geography (1962) Weak links to software development very little data available computing still rudimentary

Software development CALFORM, SYMVU (1970) ODYSSEY (1977) a full-featured GIS father of ARC/INFO Brian JL Berry director until 1981

1985 GIS well established a nascent software industry texts Burrough, Principles of GIS MacDougall, Computer Programming for Spatial Problems a scattering of courses UWO circa 1976 various things could be achieved by computer processing of spatial data measurement production and editing map-making

but some big questions What to teach? training in software? education in principles? what were those principles? What to research? algorithms and data structures to do it "faster, better, cheaper"

CAG 1985 Trois Rivieres Session on teaching GIS Poiker, Maher, Goodchild, "GIS in Undergraduate Geography: A Contemporary Dilemma" what are the foundations for an education in GIS? what are the basic principles? The Operational Geographer 8: 34-38

The analogy to statistics A branch of mathematics dating from well before the advent of computers or calculators theory, numerical analysis predated computation Where is the equivalent theoretical framework for GIS? computation predated the development of theory GIS is to x as the statistical packages are to statistics what is x? "A spatial analytic perspective on GIS", IJGIS 1: 327-334, 1988

www.gis.harvard.edu

Much progress Since Terry Jordan described GIS as easily justified but non-intellectual expertise (1988) and Ron Abler called it simultaneously the microscope, the telescope, and the Xerox machine of geographical analysis and synthesis (1987) But has Harvard got it right this time?

Essential requirements Technical services (CGA) Teaching more than training courses spatial thinking in core curriculum Intellectual core academic positions how to introduce a member of a new discipline into an existing organizational unit?

What is UCSB up to? the Alexandria Digital Library, developed between 1994 and 2004 with funding from the National Science Foundation (NSF) as a mechanism for remote access to the university s outstanding map and imagery collection, and now an operational part of the Davidson Library; a focus in spatial cognition that links researchers in Psychology, Geography, Anthropology, and the Gevirtz Graduate School of Education; the extensive use of geographic information systems (GIS) software in projects that range from archaeology and religious studies to environmental restoration and the evolution of mountain belts, with strong links to ESRI, the world s leading vendor of GIS software; research on image processing and analysis in Electrical and Computer Engineering and Computer Science, with applications ranging from satellite images of Earth to bioinformatics; the National Center for Ecological Analysis and Synthesis, which uses and promotes spatial methods in ecology; the Allosphere, a large-scale fully immersive environment and instrument for research and visualization in science, engineering, and art; the Sage Center for the Study of the Mind, with its interests in fmri; the Center for the Analysis of Sacred Space, which examines the role of space in religions; the Center for Spatially Integrated Social Science, an NSF-funded project to develop research infrastructure in support of spatial methods across the social sciences; research on new numerical methods that simulate the complexity of both social and physical interactions in space and time; the Center for Nanotechnology in Society, in which spatial visualization plays a key role in tracking the globalization of nanotechnology research, development, and commercialization; the lead site of the National Center for Geographic Information and Analysis, since 1988 a world leader in GIS research and outreach; the national center for academic distribution of imagery from the French SPOT satellite; and one of the nation s top departments of geography.

spatial.ucsb A new component of NCGIA/CSISS Major campus funding for 3 years from 7/07 Building campus infrastructure curriculum services Web site seminars Opening in December 2007

Pulling the spatial threads together Many complementary activities at UCSB with a spatial theme Alexandria Digital Library National Center for Geographic Information and Analysis Center for Spatially Integrated Social Science spatial databases, image processing spatial cognition GIS courses in Bren, Geography Four Eyes Lab Digital Media fmri A focus could make the whole more than the sum of the parts

Institutional Opportunities and Constraints Michael F. Goodchild

A conceptual framework Nomothetic science knowledge that is true everywhere in space and time Idiographic science the study of the unique new planets liquid lakes of Antarctica descriptive, anectodal can be pejorative

the natural, social world planning, decision making nomothetic science abstracted knowledge

A spatial turn in science Adding space to theory the New Economic Geography space impeding flows of information, operation of markets transport costs Spatial Ecology a heterogeneous resource base space impeding interactions, breeding metapopulations Reasoning from spatial data cross-sectional new tools to overcome methodological problems impacts in all social, environmental disciplines

A growing literature Spatially Integrated Social Science (Goodchild and Janelle, OUP, 2004)

The drivers New technologies, new data geographic information systems (GIS) remote sensing positioning (GPS) delivery mechanisms Place-based analysis Applications of science in policy, decision making

Table 1 Eight Foundation Concepts in Spatial Thinking for STEM Disciplines 1. Location Places abstracted as points, lines, and areas, and represented as points, polylines, and polygons. Rasters and grid cells. Mathematical approximations to the geoid, map projections, coordinate systems. Measurement and tracking of location: GPS. Location in human discourse: placenames, prepositions, and movement verbs. Positional accuracy. The characteristics or attributes of places: scales of measurement. Concepts of land ownership in different cultures, administrative hierarchies, postcodes, linear referencing. 2. Distance Metrics of distance on the plane and globe. Travel cost, travel time, and impacts on interaction and spatial behavior by humans and other organisms. Distance decay and spatial interaction models. Buffers. Weights matrices and their applications in spatial analysis and modeling. Geodesics, potential fields, and optimum paths. 3. Network Linear networks for transportation, communication, and social interaction. Network metrics. Models of network development and design. Small worlds and degrees of separation. Representation of networks in spatial databases. Models of network flow assignment. 4. Neighborhood and Region Definitions of neighborhood based on human spatial behavior. Formal and functional regions and concepts of territory. Models of region design and political districting. The modifiable areal unit problem and the ecological fallacy. Techniques of areal interpolation. Metrics of fragmentation and shape.

5. Scale Level of detail in spatial data sets. Definitions of scale: extent and resolution. Scale-related concepts: self-similarity (fractals), generalization and down-scaling, line and surface smoothing, recursive subdivision, variance decomposition, and multi-level analysis. The role of scale in process. 6. Spatial Heterogeneity Heterogeneity as a fundamental characteristic of spatial data. First-order effects, non-stationarity, and uncontrolled variance. Implications of spatial heterogeneity for sampling and statistical inference. Place-based analysis, local indicators of spatial association, and geographically weighted regression. 7. Spatial Dependence Metrics of spatial dependence: Moran and Geary indices. Geostatistics as a theoretical framework for spatial data. Spatial interpolation. Statistical inference in the presence of spatial dependence; explicit models of spatial dependence. Analysis of point patterns and cluster detection. The role of spatial dependence in uncertainty. 8. Objects and Fields Discrete objects and continuous fields as fundamental conceptualizations of space and as the basis for models of process. The dichotomy as an underpinning of methods of representation and analysis. Spatial correlation. Concepts of uncertainty in both conceptualizations.

By understanding how life unfolds through space in the design of cities, in the spread of disease, in the workings of the economy, in the movement of popular culture, in the location of businesses, in the use of the lands and forests we see how all of the parts come together to create the world we share. Returning to geography is part of Harvard s commitment to responding to the challenges humanity faces globally and locally.

The events and players: 1948 Neil Smith, 1987. Academic war over the field of geography: the elimination of geography at Harvard, 1947-1951. Annals of the Association of American Geographers 77(2): 155-172. personalities Whittlesey, Ullman, Ackerman, Bowman general weakness in the discipline financial Gottmann, 1982: a terrible blow to American geography (from which) it has never completely recovered

Early GIS Harvard Laboratory for Computer Graphics Howard Fisher SYMAP, 1967

1968

William Warntz, 1967-1971 Laboratory for Computer Graphics and Spatial Analysis Harvard Papers in Theoretical Geography Bunge s Theoretical Geography (1962) Weak links to software development very little data available computing still rudimentary

Software development CALFORM, SYMVU (1970) ODYSSEY (1977) a full-featured GIS father of ARC/INFO Brian JL Berry director until 1981

1985 GIS well established a nascent software industry texts Burrough, Principles of GIS MacDougall, Computer Programming for Spatial Problems a scattering of courses UWO circa 1976 various things could be achieved by computer processing of spatial data measurement production and editing map-making

but some big questions What to teach? training in software? education in principles? what were those principles? What to research? algorithms and data structures to do it "faster, better, cheaper"

CAG 1985 Trois Rivieres Session on teaching GIS Poiker, Maher, Goodchild, "GIS in Undergraduate Geography: A Contemporary Dilemma" what are the foundations for an education in GIS? what are the basic principles? The Operational Geographer 8: 34-38

The analogy to statistics A branch of mathematics dating from well before the advent of computers or calculators theory, numerical analysis predated computation Where is the equivalent theoretical framework for GIS? computation predated the development of theory GIS is to x as the statistical packages are to statistics what is x? "A spatial analytic perspective on GIS", IJGIS 1: 327-334, 1988

www.gis.harvard.edu

Much progress Since Terry Jordan described GIS as easily justified but non-intellectual expertise (1988) and Ron Abler called it simultaneously the microscope, the telescope, and the Xerox machine of geographical analysis and synthesis (1987) But has Harvard got it right this time?

Essential requirements Technical services (CGA) Teaching more than training courses spatial thinking in core curriculum Intellectual core academic positions how to introduce a member of a new discipline into an existing organizational unit?

What is UCSB up to? the Alexandria Digital Library, developed between 1994 and 2004 with funding from the National Science Foundation (NSF) as a mechanism for remote access to the university s outstanding map and imagery collection, and now an operational part of the Davidson Library; a focus in spatial cognition that links researchers in Psychology, Geography, Anthropology, and the Gevirtz Graduate School of Education; the extensive use of geographic information systems (GIS) software in projects that range from archaeology and religious studies to environmental restoration and the evolution of mountain belts, with strong links to ESRI, the world s leading vendor of GIS software; research on image processing and analysis in Electrical and Computer Engineering and Computer Science, with applications ranging from satellite images of Earth to bioinformatics; the National Center for Ecological Analysis and Synthesis, which uses and promotes spatial methods in ecology; the Allosphere, a large-scale fully immersive environment and instrument for research and visualization in science, engineering, and art; the Sage Center for the Study of the Mind, with its interests in fmri; the Center for the Analysis of Sacred Space, which examines the role of space in religions; the Center for Spatially Integrated Social Science, an NSF-funded project to develop research infrastructure in support of spatial methods across the social sciences; research on new numerical methods that simulate the complexity of both social and physical interactions in space and time; the Center for Nanotechnology in Society, in which spatial visualization plays a key role in tracking the globalization of nanotechnology research, development, and commercialization; the lead site of the National Center for Geographic Information and Analysis, since 1988 a world leader in GIS research and outreach; the national center for academic distribution of imagery from the French SPOT satellite; and one of the nation s top departments of geography.

spatial.ucsb A new component of NCGIA/CSISS Major campus funding for 3 years from 7/07 Building campus infrastructure curriculum services Web site seminars Opening in December 2007

Pulling the spatial threads together Many complementary activities at UCSB with a spatial theme Alexandria Digital Library National Center for Geographic Information and Analysis Center for Spatially Integrated Social Science spatial databases, image processing spatial cognition GIS courses in Bren, Geography Four Eyes Lab Digital Media fmri A focus could make the whole more than the sum of the parts