Ernst Ising. Student of Wilhelm Lenz in Hamburg. PhD Thesis work on linear chains of coupled magnetic moments. This is known as the Ising model.

Size: px
Start display at page:

Download "Ernst Ising. Student of Wilhelm Lenz in Hamburg. PhD Thesis work on linear chains of coupled magnetic moments. This is known as the Ising model."

Transcription

1 The Ising model

2 Ernst Ising May 10, 1900 in Köln-May in Peoria (IL) Student of Wilhelm Lenz in Hamburg. PhD Thesis work on linear chains of coupled magnetic moments. This is known as the Ising model. The name Ising model was coined by Rudolf Peierls in his 1936 publication On Ising s model of ferromagnetism. He survived World War II but it removed him from research. He learned in years after the publication of his model - that his model had become famous. Lars Onsager solved the Ising model (zero field) in two dimensions in S. G. Brush, History of the Lenz-Ising Model, Rev. Mod. Phys 39, (1962)

3 A general Ising model is defined as H = i Ising model H i s i J i. j s i s j Ji, 1 j,ks i s j s k +... i, j i, j,k coupling to a field pair interactions 3-body interactions It has the following general properties Ising model in 2D No phase transition at d=1 for T>0 For J 1 ijk=0, phase transition(s) for J i j < i j For d>4, mean field results are exact Lower critical dimension is dl =1 and the upper critical dimension is du=4. Thermodynamics of the Ising model can be obtained from ( ) F F = k B T ln[tr e βh ] for example s i = H i T

4 Ising model in 1D Define h βh and K βj. The partition function is given by can be calculated exactly. Z(h,K,N) = e h N i=1 s i +K i s i s i+1 {s} Ising model in 1D In the following, we will take a look at boundary conditions, thermodynamics and correlations.

5 Ising model in 1D: Periodic boundaries Periodic boundary conditions are defined by s N+1 = s 1 Ising model in 1D with PBC N-1 N N+1... We assume that there is no external field (h=0). Then, we have note PBC Z =... e K N 1 i=1 s i s i+1 +Ks N s 1 s 1 s 2 s N We can solve this. Define η i = s i s i+1 where i = 1,...,N 1. Then, we have η i = } +1 when si=si+1-1 when si=-si+1 Substitution to the partition function gives Z = (2cosh K) N + (2sinh K) N

6 Ising model in 1D: Free boundaries Ising model in 1D with free boundary conditions N-1 N... Again we assume that there is no external field (h=0). Then, we have Z =... e K N 1 i=1 s i s i+1 s 1 s 2 s N Using the same transformation as before, i.e., η i = s i s i+1 where i = 1,...,N 1 we have that is, η i = Z = 2(2coshK) N 1 } +1 when si=si+1-1 when si=-si+1 We have the partition function now. Next, we take a look at free energy and thermodynamics.

7 Ising model in 1D: Free energy Since we have the partition function, we also have the free energy For PBC: thermodynamic limit F = k B T N { ln(2cosh K) + ln[1 + (tanh K) N ] } Nk B T ln(2cosh K) For free (or open) boundary conditions: [ F = k B T N ln2 + N 1 ] ln(cosh K) N thermodynamic limit Nk B T ln(2cosh K) The difference between boundary conditions becomes negligible at the thermodynamic limit. The more general way is do this with transfer matrix. Works also for nonzero field.

8 Ising model in 1D: Pair correlation function The two-point spin-spin correlation function is defined as G(i, j) (s i s i )(s j s j ) = s i s j s i s j If the system is spatially homogeneous (has translational invariance), then s i = s j s Above Tc we have s = 0 G(i, j) = s i s j What does G(i,j) measure? At T=0 The probability for spins i and j to have the same value is P i j = δ si s j = 1 2 (1 + a i s j ) Around Tc = [G(i, j) + s i s j ] Above Tc we have P i j = 1 [1 + G(i, j)] 2

9 Pair correlation function For a translationally invariant system we have G(i,i + j) = G(i + j i) = G(i) The result (homework exercise, see e.g., Goldenfeld) is How about the other limit, T-> 0? Then, obviously G(i)=1. This defines perfect long-range order. G(i) = (tanh K) i At T=0 Definition for the correlation length: G(i) = e i/ξ For the 1D Ising model we have ξ = [ln(coth K)] 1 As T->0, ξ e 2K This is not a power law but an essential singularity! Around Tc Definition, the correlation function exponent η : G(i) i 2 d η Now, G(i) = e i/ξ = 1 i ξ +... constant

10 2D magnetization

11 Phase equilibrium Phase diagram of the Ising model at finite temperature (d>1): H coexistence line Coexistence in the Ising model Tc disordered T(~1/J) domain wall L -d M H=0 system size, L Tc T

12 Landau theory of phase transitions

13 Overview Introduction Methods Results Recap Next time Overview and new concepts Description of a continuous phase transition using a field, NOT microscopic properties of particles. Reminder: phase transitions Change of a system from one phase (state) to another at a minute change in the external physical conditions. They are divided into two classes: New concepts in a nutshell Symmetry Order parameter Free energy expansion Spontaneous symmetry breaking Symmetries Rotational, translational, etc. Translational Statistical symmetry 1) First-order transitions 2) Continuous transitions Discrete symmetry Continuous symmetry StatPhys Intro to Landau theory Dr. Karttunen pressure solid liquid vapor temperature critical point crossing lines: 1st order transitions

14 Overview Introduction Methods Results Recap Next time StatPhys Intro to Landau theory The Big Picture: usefulness of new concepts Ferromagnets Liquid crystal theory Superconductivity Superfluidity Applications of the theory: Materials modeling, the so-called phase field models Landau-type approach is extremely useful in modeling Even biophysics: Lipid rafts This stage: Thermodynamics Basics of phase transitions Ising model The concept of free energy Limitations: Thermodynamics Basics of phase transitions Ising model The concept of free energy Extensions: Thermodynamics Basics of phase transitions Ising model The concept of free energy Dr. Karttunen

15 Digression: Lev Davidovich Landau Lev Davidovich Landau, Jan in Baku Apr Moscow Nobel Prize 1962 for pioneering theories in condensed matter physics Graduated from Leningrad University at the age of 19. He started at the age of 14! After graduating from Leningrad he spent time in Denmark with Bohr. Collaborated and interacted also with Pauli, Peierls and Teller. For his travels he got a Rockefeller fellowship! His work covers basically all of theoretical physics from fluids to quantum field theory. Was imprisoned by Stalin for a year after being accused to be a German spy. Was freed after Piotr Kapitza threatened to stop his own work unless Landau was released On Jan he suffered a major car accident and was unable to continue his work. For the same reason he was not able to attend the Nobel Prize seremonies. More reading: Akhiezer, Recollections of Lev Davidovich Landau, Physics Today 47, (1994). Ginzburg, Landau's attitude towards physics and physicists, Physics Today 42, (1989). Khalatnikov, Reminiscences of Landau, Physics Today 42, (1989).

16 Landau and Lifshitz started in 1930 s and the 10 volume series was completed in 1979 by Lifshitz.They received the 1962 Lenin Prize for the Course of Theoretical Physics.

17 Landau s revolutionary ideas Superfluidity: Landau considered the quantized states of the motion of the whole liquid instead of single atoms. That was a revolutionary idea and using it Landau was able to explain superfluidity. Superconductivity: Even before the BCS theory, Ginzburg and Landau suggested a phenomenological theory of superconductivity based on Landau's earlier theory of continuous phase transitions. When it was published, the GL theory received only limited attention. This changed dramatically in 1959, when L.P. Gorkov showed rigorously that close to Tc the GL theory and the BCS theory become equivalent. Furthermore, two years before Gorkov, A. Abrikosov predicted the possibility of two different kinds of superconductors by using the GL theory! Landau s theory of phase transitions. If we sum up the leading ideas we end up with two things: the importance of symmetry and symmetry breaking, and the existence of an order parameter.

18 Landau theory The phenomenological Landau theory of continuous phase transitions stresses the importance of overall general symmetry properties and analyticity over microscopic details in determining the macroscopic properties of a system. Those generic properties were also used in the superconductivity and superfluidity problems! The Landau theory is based on the following assumptions: 1.It is possible to define an order parameter. 2.It is possible to describe the system with a free energy. 3.The free energy must be consistent with the high temperature symmetry properties of the system. Mathematically speaking, the Hamiltonian must commute with the symmetry group of the high temperature phase (note: discrete & continuous). 4. The free energy must be analytic. In addition, the expansion coefficients must be regular functions of the temperature.

19 Symmetry 1.It is possible to define an order parameter. 2.It is possible to describe the system with a free energy. 3.The free energy must be consistent with the high temperature symmetry properties of the system. 4. The free energy must be analytic. In addition, the expansion coefficients must be regular functions of the temperature. The order parameter characterizes the system the following way: Ψ = 0 Ψ in the disordered state (above Tc), is small and finite in the ordered state (T<Tc).

20 Order parameters system liquid-gas ferromagnetic superconducting liquid crystal binary mixture (methanol-n-hexane) helix-coil XY-model BaTiO3 crystal liquid crystal order parameter density magnetization condensate wave function degree of molecular alignemnt concentration of either substance number of helix base pairs magnetization (Mx,My) polarization density wave director

21 Symmetry 1.It is possible to define an order parameter. 2.It is possible to describe the system with a free energy. 3.The free energy must be consistent with the high temperature symmetry properties of the system. 4. The free energy must be analytic. In addition, the expansion coefficients must be regular functions of the temperature. Close to Tc the free energy can be expanded in powers of the order parameter free energy F(Ψ) = order parameter. must be small a 2n Ψ 2n n=0 expansion coefficients are phenomenological parameters that depend on T and microscopics Order parameter must be small for the expansion to converge.

Ginzburg-Landau Theory of Phase Transitions

Ginzburg-Landau Theory of Phase Transitions Subedi 1 Alaska Subedi Prof. Siopsis Physics 611 Dec 5, 008 Ginzburg-Landau Theory of Phase Transitions 1 Phase Transitions A phase transition is said to happen when a system changes its phase. The physical

More information

Phase Transitions and Critical Behavior:

Phase Transitions and Critical Behavior: II Phase Transitions and Critical Behavior: A. Phenomenology (ibid., Chapter 10) B. mean field theory (ibid., Chapter 11) C. Failure of MFT D. Phenomenology Again (ibid., Chapter 12) // Windsor Lectures

More information

Renormalization Group for the Two-Dimensional Ising Model

Renormalization Group for the Two-Dimensional Ising Model Chapter 8 Renormalization Group for the Two-Dimensional Ising Model The two-dimensional (2D) Ising model is arguably the most important in statistical physics. This special status is due to Lars Onsager

More information

Phase transitions and critical phenomena

Phase transitions and critical phenomena Phase transitions and critical phenomena Classification of phase transitions. Discontinous (st order) transitions Summary week -5 st derivatives of thermodynamic potentials jump discontinously, e.g. (

More information

1) K. Huang, Introduction to Statistical Physics, CRC Press, 2001.

1) K. Huang, Introduction to Statistical Physics, CRC Press, 2001. Chapter 1 Introduction 1.1 Literature 1) K. Huang, Introduction to Statistical Physics, CRC Press, 2001. 2) E. M. Lifschitz and L. P. Pitajewski, Statistical Physics, London, Landau Lifschitz Band 5. 3)

More information

Overview of phase transition and critical phenomena

Overview of phase transition and critical phenomena Overview of phase transition and critical phenomena Aims: Phase transitions are defined, and the concepts of order parameter and spontaneously broken symmetry are discussed. Simple models for magnetic

More information

Critical Behavior I: Phenomenology, Universality & Scaling

Critical Behavior I: Phenomenology, Universality & Scaling Critical Behavior I: Phenomenology, Universality & Scaling H. W. Diehl Fachbereich Physik, Universität Duisburg-Essen, Campus Essen 1 Goals recall basic facts about (static equilibrium) critical behavior

More information

Krammers-Wannier Duality in Lattice Systems

Krammers-Wannier Duality in Lattice Systems Krammers-Wannier Duality in Lattice Systems Sreekar Voleti 1 1 Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7. (Dated: December 9, 2018) I. INTRODUCTION It was shown by

More information

Numerical Analysis of 2-D Ising Model. Ishita Agarwal Masters in Physics (University of Bonn) 17 th March 2011

Numerical Analysis of 2-D Ising Model. Ishita Agarwal Masters in Physics (University of Bonn) 17 th March 2011 Numerical Analysis of 2-D Ising Model By Ishita Agarwal Masters in Physics (University of Bonn) 17 th March 2011 Contents Abstract Acknowledgment Introduction Computational techniques Numerical Analysis

More information

Introduction to Phase Transitions in Statistical Physics and Field Theory

Introduction to Phase Transitions in Statistical Physics and Field Theory Introduction to Phase Transitions in Statistical Physics and Field Theory Motivation Basic Concepts and Facts about Phase Transitions: Phase Transitions in Fluids and Magnets Thermodynamics and Statistical

More information

The Ising model Summary of L12

The Ising model Summary of L12 The Ising model Summary of L2 Aim: Study connections between macroscopic phenomena and the underlying microscopic world for a ferromagnet. How: Study the simplest possible model of a ferromagnet containing

More information

Physics 127b: Statistical Mechanics. Landau Theory of Second Order Phase Transitions. Order Parameter

Physics 127b: Statistical Mechanics. Landau Theory of Second Order Phase Transitions. Order Parameter Physics 127b: Statistical Mechanics Landau Theory of Second Order Phase Transitions Order Parameter Second order phase transitions occur when a new state of reduced symmetry develops continuously from

More information

On the Higgs mechanism in the theory of

On the Higgs mechanism in the theory of On the Higgs mechanism in the theory of superconductivity* ty Dietrich Einzel Walther-Meißner-Institut für Tieftemperaturforschung Bayerische Akademie der Wissenschaften D-85748 Garching Outline Phenomenological

More information

c 2007 by Harvey Gould and Jan Tobochnik 28 May 2007

c 2007 by Harvey Gould and Jan Tobochnik 28 May 2007 Chapter 5 Magnetic Systems c 2007 by Harvey Gould and Jan Tobochnik 28 May 2007 We apply the general formalism of statistical mechanics developed in Chapter 4 to the Ising model, a model magnetic system

More information

VI. Series Expansions

VI. Series Expansions VI. Series Expansions VI.A Low-temperature expansions Lattice models can also be studied by series expansions. Such expansions start with certain exactly solvable limits, and typically represent perturbations

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Metropolis Monte Carlo simulation of the Ising Model

Metropolis Monte Carlo simulation of the Ising Model Metropolis Monte Carlo simulation of the Ising Model Krishna Shrinivas (CH10B026) Swaroop Ramaswamy (CH10B068) May 10, 2013 Modelling and Simulation of Particulate Processes (CH5012) Introduction The Ising

More information

Superconductivity. S2634: Physique de la matière condensée & nano-objets. Miguel Anía Asenjo Alexandre Le Boité Christine Lingblom

Superconductivity. S2634: Physique de la matière condensée & nano-objets. Miguel Anía Asenjo Alexandre Le Boité Christine Lingblom Superconductivity S2634: Physique de la matière condensée & nano-objets Miguel Anía Asenjo Alexandre Le Boité Christine Lingblom 1 What is superconductivity? 2 Superconductivity Superconductivity generally

More information

VI.D Self Duality in the Two Dimensional Ising Model

VI.D Self Duality in the Two Dimensional Ising Model VI.D Self Duality in the Two Dimensional Ising Model Kramers and Wannier discovered a hidden symmetry that relates the properties of the Ising model on the square lattice at low and high temperatures.

More information

Statistical Mechanics

Statistical Mechanics Franz Schwabl Statistical Mechanics Translated by William Brewer Second Edition With 202 Figures, 26 Tables, and 195 Problems 4u Springer Table of Contents 1. Basic Principles 1 1.1 Introduction 1 1.2

More information

1 Interaction of Quantum Fields with Classical Sources

1 Interaction of Quantum Fields with Classical Sources 1 Interaction of Quantum Fields with Classical Sources A source is a given external function on spacetime t, x that can couple to a dynamical variable like a quantum field. Sources are fundamental in the

More information

Phase Transitions and the Renormalization Group

Phase Transitions and the Renormalization Group School of Science International Summer School on Topological and Symmetry-Broken Phases Phase Transitions and the Renormalization Group An Introduction Dietmar Lehmann Institute of Theoretical Physics,

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

3. General properties of phase transitions and the Landau theory

3. General properties of phase transitions and the Landau theory 3. General properties of phase transitions and the Landau theory In this Section we review the general properties and the terminology used to characterise phase transitions, which you will have already

More information

Many-Body Problems and Quantum Field Theory

Many-Body Problems and Quantum Field Theory Philippe A. Martin Francois Rothen Many-Body Problems and Quantum Field Theory An Introduction Translated by Steven Goldfarb, Andrew Jordan and Samuel Leach Second Edition With 102 Figures, 7 Tables and

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics 1 Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 2, 24 March 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Quantum phase transitions

Quantum phase transitions Quantum phase transitions Thomas Vojta Department of Physics, University of Missouri-Rolla Phase transitions and critical points Quantum phase transitions: How important is quantum mechanics? Quantum phase

More information

PH4211 Statistical Mechanics Brian Cowan

PH4211 Statistical Mechanics Brian Cowan PH4211 Statistical Mechanics Brian Cowan Contents 1 The Methodology of Statistical Mechanics 1.1 Terminology and Methodology 1.1.1 Approaches to the subject 1.1.2 Description of states 1.1.3 Extensivity

More information

Statistical mechanics, the Ising model and critical phenomena Lecture Notes. September 26, 2017

Statistical mechanics, the Ising model and critical phenomena Lecture Notes. September 26, 2017 Statistical mechanics, the Ising model and critical phenomena Lecture Notes September 26, 2017 1 Contents 1 Scope of these notes 3 2 Partition function and free energy 4 3 Definition of phase transitions

More information

The Superfluid Phase s of Helium 3

The Superfluid Phase s of Helium 3 The Superfluid Phase s of Helium 3 DIETER VOLLHARD T Rheinisch-Westfälische Technische Hochschule Aachen, Federal Republic of German y PETER WÖLFL E Universität Karlsruhe Federal Republic of Germany PREFACE

More information

The Ginzburg-Landau Theory

The Ginzburg-Landau Theory The Ginzburg-Landau Theory A normal metal s electrical conductivity can be pictured with an electron gas with some scattering off phonons, the quanta of lattice vibrations Thermal energy is also carried

More information

Abrikosov vortex lattice solution

Abrikosov vortex lattice solution Abrikosov vortex lattice solution A brief exploration O. Ogunnaike Final Presentation Ogunnaike Abrikosov vortex lattice solution Physics 295b 1 / 31 Table of Contents 1 Background 2 Quantization 3 Abrikosov

More information

Spontaneous Symmetry Breaking

Spontaneous Symmetry Breaking Spontaneous Symmetry Breaking Second order phase transitions are generally associated with spontaneous symmetry breaking associated with an appropriate order parameter. Identifying symmetry of the order

More information

Microscopic Derivation of Ginzburg Landau Theory. Mathematics and Quantum Physics

Microscopic Derivation of Ginzburg Landau Theory. Mathematics and Quantum Physics Microscopic Derivation of Ginzburg Landau heory Robert Seiringer IS Austria Joint work with Rupert Frank, Christian Hainzl, and Jan Philip Solovej J. Amer. Math. Soc. 25 (2012), no. 3, 667 713 Mathematics

More information

J ij S i S j B i S i (1)

J ij S i S j B i S i (1) LECTURE 18 The Ising Model (References: Kerson Huang, Statistical Mechanics, Wiley and Sons (1963) and Colin Thompson, Mathematical Statistical Mechanics, Princeton Univ. Press (1972)). One of the simplest

More information

Superfluid Helium-3: From very low Temperatures to the Big Bang

Superfluid Helium-3: From very low Temperatures to the Big Bang Superfluid Helium-3: From very low Temperatures to the Big Bang Universität Frankfurt; May 30, 2007 Dieter Vollhardt Contents: The quantum liquids 3 He and 4 He Superfluid phases of 3 He Broken symmetries

More information

On the Onsager-Yang-Value of the Spontaneous Magnetization

On the Onsager-Yang-Value of the Spontaneous Magnetization On the Onsager-Yang-Value of the Spontaneous Magnetization G. Benettin, G. Gallavotti*, G. Jona-Lasinio, A. L. Stella Istituto di Fisica del Universita, Padova, Italy Received November 10, 1972 Abstract:

More information

Pattern Formation in the Fractional Quantum Hall Effect

Pattern Formation in the Fractional Quantum Hall Effect Journal of the Physical Society of Japan 72, Supplement C (2003) 18-23 Pattern Formation in the Fractional Quantum Hall Effect Pierre Gaspard Center for Nonlinear Phenomena and Complex Systems, Université

More information

Physics 127b: Statistical Mechanics. Second Order Phase Transitions. The Ising Ferromagnet

Physics 127b: Statistical Mechanics. Second Order Phase Transitions. The Ising Ferromagnet Physics 127b: Statistical Mechanics Second Order Phase ransitions he Ising Ferromagnet Consider a simple d-dimensional lattice of N classical spins that can point up or down, s i =±1. We suppose there

More information

Superconductivity and Quantum Coherence

Superconductivity and Quantum Coherence Superconductivity and Quantum Coherence Lent Term 2008 Credits: Christoph Bergemann, David Khmelnitskii, John Waldram, 12 Lectures: Mon, Wed 10-11am Mott Seminar Room 3 Supervisions, each with one examples

More information

Universal phase transitions in Topological lattice models

Universal phase transitions in Topological lattice models Universal phase transitions in Topological lattice models F. J. Burnell Collaborators: J. Slingerland S. H. Simon September 2, 2010 Overview Matter: classified by orders Symmetry Breaking (Ferromagnet)

More information

Physics 212: Statistical mechanics II Lecture XI

Physics 212: Statistical mechanics II Lecture XI Physics 212: Statistical mechanics II Lecture XI The main result of the last lecture was a calculation of the averaged magnetization in mean-field theory in Fourier space when the spin at the origin is

More information

SHANGHAI JIAO TONG UNIVERSITY LECTURE

SHANGHAI JIAO TONG UNIVERSITY LECTURE Lecture 4 SHANGHAI JIAO TONG UNIVERSITY LECTURE 4 017 Anthony J. Leggett Department of Physics University of Illinois at Urbana-Champaign, USA and Director, Center for Complex Physics Shanghai Jiao Tong

More information

Outline for Fundamentals of Statistical Physics Leo P. Kadanoff

Outline for Fundamentals of Statistical Physics Leo P. Kadanoff Outline for Fundamentals of Statistical Physics Leo P. Kadanoff text: Statistical Physics, Statics, Dynamics, Renormalization Leo Kadanoff I also referred often to Wikipedia and found it accurate and helpful.

More information

Thermodynamics and Statistical Physics WS 2018/19

Thermodynamics and Statistical Physics WS 2018/19 Thermodynamics and Statistical Physics WS 2018/19 Roser Valentí Institute for Theoretical Physics Goethe University Frankfurt, Germany Manuscript of the ITP members Roser Valentí, Claudius Gros and, partly

More information

0.1. CORRELATION LENGTH

0.1. CORRELATION LENGTH 0.1. CORRELAION LENGH 0.1 1 Correlation length 0.1.1 Correlation length: intuitive picture Roughly speaking, the correlation length ξ of a spatial configuration is the representative size of the patterns.

More information

8.334: Statistical Mechanics II Problem Set # 4 Due: 4/9/14 Transfer Matrices & Position space renormalization

8.334: Statistical Mechanics II Problem Set # 4 Due: 4/9/14 Transfer Matrices & Position space renormalization 8.334: Statistical Mechanics II Problem Set # 4 Due: 4/9/14 Transfer Matrices & Position space renormalization This problem set is partly intended to introduce the transfer matrix method, which is used

More information

VI.D Self Duality in the Two Dimensional Ising Model

VI.D Self Duality in the Two Dimensional Ising Model VI.D Self Duality in the Two Dimensional Ising Model Kramers and Wannier discovered a hidden symmetry that relates the properties of the Ising model on the square lattice at low and high temperatures.

More information

Criticality in topologically ordered systems: a case study

Criticality in topologically ordered systems: a case study Criticality in topologically ordered systems: a case study Fiona Burnell Schulz & FJB 16 FJB 17? Phases and phase transitions ~ 194 s: Landau theory (Liquids vs crystals; magnets; etc.) Local order parameter

More information

Statistical Thermodynamics Solution Exercise 8 HS Solution Exercise 8

Statistical Thermodynamics Solution Exercise 8 HS Solution Exercise 8 Statistical Thermodynamics Solution Exercise 8 HS 05 Solution Exercise 8 Problem : Paramagnetism - Brillouin function a According to the equation for the energy of a magnetic dipole in an external magnetic

More information

Physics 7240: Advanced Statistical Mechanics Lecture 1: Introduction and Overview

Physics 7240: Advanced Statistical Mechanics Lecture 1: Introduction and Overview Physics 7240: Advanced Statistical Mechanics Lecture 1: Introduction and Overview Leo Radzihovsky Department of Physics, University of Colorado, Boulder, CO 80309 (Dated: 30 May, 2017) Electronic address:

More information

theory, which can be quite useful in more complex systems.

theory, which can be quite useful in more complex systems. Physics 7653: Statistical Physics http://www.physics.cornell.edu/sethna/teaching/653/ In Class Exercises Last correction at August 30, 2018, 11:55 am c 2017, James Sethna, all rights reserved 9.5 Landau

More information

Monte Carlo study of the Baxter-Wu model

Monte Carlo study of the Baxter-Wu model Monte Carlo study of the Baxter-Wu model Nir Schreiber and Dr. Joan Adler Monte Carlo study of the Baxter-Wu model p.1/40 Outline Theory of phase transitions, Monte Carlo simulations and finite size scaling

More information

Chapter 4 Phase Transitions. 4.1 Phenomenology Basic ideas. Partition function?!?! Thermodynamic limit Statistical Mechanics 1 Week 4

Chapter 4 Phase Transitions. 4.1 Phenomenology Basic ideas. Partition function?!?! Thermodynamic limit Statistical Mechanics 1 Week 4 Chapter 4 Phase Transitions 4.1 Phenomenology 4.1.1 Basic ideas Partition function?!?! Thermodynamic limit 4211 Statistical Mechanics 1 Week 4 4.1.2 Phase diagrams p S S+L S+G L S+G L+G G G T p solid triple

More information

Collective behavior, from particles to fields

Collective behavior, from particles to fields 978-0-51-87341-3 - Statistical Physics of Fields 1 Collective behavior, from particles to fields 1.1 Introduction One of the most successful aspects of physics in the twentieth century was revealing the

More information

Phase transitions beyond the Landau-Ginzburg theory

Phase transitions beyond the Landau-Ginzburg theory Phase transitions beyond the Landau-Ginzburg theory Yifei Shi 21 October 2014 1 Phase transitions and critical points 2 Laudau-Ginzburg theory 3 KT transition and vortices 4 Phase transitions beyond Laudau-Ginzburg

More information

Ginzburg-Landau theory of supercondutivity

Ginzburg-Landau theory of supercondutivity Ginzburg-Landau theory of supercondutivity Ginzburg-Landau theory of superconductivity Let us apply the above to superconductivity. Our starting point is the free energy functional Z F[Ψ] = d d x [F(Ψ)

More information

Scaling Theory. Roger Herrigel Advisor: Helmut Katzgraber

Scaling Theory. Roger Herrigel Advisor: Helmut Katzgraber Scaling Theory Roger Herrigel Advisor: Helmut Katzgraber 7.4.2007 Outline The scaling hypothesis Critical exponents The scaling hypothesis Derivation of the scaling relations Heuristic explanation Kadanoff

More information

Three Lectures on Soft Modes and Scale Invariance in Metals. Quantum Ferromagnets as an Example of Universal Low-Energy Physics

Three Lectures on Soft Modes and Scale Invariance in Metals. Quantum Ferromagnets as an Example of Universal Low-Energy Physics Three Lectures on Soft Modes and Scale Invariance in Metals Quantum Ferromagnets as an Example of Universal Low-Energy Physics Soft Modes and Scale Invariance in Metals Quantum Ferromagnets as an Example

More information

Physics 127b: Statistical Mechanics. Renormalization Group: 1d Ising Model. Perturbation expansion

Physics 127b: Statistical Mechanics. Renormalization Group: 1d Ising Model. Perturbation expansion Physics 17b: Statistical Mechanics Renormalization Group: 1d Ising Model The ReNormalization Group (RNG) gives an understanding of scaling and universality, and provides various approximation schemes to

More information

221B Lecture Notes Spontaneous Symmetry Breaking

221B Lecture Notes Spontaneous Symmetry Breaking B Lecture Notes Spontaneous Symmetry Breaking Spontaneous Symmetry Breaking Spontaneous Symmetry Breaking is an ubiquitous concept in modern physics, especially in condensed matter and particle physics.

More information

1 Quantum Theory of Matter

1 Quantum Theory of Matter Quantum Theory of Matter: Superfluids & Superconductors Lecturer: Derek Lee Condensed Matter Theory Blackett 809 Tel: 020 7594 7602 dkk.lee@imperial.ac.uk Level 4 course: PT4.5 (Theory Option) http://www.cmth.ph.ic.ac.uk/people/dkk.lee/teach/qtm

More information

Lectures 16: Phase Transitions

Lectures 16: Phase Transitions Lectures 16: Phase Transitions Continuous Phase transitions Aims: Mean-field theory: Order parameter. Order-disorder transitions. Examples: β-brass (CuZn), Ferromagnetic transition in zero field. Universality.

More information

H = 1 2 τψ gψ4, (0.0.1)

H = 1 2 τψ gψ4, (0.0.1) 32.1 Landau theory We have derived the Ginzburg-Landau Hamiltonian in Lecture 18. If we apply the mean field theory, that is, if we ignore fluctuations, then H = 1 2 τψ2 + 1 4 gψ4, (0.0.1) should be interpreted

More information

Lecture 10 Phase transitions.

Lecture 10 Phase transitions. Lecture 10 Phase transitions. 1 Introduction The study of phase transitions is at the very core of structural condensed-matter physics, to the point that one might consider all we have learned in the previous

More information

(1) Consider a lattice of noninteracting spin dimers, where the dimer Hamiltonian is

(1) Consider a lattice of noninteracting spin dimers, where the dimer Hamiltonian is PHYSICS 21 : SISICL PHYSICS FINL EXMINION 1 Consider a lattice of noninteracting spin dimers where the dimer Hamiltonian is Ĥ = H H τ τ Kτ where H and H τ are magnetic fields acting on the and τ spins

More information

Phenomenological Theories of Nucleation

Phenomenological Theories of Nucleation Chapter 1 Phenomenological Theories of Nucleation c 2012 by William Klein, Harvey Gould, and Jan Tobochnik 16 September 2012 1.1 Introduction These chapters discuss the problems of nucleation, spinodal

More information

More is the Same Less is the Same, too; Mean Field Theories and Renormalization Leo P. Kadanoff

More is the Same Less is the Same, too; Mean Field Theories and Renormalization Leo P. Kadanoff More is the Same Less is the Same, too; Mean Field Theories and Renormalization Leo P. Kadanoff email:leop@uchicago.edu Abstract This talk summarizes concepts derived in part from condensed matter physics.

More information

Phase transition and spontaneous symmetry breaking

Phase transition and spontaneous symmetry breaking Phys60.nb 111 8 Phase transition and spontaneous symmetry breaking 8.1. Questions: Q1: Symmetry: if a the Hamiltonian of a system has certain symmetry, can the system have a lower symmetry? Q: Analyticity:

More information

Quantum Theory of Matter

Quantum Theory of Matter Quantum Theory of Matter Revision Lecture Derek Lee Imperial College London May 2006 Outline 1 Exam and Revision 2 Quantum Theory of Matter Microscopic theory 3 Summary Outline 1 Exam and Revision 2 Quantum

More information

Symmetry Breaking in Superconducting Phase Transitions

Symmetry Breaking in Superconducting Phase Transitions Symmetry Breaking in Superconducting Phase Transitions Ewan Marshall H.H. Wills Physics Laboratory November 26, 2010 1 Introduction Since the beginning of the universe matter has had to undergo phase changes

More information

Ising Model. Ising Lattice. E. J. Maginn, J. K. Shah

Ising Model. Ising Lattice. E. J. Maginn, J. K. Shah Ising Lattice E. J. Maginn, J. K. Shah Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame, IN 46556 USA Monte Carlo Workshop, Brazil Ising Lattice Model Consider a

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

BCS in Russia: the end of 50 s early 60 s

BCS in Russia: the end of 50 s early 60 s BCS in Russia: the end of 50 s early 60 s ( Developing Quantum Field theory approach to superconductivity) Lev P. Gor kov (National High Magnetic Field Laboratory, FSU, Tallahassee) UIUC, October 10, 2007

More information

Home Page ISING MODEL. Title Page. Contents. Lecture 12. Page 1 of 100. Go Back. Full Screen. Close. Quit

Home Page ISING MODEL. Title Page. Contents. Lecture 12. Page 1 of 100. Go Back. Full Screen. Close. Quit ISING MODEL Lecture 12 Page 1 of 100 Page 2 of 100 Ernst Ising (1900-1996) Ernst Ising was born May 10, 1900 in Cologne, Germany. In 1919 he began studying mathematics and physics at the University of

More information

The holographic approach to critical points. Johannes Oberreuter (University of Amsterdam)

The holographic approach to critical points. Johannes Oberreuter (University of Amsterdam) The holographic approach to critical points Johannes Oberreuter (University of Amsterdam) Scale invariance power spectrum of CMB P s (k) / k n s 1 Lambda archive WMAP We need to understand critical points!

More information

Emergent Frontiers in Quantum Materials:

Emergent Frontiers in Quantum Materials: Emergent Frontiers in Quantum Materials: High Temperature superconductivity and Topological Phases Jiun-Haw Chu University of Washington The nature of the problem in Condensed Matter Physics Consider a

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Leon Balents T. Senthil, MIT A. Vishwanath, UCB S. Sachdev, Yale M.P.A. Fisher, UCSB Outline Introduction: what is a DQCP Disordered and VBS ground states and gauge theory

More information

BCS from : A Personal History

BCS from : A Personal History BCS from 1952-57: A Personal History David Pines Physics Department, UC Davis Los Alamos National Laboratory Physics Department, UIUC Institute for Complex Adaptive Matter BCS from 1952-57: 5 A Personal

More information

A Superfluid Universe

A Superfluid Universe A Superfluid Universe Lecture 2 Quantum field theory & superfluidity Kerson Huang MIT & IAS, NTU Lecture 2. Quantum fields The dynamical vacuum Vacuumscalar field Superfluidity Ginsburg Landau theory BEC

More information

8.334: Statistical Mechanics II Spring 2014 Test 2 Review Problems

8.334: Statistical Mechanics II Spring 2014 Test 2 Review Problems 8.334: Statistical Mechanics II Spring 014 Test Review Problems The test is closed book, but if you wish you may bring a one-sided sheet of formulas. The intent of this sheet is as a reminder of important

More information

Kolloquium Universität Innsbruck October 13, The renormalization group: from the foundations to modern applications

Kolloquium Universität Innsbruck October 13, The renormalization group: from the foundations to modern applications Kolloquium Universität Innsbruck October 13, 2009 The renormalization group: from the foundations to modern applications Peter Kopietz, Universität Frankfurt 1.) Historical introduction: what is the RG?

More information

5.1 Mean-Field Treatments of the Ising Model

5.1 Mean-Field Treatments of the Ising Model Chapter 5 Mean-Field Theory 5.1 Mean-Field Treatments of the Ising Model In this Section, we are discussing various approaches to obtain a mean-field solution to the Ising model. In fact, several of the

More information

The XY model, the Bose Einstein Condensation and Superfluidity in 2d (I)

The XY model, the Bose Einstein Condensation and Superfluidity in 2d (I) The XY model, the Bose Einstein Condensation and Superfluidity in 2d (I) B.V. COSTA UFMG BRAZIL LABORATORY FOR SIMULATION IN PHYSICS A Guide to Monte Carlo Simulations in Statistical Physics by Landau

More information

Valery Pokrovsky Dept. of Physics, Texas A&M University and Landau Institute for Theoretical Physics

Valery Pokrovsky Dept. of Physics, Texas A&M University and Landau Institute for Theoretical Physics Landau and Theory of Phase Transitions Valery Pokrovsky Dept. of Physics, Texas A&M University and Landau Institute for Theoretical Physics Scirus 2008 Landau phenomenon Fermi liquids 45,000 Phase transitions

More information

Magnets, 1D quantum system, and quantum Phase transitions

Magnets, 1D quantum system, and quantum Phase transitions 134 Phys620.nb 10 Magnets, 1D quantum system, and quantum Phase transitions In 1D, fermions can be mapped into bosons, and vice versa. 10.1. magnetization and frustrated magnets (in any dimensions) Consider

More information

QFT at finite Temperature

QFT at finite Temperature Benjamin Eltzner Seminar on Theoretical Elementary Particle Physics and QFT, 13.07.06 Content 1 Path Integral and Partition Function Classical Partition Function The Quantum Mechanical Partition Function

More information

4 He is a manifestation of Bose-Einstein

4 He is a manifestation of Bose-Einstein Advanced information on the Nobel Prize in Physics, 7 October 003 Information Department, P.O. Box 50005, SE-104 05 Stockholm, Sweden Phone: +46 8 673 95 00, Fax: +46 8 15 56 70, E-mail: info@kva.se, Website:

More information

The (magnetic) Helmholtz free energy has proper variables T and B. In differential form. and the entropy and magnetisation are thus given by

The (magnetic) Helmholtz free energy has proper variables T and B. In differential form. and the entropy and magnetisation are thus given by 4.5 Landau treatment of phase transitions 4.5.1 Landau free energy In order to develop a general theory of phase transitions it is necessary to extend the concept of the free energy. For definiteness we

More information

Dynamics of Second Order Phase Transitions and Formation of Topological Defects. W. H. Zurek Los Alamos

Dynamics of Second Order Phase Transitions and Formation of Topological Defects. W. H. Zurek Los Alamos Dynamics of Second Order Phase Transitions and Formation of Topological Defects W. H. Zurek Los Alamos QUANTUM ISING MODEL Lattice of spin 1/2 particles interacting with an external force (e.g., magnetic

More information

PHY101: Major Concepts in Physics I

PHY101: Major Concepts in Physics I Welcome back to PHY101: Major Concepts in Physics I Photo: S. T. Cummins Photo: S. T. Cummins Announcements Today is our final class! We will first discuss more on Chapters 14-15 and then conduct a short

More information

Principles of Equilibrium Statistical Mechanics

Principles of Equilibrium Statistical Mechanics Debashish Chowdhury, Dietrich Stauffer Principles of Equilibrium Statistical Mechanics WILEY-VCH Weinheim New York Chichester Brisbane Singapore Toronto Table of Contents Part I: THERMOSTATICS 1 1 BASIC

More information

Physics 127c: Statistical Mechanics. Application of Path Integrals to Superfluidity in He 4

Physics 127c: Statistical Mechanics. Application of Path Integrals to Superfluidity in He 4 Physics 17c: Statistical Mechanics Application of Path Integrals to Superfluidity in He 4 The path integral method, and its recent implementation using quantum Monte Carlo methods, provides both an intuitive

More information

Kosterlitz-Thouless Transition

Kosterlitz-Thouless Transition Heidelberg University Seminar-Lecture 5 SS 16 Menelaos Zikidis Kosterlitz-Thouless Transition 1 Motivation Back in the 70 s, the concept of a phase transition in condensed matter physics was associated

More information

Macroscopic Degeneracy and FSS at 1st Order Phase Transitions

Macroscopic Degeneracy and FSS at 1st Order Phase Transitions Macroscopic Degeneracy and FSS at 1st Order Phase Transitions Marco Mueller (hero), Wolfhard Janke (good guy), Des Johnston (villain) Krakow, Oct 2015 Mueller, Janke, Johnston Degeneracy/FSS 1/22 Plan

More information

Superfluid Helium-3: From very low Temperatures to the Big Bang

Superfluid Helium-3: From very low Temperatures to the Big Bang Superfluid Helium-3: From very low Temperatures to the Big Bang Dieter Vollhardt Yukawa Institute, Kyoto; November 27, 2007 Contents: The quantum liquids 3 He and 4 He Superfluid phases of 3 He Broken

More information

What was the Nobel Price in 2003 given for?

What was the Nobel Price in 2003 given for? What was the Nobel Price in 2003 given for? Krzysztof Byczuk Instytut Fizyki Teoretycznej Uniwersytet Warszawski December 18, 2003 2003 Nobel Trio Alexei A. Abrikosov, born 1928 (75 years) in Moscow, the

More information

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Origin of High-Temperature Superconductivity Nature s great puzzle C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Basic characteristics of superconductors: Perfect electrical conduction

More information

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3 4D-XY Quantum Criticality in Underdoped High-T c cuprates M. Franz University of British Columbia franz@physics.ubc.ca February 22, 2005 In collaboration with: A.P. Iyengar (theory) D.P. Broun, D.A. Bonn

More information

Linear excitations and domain walls

Linear excitations and domain walls and domain walls Alessandro Vindigni Laboratorium für Festkörperphysik, ETH Zürich ETH November 26, 2012 Lecture plan Real systems Lecture plan 1. Atomic magnetism (Pescia) 2. Magnetism in solids (Pescia)

More information