The transverse spin and momentum structure of hadrons. 03/26/10 talk #3 Parton Model Gauge Links T-odd TMDs. Leonard Gamberg Penn State University

Similar documents
The transverse spin and momentum structure of hadrons. 03/26/10 talk #2 Parton Model, SIDIS & TMDs. Leonard Gamberg Penn State University

Transverse Spin Effects and k T -dependent Functions

Transverse Momentum Dependent Distribution Functions of Definite Rank

Gluonic Spin Orbit Correlations

Factorization and Factorization Breaking with TMD PDFs

(Bessel-)weighted asymmetries

TMDs and simulations for EIC

Transverse Momentum Dependent Parton Distributions

Possible relations between GPDs and TMDs

Low-x gluon TMDs, the dipole picture and diffraction

Toward the QCD Theory for SSA

TMD phenomenology: from HERMES and COMPASS to JLAB and EIC. Alexei Prokudin. Alexei Prokudin 1

arxiv:hep-ph/ v2 12 Jul 2006

QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions

Probing nucleon structure by using a polarized proton beam

NLO weighted Sivers asymmetry in SIDIS and Drell-Yan: three-gluon correlator

Gluon TMDs and Opportunities at EIC

Recent Development in Proton Spin Physics

Gluon TMDs and Heavy Quark Production at an EIC

Three-Quark Light-Cone Wave function of the Nucleon. Spin-Spin and Spin-Orbit Correlations in T-even TMDs

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.

Bessel Weighted Asymmetries Alexei Prokudin

Transverse Momentum Dependent distributions:theory...phenomenology, future

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.

TMDs at Electron Ion Collider Alexei Prokudin

TMDs and the Drell-Yan process

Factorization and Fully Unintegrated Factorization

Contribution of the twist-3 fragmentation function to single transverse-spin asymmetry in SIDIS

light-cone (LC) variables

Anomalous Drell-Yan asymmetry from hadronic or QCD vacuum effects

Transverse momentum-dependent parton distributions from lattice QCD. Michael Engelhardt New Mexico State University

Transverse Momentum Parton Distributions and Gauge Links. 31 May 2010 The College of William and Mary. Leonard Gamberg Penn State University

Quark/gluon orbital motion and nucleon spin. Alexei Prokudin. JLab December 8, Alexei Prokudin,

arxiv: v1 [hep-ph] 16 Oct 2017

Scale dependence of Twist-3 correlation functions

COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target

PARTON OAM: EXPERIMENTAL LEADS

Central Questions in Nucleon Structure

Transversity: present and future. Alessandro Bacchetta

Factorization, Evolution and Soft factors

Lattice QCD investigations of quark transverse momentum in hadrons. Michael Engelhardt New Mexico State University

QCD Collinear Factorization for Single Transverse Spin Asymmetries

Double-Longitudinal Spin Asymmetry in Single- Inclusive Lepton Scattering

Two Photon Exchange in Inclusive and Semi Inclusive DIS

Generalized Parton Distributions and Nucleon Structure

Distribution Functions

Twist Three Generalized Parton Distributions For Orbital Angular Momentum. Abha Rajan University of Virginia HUGS, 2015

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration

Spin physics at Electron-Ion Collider

Evolution of 3D-PDFs at Large-x B and Generalized Loop Space

Transverse Momentum Distributions of Partons in the Nucleon

Meson Structure with Dilepton Production

Phenomenology of Gluon TMDs

Nucleon Spin Structure: Overview

High Energy Transverse Single-Spin Asymmetry Past, Present and Future

PoS(QCDEV2015)005. Operator Structure of TMDs

Non-perturbative momentum dependence of the coupling constant and hadronic models

SSA and polarized collisions

Preliminary plan. 1.Introduction. 2.Inclusive and semi-inclusive DIS (structure functions)

Transverse momentum distributions inside the nucleon from lattice QCD

hermes Collaboration

GPDs and Quark Orbital Angular Momentum

Relations between GPDs and TMDs (?)

QCD Factorization and PDFs from Lattice QCD Calculation

Impact of SoLID Experiment on TMDs

Quark Orbital Angular Momentum

Observability of Partonic Orbital Angular Momentum. Abha Rajan PhD Advisor Dr Simonetta Liuti

arxiv: v1 [hep-ph] 30 Jan 2016 Abha Rajan

Extraction of unpolarized TMDs from SIDIS and Drell-Yan processes. Filippo Delcarro

Quark-Gluon Correlations in the Nucleon

Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India

Physics Letters B 718 (2012) Contents lists available at SciVerse ScienceDirect. Physics Letters B.

Zhongbo Kang. TMDs: Mechanism/universality with ep and pp collisions. Theoretical Division Los Alamos National Laboratory

Quark Orbital Angular Momentum

arxiv: v1 [hep-ph] 4 Aug 2010

Single Spin Asymmetry at large x F and k T

TMD Theory and TMD Topical Collaboration

Extraction of Quark Distributions on Transverse Spin of the Nucleon at the HERMES Experiment. Hidekazu Tanaka

Wigner Distributions and Orbital Angular Momentum of Quarks

Why Glauber Gluons Are Relevant?

Virtuality Distributions and γγ π 0 Transition at Handbag Level

Zhongbo Kang UCLA. The 7 th Workshop of the APS Topical Group on Hadronic Physics

Nucleon Valence Quark Structure

Studies on transverse spin properties of nucleons at PHENIX

arxiv: v3 [hep-ph] 30 Jun 2014

Measuring the gluon Sivers function at a future Electron-Ion Collider

arxiv: v1 [hep-ph] 18 Aug 2011

Present and Future Exploration of the Nucleon Spin and Structure at COMPASS

The Physics Program of CLAS12

Transversity experiment update

arxiv:hep-ph/ v3 1 Apr 2005

Gluon Spin Basics. The gluon helicity distribution in the nucleon will soon be measured... What are the foundations of this physics?

Quark Orbital Angular Momentum

Realistic parameterization of GPDs and its applications. Simonetta Liuti University of Virginia. Jlab Theory Group Seminar November 10th, 2008.

Transverse SSA Measured at RHIC

Calculation of Fragmentation Functions in Two-hadron Semi-inclusive Processes

What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems?

Measuring the gluon Sivers function at a future Electron-Ion Collider

Spin-Momentum Correlations, Aharonov-Bohm, and Color Entanglement in Quantum Chromodynamics

Nucleon spin and parton distribution functions

Transcription:

The transverse spin and momentum structure of hadrons 03/26/10 talk #3 Parton Model Gauge Links T-odd TMDs Leonard Gamberg Penn State University

T-Odd Effects From Color Gauge Inv. via Wilson Line Gauge link determined re-summing gluon interactions btwn soft and hard Efremov,Radyushkin Theor. Math. Phys. 1981 Belitsky, Ji, Yuan NPB 2003, Boer, Bomhof, Mulders Pijlman, et al. 2003-2008- NPB, PLB, PRD Φ [U[C]] (x, p T ) = dξ d 2 ξ T 2(2π) 3 eip ξ P ψ(0)u [C] [0,ξ] ψ(ξ, ξ T ) P ξ + =0 P R Summing gauge link with color LG, M. Schlegel PLB 2010 The path [C] is fixed by hard subprocess within hadronic process. d 4 pd 4 kδ 4 (p + q k)tr [ ] Φ [U C [ ;ξ] (p)h µ (p, k) (k)h ν (p, k) ξ T U [+] ξ

The Transverse Spin and Momentum Structure of Hadrons Details TMDs from parton model framework extended to incorporate transverse momentum SIDIS Transverse spin kinematics- diagramatic factorization Levelt & Levelt, Mulders &Tangerman, Kotzinian, Boer & Mulders et al. 1994,1995,1996, 1998-...

and more... Color Gauge Invariance & Links and FSI mechanism T-odd TMDS and TSSAs

Message: the PT of the hadron is small! W µν (q, P, S, P h ) a e 2 d 2 p T dp dp + (2π) 4 d 2 k T dk dk + (2π) 4 δ(p + x B P + )δ(k P h z )δ2 (p T + q T k T ) Tr [Φ(p, P, S)γ µ (k, P h )γ ν ] W µν (q, P, S, P h )= d 2 p T (2π) 4 d 2 k T (2π) 4 δ2 (p T P h z [( k T )Tr ) ( dp Φ γ µ ) ] dk + γ ν Φ(x, p T,S) dp Φ(p, P, S), p+ =x B P + (z,k T ) dk + (k, P h ) P h Small transverse momentum k = P z h!!! integration support for integrals is where transverse momentum is small- cov parton model e.g.landshoff Polkinghorne NPB28, 1971 (γ, ɛ) q (k, µ) P X (k, µ ) (p, λ) (p, λ ) (P, Λ) P X Φ (P, Λ )

Correlator is Matrix in Dirac space Φ ji (p; P, S) = d 4 ξ eip ξ (2π) 4 PS ψ i (0)ψ j (ξ) PS Φ ji (x, p T )= Φ ji (x, p T )= dp 2 Φ ji(p, P, S) p+ =xp + dξ d 2 ξ eip ξ 2(2π) 3 PS ψ i (0)ψ j (ξ) PS x+ =0 Decompose into basis of Dirac matricies 1! 5!!!!! 5 i"!#! 5 Hermiticity: Φ(p, P, S ) = γ 0 Φ (p, P, S ) γ 0, parity: Φ(p, P, S ) = γ 0 Φ( p, P, S ) γ 0 and so forth for the other vectors.

Example for Unpolarized Target Φ(p, P) = M A 1 1 + A 2 /P + A 3 /p + A 4 M σ µνp µ p ν are real scalar functions ( 2 ) with dim Use Hierarchy in hard scale P + M : 1 : M P + Keeping only leading terms in P +

Convenient to Introduce Light-Like 4-vectors Light cone 4 vectors defining the light like directions n µ + = (1, 0, 0) n µ = (0, 1, 0) e.g., q µ =( xp +, P h z, 0) = xp + n µ + P h z nµ + where n + n + =1, n ± n ± =0 and /P = P µ γ µ P + γ = P + /n +

Leading Order Result Φ(p, P) P + (A 2 + xa 3 ) /n + + P + i [ ] /n+, /p T A4, 2M Φ(x, p T ) dp Φ(p, P) = 1 2 { f 1 /n + + ih 1 [ ] /pt, /n } +. 2M { [ ]} the parton distribution functions where, f 1 (x, p 2 T ) = 2P+ dp (A 2 + xa 3 ), h 1 (x, p2 T ) = 2P+ dp ( A 4 ). clear what variables the functions depend on, it is better to introduce the symb Original work Levelt Mulders PRD49,1994&B338,1994, Mulders Tangerman PLB461,1995&NPB461,1996 T-odds Boer and Mulders PRD57,1998 For more details see Barone,Drago, Ratcliffe Phys. Rep. 359 2002 (1) Bacchetta s Ph.D thesis at http://www.jlab.org/~bacchett/index.html Most upto date listing of TMDs, Bacchetta, Diehl, Goeke, Metz, Mulders, Schlegel JHEP 0702:093,2007

Leading Twist TMDs from Correlator { Φ [γ+] (x, p T ) f 1 (x, p 2 T) + ɛij T p Ti S Tj { M f 1T (x, p 2 T) { [ ( ) ] Φ [γ+ γ 5 ] (x, p T ) λ g 1L (x, p 2 T) + p T S T M g 1T (x, p 2 T) { [ ( Φ [iσi+ γ 5 ] (x, p T ) S i T h 1T (x, p 2 T) + pi T M ( { [ ( } Avakian tableau λ h 1L(x, p 2 T) + p T S T M h 1T (x, p 2 T) ) + ɛij T p j T M h 1 (x, p 2 T) {

Integrated pdfs f(x) = d 2 p T f(x, p 2 T) Transversity h 1 (x) = d 2 p T ( h 1T (x, p 2 T) + p2 T 2M 2 h 1T (x, p 2 T) )

What about dynamics ie FSIs--- necessary for TSSAs

Gauge Invariance must be implemented in the correlators Φ ji (p; P, S) = d 4 ξ (2π) 4 eip ξ PS ψ i (0)ψ j (ξ) PS Φ ji (x, p T )= Φ ji (x, p T )= dp 2 Φ ji(p, P, S) p + =xp + dξ d 2 ξ 2(2π) 3 PS ψ i (0)ψ j (ξ) PS x+ =0 not gauge invariant

Fix: by putting gauge link between quark fields Φ [U[C]] (x, p T ) = dξ d 2 ξ T 2(2π) 3 eip ξ P ψ(0)u [C] [0,ξ] ψ(ξ, ξ T ) P ξ + =0... Φ [U[C]] (z, k T ) = dξ + d 2 ξ T 4z(2π) 3 eik ξ 0 U [C] [0,ξ] ψ(0) X; P h X; P h ψ(ξ +, ξ T ) 0 ξ =0... Φ Efremov,Radyushkin Theor. Math. Phys. 1981 Belitsky, Ji, Yuan NPB 2003, Boer, Bomhof, Mulders Pijlman, et al. 2003-2008- NPB, PLB, PRD

Must extend Parton Model result What are the leading order gluons that implement color gauge invariance? How is the correlator modified? ν q µ k P h H ρ,ν = γ ν H ρν;a (k) H µ p p 1 p 1 p P Φ aρ A (p,p 1)

Jet SIDIS p k P (z,k T ) (/k + m)δ(z 1)δ (2) (k 2 T ) W µν (q, P, S, P jet ) = Tr (Φ(x, p T ) γ µ (/k + m)γ ν ) Note, leave unintegrated on pt see Boer Pijlman and Mulders NPB667 2003

Leading order contribution p p 1 P k p 1 p 1 Assumptions: 1) parton lines connecting to soft blob are approx. on shell 2) parton lines approx. colinear with parent hadron 3) these assumption are exploited by using light-like vectors such that Light cone 4 vectors n µ + = (1, 0, 0) n µ = (0, 1, 0) P µ = P + n µ + + O(M 2 /P + )n µ P µ h = P h nµ + O(M 2 /P h )nµ + where n + n + =1, n ± n ± =0

Leading order contribution cont. k p 1 p p 1 p 1 P Jet SIDIS W µν (q, P, S, P h ) dp d 4 p 1 Tr ( γ α ) /k /p 1 + m (k p 1 ) 2 m 2 + iɛ γν Φ α A(p, p p 1 )γ µ (/k + m) quark gluon correlation function Φ α A(p, p p 1 ) = d 4 ξ (2π) 4 d 4 η (2π) 4 eiξ (p p 1) e iη p 1 P, S ψ i (0)gA α (η)ψ j (ξ) P, S

Look for the leading contribution from hadronic tensor k p 1 p p 1 p 1 P W µν (q, P, S, P h ) dp dp + 1 d2 p 1 d 4 ξ dη d 2 η eiξ (p p 1) (2π) 4 (2π) 3 e iη p 1 P, S ψ i (0)γ µ /k /p 1 + m (/k + m)γ α (k p 1 ) 2 m 2 + iɛ γν ga α (η)ψ j (ξ) P, S η+ =ξ +,p + =xp +

perform the following steps which I will be glad to go over with you 1) p δ(ξ + ) 2) p 1 δ(η + ) 3) also now k + = q + + p + = xp + + p + =0

Look for dominant contribution /k /p 1 + m (k p 1 ) 2 m 2 + iɛ γ+ k γ p + 1 /p 1T + m k+ =0 2p + 1 k + iɛ γ + k 2p + 1 k + iɛ = 1 2 γ + p + 1 + iɛ

Projecting A + Gluons (/k + m)γ α γ + p + 1 + ga α iɛγν (k γ + )γ γ + p + 1 + ga + iɛγν = k γ+ ga + p + 1 + iɛγν γ ± = γ0 ± γ 3 2 Note: ( 1 2 γ γ + ) 2 = 1 2 γ γ + (γ + ) 2 =(γ ) 2 =0

So here we are... W µν (q, P, S, P h ) dp + 1 d2 p 1 dξ d 2 ξ T (2π) 3 P, S ψ i (0)γ µ k γ+ ga + p + 1 + ψ j (ξ) P, S iɛγν dη d 2 η (2π) 3 eiξ (p p 1) e iη p 1 η+ =ξ + =0,p + =xp +

Finally we use these integrals d 2 p 1 e ip 1T (η T ξ T ) = (2π) 2 δ 2 (η T ξ T ) dp + 1 eip+ 1 (η ξ ) ga + p + 1 iɛ =2πigA+ (η)θ(η ξ )

Corresponds to the O(g) term in expansion of long. part of gauge link W µν (q, P, S, P h ) dξ d 2 ξ T (2π) 3 dη d 2 η (2π) 3 eiξ P, S ψ i (0)γ µ γ + γ ν ( ig) ξ A + [ ] (η)ψ j (ξ) P, S η + =ξ + =0,η T =ξ T,p + =xp + U [,ξ] [ = P exp ig ξ ] dη A + (η, 0, ξ T ) 1 ig ξ dη A + (η, 0, ξ T )

Not the full story: the transverse gluon field at infinity does not vanish and there are leading contributions to the gauge link that must be included Ji and Yuan PLB 543, 2002, Boer Mulders Pijlman NPB667 2003 dp dξ ξt eip ξ P, S ψ(0) γ (2π) 4 µ γ + γ ν ( ig) dη T A T (, η +, η T ) ψ(ξ) P, S, T η + =0; η T =ξ T (4.27) see also A. Bacchetta Trento Lecutre Notes

Taking into account multiple exchange and summing all terms yields the gauge invariant correlator Φ ji (p; P, S) = dξ d 2 ξ T (2π) 3 e ip ξ PS ψ j (0)U [0, ;0] U [,ξ,ξ T ] ψ i(ξ) PS ξ+ =0 ξ T (ξ, 0, ξ ) ξ gauge link in SIDIS

IDIS Hadronic Tensor Drell-Yan Hadronic Tensor (ξ, 0, ξ ) ξt (ξ, 0, ξ ) ξt T-Odd Effects From Color Gauge Inv. via Wilson Line T-Odd Effects From Color Gauge Inv. via Wilson Line Gauge link for TMDs [ ] pastpointing Generalized Universality Φ[+] futurepointing Fund. ξ ξ fφ1t (x, k ) = f T 1TDY (x, kt ) SIDIS Prediction of QCD Leading twist Gauge Invariant Distribution Functions Leading twist Gauge Invariant Distribution Functions link for TMDs Gauge "! 2 Boer, Mulders: 2000, & Pijlman (BPM) NPB" 2003, Belitsky Ji Yuan NPB 20 dξ dnpb ξtpijlman Boer, Mulders: NPB 2000, & (BPM) NPB 2003, Belitsky Ji Yuan NPB 2003 ip ξ PLB " Process Collins 02, Brodsky, Hwang, Schmidt NPB 02 Φij (x, pt Dependence )= e!p ψ (0)U ψ (ξ) P " j [0,ξ] i " 3 8π + TMDs µν dσ = L W ξ =0! µν µν dσ = Lµν W dξ d2 ξ " ξt "!"#"! "... (0)U [0,ξ] ψi (ξ) P ""... ξ Φ ξ + =0 Φ "! 2 " dξ d ξt ip ξ!"#"! " = e!p ψ (0)U ψ (ξ) P " j i [0,ξ] "+ 8π 3 ξ =0 ξt SIDIS Hadronic Tensor U #$%&&'()* SIDIS Hadronic [+] Tensor ξ ξt T (ξ, 0, ξ ) ξt ξ ξ!+,-+.)/$-*0 (ξ, 0, ξ ) P&T ξ U[+] #$%&&'()* Φ 3 8π Φ ψ j (0)U[0,ξ] ψi eip ξ!p U[+]... Φ ξt... Φ ξ Drell-Yan Hadronic Tens U [ ] Drell-Yan Hadronic Tensor ξt ξt, 0, ξ ) (ξ ξt (ξ, 0, ξ ) ξ ξ Process Dependence Collins PLB 02, Brodsky, Hwang, Schmidt N U[!] U[+] U[ ] f (x, k ) = f (x, kt ) T 1T 1T SIDIS DY Process Dependence Collins PLB 02, Brodsky, Hwang, Schmidt NPB 02 ξ Φ[+] futurepointing Φ[+] futurepointing ξt ξ Process Dependence ξt T Φij (x, pt ) = Φ[ ] pastpointing Φ[ ] pastpointing ξ 1+0%2%$)&+-,.%$0 Collins PLB 02, Brodsky, Hwang, Schmidt NPB 02 3 U[ ] = iγ 1γ"#$%#&'()*+,-./'(012+$34'(05"(678(9:;<( Φ [ ](x, pt )iγ 1γ 3 Φ[+] (x, pt )!!+,-+.)/$-*0 ξ ξt ξ

Mechanism FSI produce phases in TSSAs at Leading Twist Brodsky, Hwang, Schmidt PLB: 2002 SIDIS w/ transverse polarized nucleon target e p eπx Collins PLB 2002- Gauge link Sivers function doesn t vanish Ji, Yuan PLB: 2002 -Sivers fnct. FSI emerge from Color Gauge-links LG, Goldstein, Oganessyan 2002, 2003 PRD Boer-Mulders Fnct, and Sivers -spectator model LG, M. Schlegel, PLB 2010 Boer-Mulders Fnct, and Sivers beyond summing the FSIs through the gauge link

Summary These lecture notes serve as an overview/introduction to T-odd effects in TSSAs T-odd TMD PDFs contain the essential ingredients to describe TSSAs at moderate PT Such effects are the object of present/future experimental studies, Hall A & CLAS (Hall B) JLAB 12 GeV upgrade will be an critical to these studies An EIC presents future opportunity to deepen our understanding of T-odd effects by increased luminosity and range in Q 2