Physics 127b: Statistical Mechanics. Landau Theory of Second Order Phase Transitions. Order Parameter

Similar documents
Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics

3. General properties of phase transitions and the Landau theory

Physics 212: Statistical mechanics II Lecture XI

The (magnetic) Helmholtz free energy has proper variables T and B. In differential form. and the entropy and magnetisation are thus given by

Ginzburg-Landau Theory of Phase Transitions

Phase Transitions and Critical Behavior:

Physics 127b: Statistical Mechanics. Second Order Phase Transitions. The Ising Ferromagnet

Phase transition and spontaneous symmetry breaking

Introduction to Phase Transitions in Statistical Physics and Field Theory

Spin Superfluidity and Graphene in a Strong Magnetic Field

221B Lecture Notes Spontaneous Symmetry Breaking

8.334: Statistical Mechanics II Spring 2014 Test 2 Review Problems

theory, which can be quite useful in more complex systems.

Luigi Paolasini

Spontaneous Symmetry Breaking

M. A. Gusmão IF-UFRGS

Phase transitions and critical phenomena

5 Topological defects and textures in ordered media

(1) Consider the ferromagnetic XY model, with

H = 1 2 τψ gψ4, (0.0.1)

Phase Transitions and Renormalization:

Liquid Crystals. Martin Oettel. Some aspects. May 2014

Physics 127a: Class Notes

The Oxford Solid State Basics

Lecture 11: Long-wavelength expansion in the Neel state Energetic terms

Physics 127a: Class Notes

Chapter 4 Phase Transitions. 4.1 Phenomenology Basic ideas. Partition function?!?! Thermodynamic limit Statistical Mechanics 1 Week 4

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets

Lectures 16: Phase Transitions

1 Superfluidity and Bose Einstein Condensate

Quantum Phase Transitions

Overview of phase transition and critical phenomena

in-medium pair wave functions the Cooper pair wave function the superconducting order parameter anomalous averages of the field operators

Three Lectures on Soft Modes and Scale Invariance in Metals. Quantum Ferromagnets as an Example of Universal Low-Energy Physics

Magnets, 1D quantum system, and quantum Phase transitions

Intoduction to topological order and topologial quantum computation. Arnau Riera, Grup QIC, Dept. ECM, UB 16 de maig de 2009

Numerical Analysis of 2-D Ising Model. Ishita Agarwal Masters in Physics (University of Bonn) 17 th March 2011

Degeneracy Breaking in Some Frustrated Magnets

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Phase Transitions and the Renormalization Group

Chapter 2 Ensemble Theory in Statistical Physics: Free Energy Potential

Green's Function in. Condensed Matter Physics. Wang Huaiyu. Alpha Science International Ltd. SCIENCE PRESS 2 Beijing \S7 Oxford, U.K.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Metropolis Monte Carlo simulation of the Ising Model

3 Symmetry Protected Topological Phase

phases of liquid crystals and their transitions

Phase transitions and finite-size scaling

Long-range order in (quasi-) 2D systems

Emergent Frontiers in Quantum Materials:

Phase transitions in Hubbard Model

Physics 127b: Statistical Mechanics. Renormalization Group: 1d Ising Model. Perturbation expansion

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

Magnetism at finite temperature: molecular field, phase transitions

f(t,h) = t 2 g f (h/t ), (3.2)

HIGH DENSITY NUCLEAR CONDENSATES. Paulo Bedaque, U. of Maryland (Aleksey Cherman & Michael Buchoff, Evan Berkowitz & Srimoyee Sen)

x(τ) y(τ) = x(τ) f(τ), where f(τ) is the solution of the variational equation δs(f) = 0 f(τ) = 0

Preface Introduction to the electron liquid

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

The Ising model Summary of L12

WORLD SCIENTIFIC (2014)

Collective behavior, from particles to fields

Problem set for the course Skálázás és renormálás a statisztikus fizikában, 2014

(1) Consider a lattice of noninteracting spin dimers, where the dimer Hamiltonian is

Renormalization Group for the Two-Dimensional Ising Model

Surface effects in frustrated magnetic materials: phase transition and spin resistivity

Liquid crystal in confined environment

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

Lecture 6: Fluctuation-Dissipation theorem and introduction to systems of interest

Lecture 10 Phase transitions.

Vortices and other topological defects in ultracold atomic gases

Cover Page. The handle holds various files of this Leiden University dissertation.

For a complex order parameter the Landau expansion of the free energy for small would be. hc A. (9)

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006

arxiv:cond-mat/ v1 2 Mar 1997

CRITICAL SLOWING DOWN AND DEFECT FORMATION M. PIETRONI. INFN - Sezione di Padova, via F. Marzolo 8, Padova, I-35131, ITALY

Solving the sign problem for a class of frustrated antiferromagnets

QFT at finite Temperature

Quantum Field Theory II

The Ginzburg-Landau Theory

9 Quantum Field Theory for Children

Quantum phase transitions

Magnetic ordering of local moments

Physics 562: Statistical Mechanics Spring 2003, James P. Sethna Homework 5, due Wednesday, April 2 Latest revision: April 4, 2003, 8:53 am

Which Spin Liquid Is It?

ELECTRONICS DEVICES AND MATERIALS

The Mermin-Wagner Theorem

The Phase Transition of the 2D-Ising Model

TRANSIZIONI DI FASE QUANTISTICHE. Ettore Vicari

The glass transition as a spin glass problem

Statistical Mechanics

Ernst Ising. Student of Wilhelm Lenz in Hamburg. PhD Thesis work on linear chains of coupled magnetic moments. This is known as the Ising model.

8 Error analysis: jackknife & bootstrap

Chapter 15. Landau-Ginzburg theory The Landau model

Phys 622 Problems Chapter 5

Phenomenological Theories of Nucleation

Lecture notes for QFT I (662)

Dynamics of Second Order Phase Transitions and Formation of Topological Defects. W. H. Zurek Los Alamos

S j H o = gµ o H o. j=1

Transcription:

Physics 127b: Statistical Mechanics Landau Theory of Second Order Phase Transitions Order Parameter Second order phase transitions occur when a new state of reduced symmetry develops continuously from the disordered (high temperature) phase. The ordered phase has a lower symmetry than the Hamiltonian the phenomenon of spontaneously broken symmetry. There will therefore be a number (sometimes infinite) of equivalent (e.g. equal free energy) symmetry related states. These are macroscopically different, and so thermal fluctuations will not connect one to another in the thermodynamic limit. To describe the ordered state we introduce a macroscopic order parameter that describes the character and strength of the broken symmetry. Examples 1. Ising ferromagnet: the Hamiltonian is invariant under all s i s i, whereas the low temperature phase has a spontaneous magnetization, and so is not. A convenient order parameter is the total average spin S = i s i or the magnetization M = µs. This reflects the nature of the ordering (under the transformation s i s i we have S S) and goes to zero continuously at T c. 2. Ising antiferromagnet on a simple cubic lattice: the ordering is the staggered magnetization N = n ( 1)n s n where alternate sites are labelled even or odd. 3. Heisenberg ferromagnet: now the Hamiltonian is invariant under any rotation of all the spins together. The ordering is characterized by a vector order parameter. A convenient choice is again the total spin S = i s i or magnetization. 4. Heisenberg antiferromagnet on a simple cubic lattice: the staggered magnetization is now a vector N = n ( 1)n s n. 5. Superfluid: the broken symmetry is the invariance of the (quantum) Hamiltonian under a phase change of the wave function. Since for a charge system a gauge transformation also changes the quantum phase, this is also known as broken gauge symmetry. The order parameter can be thought of as the one particle wave function into which the particle Bose condense, multiplied by the number of condensed atoms. This picture is good for a non- or weakly interacting system. For a strongly interacting system a better definition is the expectation value of the particle annihilation operator ψ( r). 6. Solid: has broken translational and rotational symmetry, and a convenient order parameter is the amplitude of the density wave. In three dimensions the liquid-solid transition is always first order, but in two dimensions may be second order. 7. Nematic liquid crystal: consists of long molecules which align parallel to one another at low temperatures, although the position of the molecules remains disorder as in a liquid. The liquid becomes anisotropic, and a second rank tensor characterizes the strength of the anisotropy and can be used as the order parameter. 1

Free energy expansion Since the order parameter grows continuously from zero at the transition temperature, Landau suggested that an expansion of the free energy in a Taylor expansion in the order parameter would tell us about the behavior near the transition. The free energy must be invariant under all symmetry operations of the Hamiltonian, and the terms in the expansion are restricted by symmetry considerations. The order parameter may conceivably take on different values ( point in different directions ) in different parts of the system (for example due to thermal fluctuations), and so we first write A = d 3 x f (ψ, T ) (1) introducing the Helmholtz free energy density f which is a function of the local order parameter ψ( r) and temperature, and is then expanded in small ψ. To be explicit, lets consider the Ising ferromagnet, and ψ = m( r), with m( r) the magnetization per unit volume or the magnetization per spin averaged over some reasonably macroscopic volume. Since the free energy is invariant under spin inversion, the Taylor expansion must contain only even powers of m. Hence f (m, T ) = f o (T ) + α(t )m 2 + 1 2 β(t)m4 + γ(t) m m. (2) The last term in the expansion gives a free energy cost for a nonuniform m( r), again using the idea of a Taylor expansion, now in spatial derivatives as well. A positive γ ensures that the spatially uniform state gives the lowest value of the free energy A. Sixth and higher order terms in m could be retained, but are not usually necessary for the important behavior near T c. Note that we keep the fourth order term, because at T c the coefficient of the second order term α(t ) becomes zero. Only quadratic derivative terms are usually needed, since γ(t c ) remains nonzero. Minimum free energy We expect the state that minimizes the free energy to be the physically realized state. This is true so long as the fluctuations around this most probably value are small compared to this value. We will find that this is not always the case, and Landau s theory then corresponds to a mean field theory that ignores these fluctuations. For the Ising ferromagnet the minimum of A is given by a uniform m( r) = m satisfying The solutions corresponding to a minimum are α m + β m 3 = 0. (3) m =± α/β for α<0, (4a) = 0 for α>0. (4b) We identify α = 0 as where the temperature passes through T c, and expand near here α(t ) a(t T c ) + β(t) b + γ(t) γ + (5a) (5b) (5c) so that f f o (T ) + a(t T c )m 2 + 1 2 bm4 + γ( m) 2 (6) 2

f T>T c T<T c m Figure 1: Free energy density f as a function of (uniform) m. Below T c new minima at nonzero ± m develop (the dashed curve denotes m(t ). If the magnetization of the system is varied (rather than the field) the dotted line is the tie line giving the variation of the free energy as a function of the total magnetization density m = M/V. and ( a ) 1/2 m (Tc T) 1/2 for T<T c. (7) b Evaluating f at m gives f = f 0 a2 (T T c ) 2 2b (8) showing the lowering of the free energy by the ordering. Note that f(t) deviates from f 0 quadratically, as we found for the mean field theory of the Ising ferromagnet. This will yield a jump discontinuity in the specific heat { c c = 0 T T c c 0 + a b T T < T c, (9) with c 0 the smooth contribution coming from f 0 (T ). We can gain useful insight into the transition by plotting f (m) for a uniform m for various temperatures, as in Fig. 1. ForT > T c the free energy has a single minimum at m = 0. Below T c two new minima at ± m develop. Right at T c the curve is very flat at the minimum (varying as m): we might expect fluctuations to be particularly important here. It is easy to add the coupling to a magnetic field f (m, T, B) = f 0 (T ) + a(t T c )m 2 + 1 2 bm4 + γ( m) 2 mb. (10) The magnetic field couples directly to the order parameter and is a symmetry breaking field: with the magnetic field the full Hamiltonian is not invariant under spin inversion. Now the free energy is minimized by a non zero m. Minimizing f again with respect to m, we find above T c the diverging susceptibility χ = m B = 1 B=0 2a (T T c) 1, (11) 3

and at T = T c for small B ( ) 1 1/3 m = B 1/3. (12) 2b Note that the exponents (power laws) are the same as we found in the direct mean field theory calculation. Other Symmetries The Landau approach is readily generalized to other symmetries. For example for the Heisenberg ferromagnet the order parameter is a vector m. The free energy is expanded as a Taylor expansion in the components m x,m y,m z and each term must be invariant under rotations of m, and also the derivative term must be invariant under rotations of the space axes separately from m. The component terms can be combined to give the simple expression in vector notation f( m, T, B) = f 0 (T ) + a(t T c ) m m + 1 2 b( m m)2 + γ( iα i m α i m α ) 2 m B. Notice the dot product form of the gradient term separately in the gradient and m components: this guarantees the invariance under separate rotations of spin and space coordinates. We might schematically write this term as ( m) 2, but the double summation is what is meant! Similarly for a complex order parameter ψ, we do a Taylor expansion in Re ψ and Im ψ, and demand the invariance of each term under a change of the phase. This leads to the form f(ψ,t)= f 0 (T ) + a(t T c ) ψ 2 + 1 2 b ψ 4 + γ ψ ψ. Note that it is nicest to write the expression in terms of ψ, but the correct approach and the best way to avoid confusion is to establish the expansion in Re ψ and Im ψ and then simplify. For example a term ψ 3 is not allowed, since even though it is invariant under changing the phase, it does not correspond to a term in the Taylor expansion in Re ψ,imψ. First order transitions We can also encounter first order broken-symmetry transitions. For example the liquid solid transition is described by the strength of density waves ρe i q r. In three dimensions we need three density waves with wave vectors that prescribe the reciprocal lattice; we will suppose all three components have the same magnitude ρ. Since the density perturbation is added to the uniform density of the liquid, there is no symmetry under changing sign of the density wave, and so the free energy expansion now may have a cubic term (we suppose uniform ρ for simplicity). f f 0 = a(t T c )ρ 2 + cρ 3 + 1 2 bρ 4 (13) Now the behavior of f(ρ,t)is rather different, as in Fig. 2a. At high temperatures there is a single minimum at ρ = 0 corresponding to the liquid phase. As the temperature is lowered a second minimum develops, but at a free energy that remains higher than the liquid. Only at T m does the new free energy become lower, and this is the melting temperature where the liquid and solid have the same free energy. Below T m the solid is the lower free energy. Note the jump in ρ at T m, rather than a continuous variation as at a second order transition. The temperature T c at which the minimum in the free energy at ρ = 0 disappears (i.e. the liquid state no longer exists) is not of great physical significance. 4

(a) solid f T>>T m T>T m (b) f T=T m T c <T<T m T=T f T<T c m ρ Figure 2: (a) Free energy plots for a free energy with cubic invariants; (b) Free energy plots in the case where the coefficient of the quatic term is negative. The Landau expansion technique may not be accurate at a first order transition: since there is a jump in ρ at the transition, there is no guarantee that the truncated expansion in ρ is a reasonable approximation here. Indeed the liquid-solid transition is usually strongly first order, so that the power series expansion in the order parameter is not useful, and can give misleading conclusions. Another way a first order transition can occur, even in the absence of cubic terms in the free energy, is if the coefficient of the quartic term turns out to be negative. Then we must extend the expansion to sixth order to get finite results (otherwise the free energy is unbounded below). Again assuming uniform m for simplicity: f f 0 = a(t T c )m 2 1 2 b m4 + 1 3 cm6. (14) Now, see Fig. 2b two symmetric secondary minima develop for T > T c, and become the lowest minima at temperature T = T f >T c which we identify as the first order transition temperature. Again, at T c the minimum at m = 0 corresponding to the disordered phase disappears, but this is not often relevant to the physics. 5