Critical Behavior II: Renormalization Group Theory

Similar documents
Critical Behavior I: Phenomenology, Universality & Scaling

The Ising model Summary of L12

8.334: Statistical Mechanics II Spring 2014 Test 2 Review Problems

Physics 212: Statistical mechanics II Lecture XI

Critical Region of the QCD Phase Transition

the renormalization group (RG) idea

Phase Transitions and the Renormalization Group

Critical exponents in quantum Einstein gravity

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Complex Systems Methods 9. Critical Phenomena: The Renormalization Group

Renormalization Group for the Two-Dimensional Ising Model

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

Introduction to Phase Transitions in Statistical Physics and Field Theory

Scaling Theory. Roger Herrigel Advisor: Helmut Katzgraber

Kolloquium Universität Innsbruck October 13, The renormalization group: from the foundations to modern applications

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Phase transitions and critical phenomena

Physics 127b: Statistical Mechanics. Renormalization Group: 1d Ising Model. Perturbation expansion

Lecture Notes, Field Theory in Condensed Matter Physics: Quantum Criticality and the Renormalization Group

Phase transitions and finite-size scaling

Running Couplings in Topologically Massive Gravity

Entanglement entropy and the F theorem

arxiv:cond-mat/ v4 [cond-mat.stat-mech] 19 Jun 2007

Real-Space Renormalisation

Chap.9 Fixed points and exponents

arxiv:cond-mat/ v1 4 Aug 2003

VI. Series Expansions

Renormalization Group analysis of 2D Ising model

FERMION MASSES FROM A CROSSOVER MECHANISM

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford)

8.334: Statistical Mechanics II Problem Set # 4 Due: 4/9/14 Transfer Matrices & Position space renormalization

PHYSICAL REVIEW LETTERS

Renormalization Group Equations

f(t,h) = t 2 g f (h/t ), (3.2)

An introduction to lattice field theory

arxiv:hep-th/ v2 1 Aug 2001

8.334: Statistical Mechanics II Spring 2014 Test 3 Review Problems

Landau s Fermi Liquid Theory

MCRG Flow for the Nonlinear Sigma Model

Low dimensional interacting bosons

Ising model and phase transitions

The square lattice Ising model on the rectangle

Notes on Renormalization Group: Introduction

Phase Transitions and Renormalization:

VI.D Self Duality in the Two Dimensional Ising Model

Renormalization group in stochastic theory of developed turbulence 3

Renormalization group, Kondo effect and hierarchical models G.Benfatto, I.Jauslin & GG. 1-d lattice, fermions+impurity, Kondo problem.

Non-perturbative beta-function in SU(2) lattice gauge fields thermodynamics

Asymptotically safe Quantum Gravity. Nonperturbative renormalizability and fractal space-times

NATURAL SCIENCES TRIPOS. Past questions. EXPERIMENTAL AND THEORETICAL PHYSICS Minor Topics. (27 February 2010)

Linear Theory of Evolution to an Unstable State

SHANGHAI JIAO TONG UNIVERSITY LECTURE

Scale without conformal invariance

Loop optimization for tensor network renormalization

Asymptotically free nonabelian Higgs models. Holger Gies

THE HEATED LAMINAR VERTICAL JET IN A LIQUID WITH POWER-LAW TEMPERATURE DEPENDENCE OF DENSITY. V. A. Sharifulin.

Statistical Physics. Solutions Sheet 11.

Phase transitions beyond the Landau-Ginzburg theory

Asymptotic safety in the sine Gordon model a

Ising Model and Renormalization Group

Exact Functional Renormalization Group for Wetting Transitions in Dimensions.

Interface Profiles in Field Theory

Clusters and Percolation

RG Limit Cycles (Part I)

Transverse Momentum Distributions of Partons in the Nucleon

Chapter 4. Renormalisation Group. 4.1 Conceptual Approach

Effective forces due to confined nearly critical fluctuations

Asymptotic Safety in the ADM formalism of gravity

VI.D Self Duality in the Two Dimensional Ising Model

Linking U(2) U(2) to O(4) via decoupling

Ernst Ising. Student of Wilhelm Lenz in Hamburg. PhD Thesis work on linear chains of coupled magnetic moments. This is known as the Ising model.

Renormalization group analysis for the 3D XY model. Francesca Pietracaprina

III. The Scaling Hypothesis

The glass transition as a spin glass problem

Conformal Sigma Models in Three Dimensions

arxiv: v1 [hep-th] 24 Mar 2016

Field Theory Approach to Equilibrium Critical Phenomena

Fermi Liquid and BCS Phase Transition

Renormalization-group study of the replica action for the random field Ising model

Implications of Poincaré symmetry for thermal field theories

Bayesian inverse problems with Laplacian noise

Dimensional Reduction in the Renormalisation Group:

Universal scaling behavior of directed percolation and the pair contact process in an external field

Crossover scaling in two dimensions

Towards a quantitative FRG approach for the BCS-BEC crossover

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Non-Fixed Point Renormalization Group Flow

THE RENORMALIZATION GROUP AND WEYL-INVARIANCE

8.821 String Theory Fall 2008

Newton s Method and Localization

in three-dimensional three-state random bond Potts model (α >0f for a disordered d dsystem in 3D)

Problem set for the course Skálázás és renormálás a statisztikus fizikában, 2014

21 Renormalization group

Diffusive Transport Enhanced by Thermal Velocity Fluctuations

Dilaton: Saving Conformal Symmetry

Lattice study of quantum entanglement in SU(3) Yang-Mills theory at zero and finite temperatures

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

The TT Deformation of Quantum Field Theory

Introduction to Renormalization Group

Mott metal-insulator transition on compressible lattices

Transcription:

Critical Behavior II: Renormalization Group Theor H. W. Diehl Fachbereich Phsik, Universität Duisburg-Essen, Campus Essen 1

What the Theor should Accomplish Theor should ield & explain: scaling laws # of independent critical exponents scaling laws universalit, two-scale-factor universalit determinants for universalit classes clarif to which universalit class given microscopic sstem belongs numericall accurate, experimentall testable predictions crossover phenomena corrections to asmptotic behavior 2

RG Strateg increase minimal length a a = ba such that ξ = ξ additional interaction constants! a a ' = ba ξ ˆ ξ ξ / a ξ ( ξ ) ξ a = a b ˆ ξ = ˆ ξ b large ξˆ: pert. theor fails small ˆ ξ : pert. theor works 3

RG Strateg increase minimal length a a = ba such that ξ = ξ K ( K, h) K ( K, h ) = ij = ij additional interaction constants! a a ' = ba ξ ˆ ξ ξ / a ξ ( ξ ) ξ a = a b ˆ ξ = ˆ ξ b large ξˆ: pert. theor fails small ˆ ξ : pert. theor works 3

RG Strateg increase minimal length a a = ba such that ξ = ξ K ( K, h) K ( K, h ) = ij = ij additional interaction constants! a a ' = ba ξ ˆ ξ ξ / a ξ ( ξ ) ξ a = a b ˆ ξ = ˆ ξ b large ξˆ: pert. theor fails small ˆ ξ : pert. theor works 3

Recursion Relations [ ] ( ) K K = R b K 1 [ K ] [ K ] = b [ K ] ˆ ξ ˆ ξ ˆ ξ ˆ ξ important propert: fixed point: R R = R ( b ) ( b ') ( bb ') ( ) K : K = R b K ˆ ˆ * 1 ˆ * ξ ξ K = b ξ K ˆ, T = or ξ K =, critical fixed point 4

RG Flow: 2D Ising-Model K = J / k T ; K = J / k T x x B B K 1+ K J = 2J x T = J = J x / 2 T = K x 1+ K x 5

RG Flow: 2D Ising-Model K = J / k T ; K = J / k T x x B B K 1+ K J = 2J x T = J = J x / 2 T = K x 1+ K x 5

RG Flow: 2D Ising-Model K = J / k T ; K = J / k T x x B B K 1+ K J = 2J x T = J = J x / 2 T = K x 1+ K x 5

RG Flow: 2D Ising-Model K = J / k T ; K = J / k T x x B B K 1+ K J = 2 J x T = J = J x / 2 T = K x 1+ K x 5

RG Flow: 2D Ising-Model K = J / k T ; K = J / k T x x B B K 1+ K J = 2 J x T = g τ = g i = J = J x / 2 T = K x 1+ K x 5

Schematic RG Flows in a high dimensional space stable manifold unstable direction all points on this stable basin of attraction flow to the fixed point 6

Linearization [ ] ( ) K K = R b K * K = K +δ K δ δ * ( b) * K + K = R K + K ( δ ) = R K + L δ K + O K ( b) * 2 not in general smmetric δ K = L δ K L ( ) R b j K k * K UɶL U = U δ K ( ) ( ) 1 λρ δ ρρ ; uρ 7

Linearization [ ] ( ) K K = R b K * K = K +δ K * ( b) * K + δ K = R K + δ K ( δ ) = R K + L δ K + O K ( b) * 2 not in general smmetric δ K = L δ K L ( ) R b j K k * K UɶL U = U δ K ( ) ( ) 1 λρ δ ρρ ; uρ linear scaling field ( R b) : u u = λ u ρ ρ ρ ρ RG eigenvalue 7

RG Eigenexponents & Nonlinear Scaling Fields important propert: R R = R ( b ) ( b ) ( bb ) ( b) ( b) R R p times ( λ ) : u u = u ρ ρ ρ ρ p RG eigenexponents ρ λ b ρ : = ρ 8

RG Eigenexponents & Nonlinear Scaling Fields important propert: R R = R ( b ) ( b ) ( bb ) ( b) ( b) R R p times ( λ ) : u u = u ρ ρ ρ ρ p RG eigenexponents ρ λ b ρ : = ρ (+) R b ρ ρ ρ ( ) ρ : u u = b u ρ ρ ρ > : u ± : relevant ρ < : u : irrelevant ρ = : u = marginal ρ 8

RG Eigenexponents & Nonlinear Scaling Fields important propert: R R = R ( b ) ( b ) ( bb ) ( b) ( b) R R p times ( λ ) : u u = u ρ ρ ρ ρ p RG eigenexponents ρ λ b ρ : = ρ (+) R b ρ ρ ρ ( ) ρ : u u = b u ρ ρ ρ > : u ± : relevant ρ < : u : irrelevant ρ = : u = marginal ρ nonlinear scaling fields (Wegner): satisf (+) even awa from fixed pt. g = u + C u u + ( ρ ) ρ ρ ρ ρ ρ ρ appropriate curvilinear coordinates 8

reduced free energ densit: Consequences reg sing ( K ) = ( K ) + (,, ) f f f g g 1 2 K = K + δ K d sing ( ) ( ) 1 2 1, g2, = b f g1, g2, sing f g b b ρ choose b such that b g 1, g, 1 = ± 1 > < d / ( ) ( ) sing ϕ ϕ 1, 2,, i = 1 ± 1, 2 1,, i 1 sing 1 2 f g g g g f g g g g i ϕ = i i : 1 crossover exponent if ϕ i < 9

reduced free energ densit: Consequences reg sing ( K ) = ( K ) + (,, ) f f f g g 1 2 K = K + δ K d sing ( ) ( ) 1 2 1, g2, = b f g1, g2, sing f g b b ρ choose b such that b g 1, g, 1 = ± 1 > < d / sing ( ) ( ϕ ϕ ) 1, 2,, i = 1 ± 1, 2 1,, i 1 sing 1 2 f g g g g f g g g g i ϕ = i i : 1 crossover exponent if ϕ i < d / ( ϕ ) sing τ f ( g, g, ; g, ) g Y g g τ h i τ ± h τ h g gτ τ + c δµ + ; g g δµ + c τ + τ h 1,1 2 h 1, sing ( ) = ( 1, ; ) Y g f g g ± h ± h irrelevant = ma be zero or!! dangerous irrelevant variables 9

Scaling Operators g g + δ g ρ ρ ρ d H H d x δ g ρ ( x) O ρ ( x) + ( x) Kadanoff, Patashinski & Pokrovskii O ρ ρ + ( x b) = b O ( x) = d ρ ρ ρ φ( x ) φ( x ) G( x ) = b G( x / b) 2( d h ) 1 2 T 12 12 c 2( d h ) ( d 2 + η ) 12 12 = 12 G( x ) x x 1

1D Ising Model H N 1 N E = = K s s h s + C k T B j j + 1 j j = 1 j = 1 K K K K K K h h h h h h h exact solution periodic bc: ( ) 2 2 Z = Tr e = e e { si =± 1} s T s = TrT ( ) H j 1 j j 1 j j j+ 1 j j+ 1 N 1 K s s + s + s h C K s s + s + s h 2 C 2 j 1 j empt graph 11

1D Ising Model H N 1 N E = = K s s h s + C k T B j j + 1 j j = 1 j = 1 K K K K K K h h h h h h h exact solution periodic bc: here: h =, graphical solution ( ) 2 2 Z = Tr e = e e { si =± 1} s T s = TrT ( ) H j 1 j j 1 j j j+ 1 j j+ 1 N 1 K s s + s + s h C K s s + s + s h 2 C 2 j 1 ( K s js j+ 1 ) = ( K ) + s js j+ 1 ( K ) exp cosh 1 tanh w w w w w w empt graph j 11

1D Ising Model H N 1 N E = = K s s h s + C k T B j j + 1 j j = 1 j = 1 K K K K K K h h h h h h h exact solution periodic bc: ( ) 2 2 Z = Tr e = e e { si =± 1} s T s = TrT ( ) H j 1 j j 1 j j j+ 1 j j+ 1 N 1 K s s + s + s h C K s s + s + s h 2 C 2 j 1 j here: h =, graphical solution onl even powers of s j survive ( K s js j+ 1 ) = ( K ) + s js j+ 1 ( K ) exp cosh 1 tanh w s j w w w w w empt graph ( ) (pbc) N N 1 N 1 2 cosh N 1+ Z = K w 11

1D Ising Model H N 1 N E = = K s s h s + C k T B j j + 1 j j = 1 j = 1 K K K K K K h h h h h h h exact solution periodic bc: ( ) 2 2 Z = Tr e = e e { si =± 1} s T s = TrT ( ) H j 1 j j 1 j j j+ 1 j j+ 1 N 1 K s s + s + s h C K s s + s + s h 2 C 2 j 1 j here: h =, graphical solution onl even powers of s j survive ( K s js j+ 1 ) = ( K ) + s js j+ 1 ( K ) exp cosh 1 tanh w s j w w w w w empt graph ( ) (pbc) N N 1 N 1 2 cosh N 1+ Z = K w 11

1D Ising Model Continued lim N F = ln[ 2cosh K ] smooth function of K = J/k T, B N no phase transition for T > cum G( j) si si + j = w j i i + w w w w w w j 1 2 J / kbt ξ ξ <, for all T > = ln w T e 12

1D Ising Model Continued lim N F = ln[ 2cosh K ] smooth function of K = J/k T, B N no phase transition for T > cum G( j) si si + j = w j i i + w w w w w w j 1 2 J / kbt ξ ξ <, for all T > = ln w T e ( K ) exp 2 χ = G( j) / kbt = k T T j = pseudo-transition at T = B χ 1 k B MF T k c B T / J 12

1D Ising Model Continued lim N F = ln[ 2cosh K ] smooth function of K = J/k T, B N no phase transition for T > cum G( j) si si + j = w j i i + w w w w w w j 1 2 J / kbt ξ ln w e, for all T = T ( K ) exp 2 χ = G( j) / kbt = k T T j = pseudo-transition at T = B ξ < > χ 1 k B RG-> exponential increase of ξ is characteristic of sstems at lcd MF T k c B T / J 12

Decimation K K K K K K K K trace out black spins w = w b and C ( ) ( ) K = f K artanh tanh b K b RG flow for 1D Ising model w = 1 w = C T = T = 13

Decimation K K K K K K K K trace out black spins w = w b and C ( ) ( ) K = f K artanh tanh b K b RG flow for 1D Ising model w = 1 w = C T = T = dl b = e, dl, w w ( l) dw( l) dl = w( l)ln w( l) dk dl ( l) 1 sinh 2 K ln tanh ( K ) = 2 13

Exploiting the Flow Equation τ = 1/ K dτ ( l) dl τ 2 2 ; τ, no term linear in t on rhs! l dl l 2 2 2 = = + τ τ τ ( l ) exp( l ) ( l ) exp( 2 ) ˆ ξ = ˆ ξ ˆ ξ τ exponential increase of correlation length! 2D O(n) models, nonlinear σ model: dτ ( l) dl n τ τ 2 ( 2) ;, 14

Migdal-Kadanoff Renormalization Scheme a) move bonds: H H H = + H with H = 15

Migdal-Kadanoff Renormalization Scheme a) move bonds: H H H = + H with H = K = b K 2 2 K = K 1 1 15

Migdal-Kadanoff Renormalization Scheme a) move bonds: H H H = + H with H = F F lower bound! K = b K 2 2 K = K 1 1 15

Migdal-Kadanoff Renormalization Scheme a) move bonds: H H H = + H with H = F F lower bound! K = b K 2 2 K = K 1 1 b) trace out spins: ( ) ( ) b K 1 = artanh tanh K 1 fb K1 K = K 2 2 15

Migdal-Kadanoff Renormalization Scheme Continued ( d ) Result: ( K, K ) ( K, K ) = R ( K, K ) 1 2 1 2 b, 1 1 2 c) repeat for other directions 2,, d: R R R R R ( ) ( ) ( ) ( ) ( ) b b, d b, d 1 b,2 b,1 ( d ) d 1 Result: R ( K ) = b f ( K ) R b 1 b 1 ( ) ( ) K = b f b K ; j = 2,, d ( d ) d j j 1 b j b j f b artanh tanh b 16

Migdal-Kadanoff Flow Equations dl dk( l) 1 b = e, dl, = ( d 1) K + sinh 2 ln tanh ( ) 2 K K dl β ( d, K) K K*= K c β K ( 2, K ) T = β K ( 1, K ) K β K ( 1/ 2, K ) 17

Migdal-Kadanoff Flow Equations dl dk( l) 1 b = e, dl, = ( d 1) K + sinh 2 ln tanh ( ) 2 K K dl β ( d, K) K d [ K ] = 2 : sinh = 1 1 K = ln 1 + 2 c 2 exact! c T = K*= K c β K β K ( 2, K ) ( 1, K ) K reason: MK transform. commutes with dualit transformation! β K ( 1/ 2, K ) 17

Migdal-Kadanoff Flow Equations dl dk( l) 1 b = e, dl, = ( d 1) K + sinh 2 ln tanh ( ) 2 K K dl β ( d, K) K d [ K ] = 2 : sinh = 1 1 K = ln 1 + 2 c 2 exact! c T = K*= K c β K β K ( 2, K ) ( 1, K ) K reason: MK transform. commutes with dualit transformation! β K ( 1/ 2, K ) d = 1 + ε, ε 1: K c 1 2ε integrate flow equations: ν = 1/ 1/ ε τ 17

ac H. W. Diehl (Essen): Critical Behavior II: Renormalization Group Theor Statistical Landau Theor (Landau, Ginzburg, Wilson) start with microscopic model: divide sstem into cells and coarse grain a Z = exp H { s } i { } { } { M } micro [ s ] exp [ ], = Hmicro si δ M c s j M s c j c c i = exp H c Hmicro meso [ s ] i [ M ] [ ] ([ ], ) ([ ], ) c Hmeso M c E M c T kbt S M c T h M c c = + continuum approximation: M c M c Cφ( x) + ( φ terms) i 18

Z H H. W. Diehl (Essen): Critical Behavior II: Renormalization Group Theor Mesoscopic Model = configurations [ φ ] ( φ ) D[ φ]exp H[ ] uv cutoff: Λ 2 π / ac H 1 τ u φ = φ + φ + φ hφ 2 2 4! d [ ] ( ) 2 2 4 d x V µ dimensions: [ φ] = ( d 2) / 2 2 [ τ ] = µ [ u ] = µ ε dimensionless interaction constant: u ε / 2 τ RG: e.g. Wilson s momentum shell scheme or field theor 19

Field Theor: Heuristic Considerations Λ (, ) ( x + x ) ( x ) (2) G x T φ φ cum regularized cumulants expect: G ( x, T ) x (2) ( d 2 + η ) Λ c but: G = length (2) ( d 2) Λ η ( ) ( Λ) (2) ( d 2) ϑ GΛ ( x, T ) = Λ 1+ + c C x x x ϑ > 2

Field Theor: Heuristic Considerations Λ (, ) ( x + x ) ( x ) (2) G x T φ φ cum regularized cumulants expect: G ( x, T ) x (2) ( d 2 + η ) Λ c but: G = length (2) ( d 2) Λ η ( ) ( Λ) (2) ( d 2) ϑ GΛ ( x, T ) = Λ 1+ + c C x x x ϑ > idea: limit Λ to extract asmptotic large- x behavior limit cannot be taken naivel! a) cut-off (to avoid uv divergences) reason: double role of Λ : -1 b) Λ = sole length remaining at Tc 2

Heuristic Intro To Renormalization trick: ( µ Λ) (2) η (2) Λ c µ Λ G,ren ( x, T, ) G ( x, T ) µ : arbitrar momentum scale η ( µ ) ( Λ) (2) ( d 2) ϑ GΛ,ren ( x, T, ) = 1+ + c µ C x x x c 21

Heuristic Intro To Renormalization trick: ( µ Λ) (2) η (2) Λ c µ Λ G,ren ( x, T, ) G ( x, T ) µ : arbitrar momentum scale η ( µ ) ( Λ) (2) ( d 2) ϑ GΛ,ren ( x, T, ) = 1+ + c µ C x x x Λ c Gren ( x, T, µ ) = C µ x (2) η ( d 2 + η ) c uv finite renormalized function! 21

Heuristic Intro To Renormalization trick: ( µ Λ) (2) η (2) Λ c µ Λ G,ren ( x, T, ) G ( x, T ) µ : arbitrar momentum scale η ( µ ) ( Λ) (2) ( d 2) ϑ GΛ,ren ( x, T, ) = 1+ + c µ C x x x Λ c Gren ( x, T, µ ) = C µ x (2) η ( d 2 + η ) c uv finite renormalized function! G ( x, T, µ ) = φ ( x + x ) φ ( x ) (2) ren ren ren c cum with ren ( ) 1/ 2 φ x Z φ ( x ), Z ( µ Λ) ( µ Λ) φ amplitude renormalization φ η 21

UV Divergences d 1 τ u H= d x φ φ φ 2 2 4! G ( N ) ( ) 2 2 + + 4 ( x,, x ) φ( x) φ( x ) 1 N 1 1 Gɶ ɶ q N cum ɶ ( q q ) q -1 ( N ) d = FT G 1,, N (2 π) δ j j ( q) Γ ( q) = + τ Σ( q) (2) (2) 2 2 = q + τ+ + + + 22

UV Divergences d 1 τ u H= d x φ φ φ 2 2 4! G ( N ) ( ) 2 2 + + 4 ( x,, x ) φ( x) φ( x ) 1 N 1 1 Gɶ ɶ q N ɶ cum ( ) -1 ( N ) d = FT G q1,, qn (2 π) δ q j j ( q) Γ ( q) = + τ Σ( q) (2) (2) 2 2 = q + τ+ + + + u d q Λ + C τ Λ q C n r d = 4 d d 2 d 4 1 d = d 2 2 2 q Λ (2 π ) + τ Λ + 4 τ l Λ, fo d 4 Λ ln Λ, for d = 4 22

UV Divergences d 1 τ u H= d x φ φ φ 2 2 4! G ( N ) ( ) 2 2 + + 4 ( x,, x ) φ( x) φ( x ) 1 N 1 1 Gɶ ɶ q N ɶ cum ( ) -1 ( N ) d = FT G q1,, qn (2 π) δ q j j ( q) Γ ( q) = + τ Σ( q) (2) (2) 2 2 = q + τ+ + + + q 2 ln Λ divergence u d q Λ + C τ Λ q C n r d = 4 d d 2 d 4 1 d = d 2 2 2 q Λ (2 π ) + τ Λ + 4 τ l Λ, fo d 4 Λ ln Λ, for d = 4 22

φ H. W. Diehl (Essen): Critical Behavior II: Renormalization Group Theor Renormalization d 1 τ u H= d x φ φ φ 2 2 4! 1/ 2 ren ( ) = Z φ ( ) 2 τ τ, c µ Zττ u φ = + ε = µ Z u u ( ) 2 2 + + 4 x x amplitude temperature ( mass ) coupling constant Z, Z, Z φ τ u uv divergent ln Λ for d = 4 = uv finite for d < 4 τ 2 Λ d = for 4 Λ for d < 4, c d 2 φ 4 theor: d 4 23

φ H. W. Diehl (Essen): Critical Behavior II: Renormalization Group Theor Renormalization d 1 τ u H= d x φ φ φ 2 2 4! 1/ 2 ren ( ) = Z φ ( ) 2 τ = τ, c + µ Zττ u φ ε = µ Z u u ( ) 2 2 + + 4 x x amplitude temperature ( mass ) coupling constant Z, Z, Z φ τ u uv divergent ln Λ for d = 4 = uv finite for d < 4 τ 2 Λ d = for 4 Λ for d < 4, c d 2 theorem (Bogoliubov, Parasiuk, Hepp, Zimmermann) for renormalizable theories: At an order of perturbation theor all uv singularities can be absorbed b a finite # of counterterms ( Z, Z, Z and ) such that the G are uv finite. ( N ) φ τ u τ, c ren φ 4 theor: d 4 23

RG Equations bare cumulants: independent of µ d dµ G ( x; τ, u ) ( N ) Λ = N / 2 N ( ) x τ ( µ ) ( τ ) ( N ) ( ) Gren ( x; τ, u, µ, Λ) = Zφ u, µ Λ GΛ ; τ, u,, Λ, u, u, µ, Λ µ beta fun µ 24

RG Equations bare cumulants: independent of µ d dµ G ( x; τ, u ) ( N ) Λ = N / 2 N ( ) x τ ( µ ) ( τ ) ( N ) ( ) G ren ( x ; τ, u, µ, Λ ) = Zφ u, µ Λ G Λ ; τ, u,, Λ, u, u, µ, Λ RGE: N ( N ) µ µ + βu u + ( 2 + ητ ) τ τ + ηφ ren ( ;,, ) = 2 G x u τ µ µ beta function: µ exponent functions : βu ( u, ε ) = µ u µ η ( u) = µ ln Z φ µ φ η ( u) = µ ln Z τ µ τ 24

Scale Invariance at Fixed Points assumption: ( ε u ) u * such that β, * = u RGE: N ( N ) µ µ + βu u + ( 2 + ητ ) τ τ + ηφ ren ( ;,, ) = 2 G x u τ µ ( d 2 η) ( ) (2) ( ;,, ) η + (2) ν ; G ren x u τ µ = µ x Ξ µ x τ u scale invariance for u = u*! 25

Scale Invariance at Fixed Points assumption: ( ε u ) u * such that β, * = u N ( N ) RGE: µ µ + βu u + ( 2 + η * τ ) τ τ + η * φ ren ( ;,, ) = 2 G x u τ µ ( d 2 η) ( ) (2) ( ;,, ) η + (2) ν ; G ren x u τ µ = µ x Ξ µ x τ u scale invariance for u = u*! 25

Scale Invariance at Fixed Points assumption: ( ε u ) u * such that β, * = u N ( N ) RGE: µ µ + βu u + ( 2 + η * τ ) τ τ + η * φ ren ( ;,, ) = 2 G x u τ µ dn Nη / 2 ( ) ( ) ren ( ;, τ, µ ) = µ µ Ξ µ τ ; ( N ) dn ν G x u x x u dn ( d ) = 2 2 η = η φ ( η ) ν = 1 2 + τ ( d 2 η) ( ) 1/ξ (2) ( ;,, ) η + (2) ν ; G ren x u τ µ = µ x Ξ µ x τ u scale invariance for u = u*! 25

Scale Invariance at Fixed Points assumption: ( ε u ) u * such that β, * = u N ( N ) RGE: µ µ + βu u + ( 2 + η * τ ) τ τ + η * φ ren ( ;,, ) = 2 G x u τ µ dn Nη / 2 ( ) ( ) ren ( ;, τ, µ ) = µ µ Ξ µ τ ; ( N ) dn ν G x u x x u dn ( d ) = 2 2 η = η φ ( η ) ν = 1 2 + τ ( d 2 η) ( ) 1/ξ (2) ( ;,, ) η + (2) ν ; G ren x u τ µ = µ x Ξ µ x τ u scale invariance for u = u*! nontrivial fixed points? What if u u? (generic case) 25

Beta Functions βu ε ε 4 d > ir-stable u* = ( ) O ε Gaussian fixed point for b u u * d > 4 ε = d = 4 d < 4 26

Characteristics ( b) µ µ = µ b d N ( N ) b + ηφ ( u ) ren ( ;,, ) = 2 G x u τ µ db flow equations: d b u ( b) = βu u ( b) db d b τ ( b) = 2 + η u ( b) τ b db { τ } ( ) ( 1) u b = = u τ ( b 1) = = τ u u ( b) u b ω ( u u ) ω = β u > u u u τ ( ) = [, ] τ τ b b E u u τ b E [ u, u] τ τ τ 1 ν = 2 + η τ τ nonuniversal scale factors (upon inclusion of h) h h h ( b) = b E [ u, u] τ b E [ u, u] h ( η ) ν = d + 2 φ 2 h h h 27

Upshot η ( x;, τ, µ ) = [, ] ( ) G ren x;, τ, h, µ / G u b E u u G u b ( N ) N 2 ( N ) ren ( x u τ h µ ) dn Nη 2 ( N ) b E, G u u Gren ;,,, power of E h scaling function universalit (crit. expo s, scaling functions) two-scale factor universalit u ( ) ω corrections to scaling from terms b u u 28

Upshot η ( x;, τ, µ ) = [, ] ( ) G ren x;, τ, h, µ / G u b E u u G u b ( N ) N 2 ( N ) ren ( x u τ h µ ) dn Nη 2 ( N ) b E, G u u Gren ;,,, power of E h scaling function universalit (crit. expo s, scaling functions) two-scale factor universalit u ( ) ω corrections to scaling from terms b u u spatial isotrop + short-range interactions + scale invariance -> conformal invariance! (Polakov, Belavin, Zamolodchikov, Card ) 28