Control of Spin Systems

Similar documents
Introduction to Relaxation Theory James Keeler

Spin Relaxation and NOEs BCMB/CHEM 8190

Chemistry 431. Lecture 23

Spectral Broadening Mechanisms

NMR Spectroscopy: A Quantum Phenomena

The NMR Inverse Imaging Problem

The Physical Basis of the NMR Experiment

NMR, the vector model and the relaxation

Biophysical Chemistry: NMR Spectroscopy

Classical behavior of magnetic dipole vector. P. J. Grandinetti

NMR course at the FMP: NMR of organic compounds and small biomolecules - II -

BCMB/CHEM Spin Operators and QM Applications

Measuring Spin-Lattice Relaxation Time

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

Classical Description of NMR Parameters: The Bloch Equations

INTRODUCTION TO NMR and NMR QIP

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in:

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons

A Hands on Introduction to NMR Lecture #1 Nuclear Spin and Magnetic Resonance

T 1, T 2, NOE (reminder)

Relaxation. Ravinder Reddy

Classical Description of NMR Parameters: The Bloch Equations

Magnetic Resonance Spectroscopy EPR and NMR

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft

CHEM / BCMB 4190/6190/8189. Introductory NMR. Lecture 10

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

Lecture #6 NMR in Hilbert Space

10.4 Continuous Wave NMR Instrumentation

Principles of Magnetic Resonance Imaging

PRACTICAL ASPECTS OF NMR RELAXATION STUDIES OF BIOMOLECULAR DYNAMICS

Topics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging

Biophysical Chemistry: NMR Spectroscopy

Density Matrix Second Order Spectra BCMB/CHEM 8190

( r) = 1 Z. e Zr/a 0. + n +1δ n', n+1 ). dt ' e i ( ε n ε i )t'/! a n ( t) = n ψ t = 1 i! e iε n t/! n' x n = Physics 624, Quantum II -- Exam 1

Nuclear Magnetic Resonance Imaging

Biophysical Chemistry: NMR Spectroscopy

5.61 Physical Chemistry Lecture #35+ Page 1

5.61 Physical Chemistry Lecture #36 Page

MRI Physics I: Spins, Excitation, Relaxation

Physical Background Of Nuclear Magnetic Resonance Spectroscopy

1 Magnetism, Curie s Law and the Bloch Equations

Chem343 (Fall 2009) NMR Presentation

Nuclear Magnetic Resonance Spectroscopy

Biochemistry 530 NMR Theory and Practice

Superoperators for NMR Quantum Information Processing. Osama Usman June 15, 2012

NMR Dynamics and Relaxation

Lecture #6 (The NOE)

Spin. Nuclear Spin Rules

V27: RF Spectroscopy

BCMB / CHEM 8190 Biomolecular NMR GRADUATE COURSE OFFERING IN NUCLEAR MAGNETIC RESONANCE

Fundamental MRI Principles Module Two

Introduction to NMR for measuring structure and dynamics + = UCSF Macromolecular Interactions. John Gross, Ph.D.

NMR Imaging in porous media

Introduction to 1D and 2D NMR Spectroscopy (4) Vector Model and Relaxations

Origin of Chemical Shifts BCMB/CHEM 8190

Solution Set 3. Hand out : i d dt. Ψ(t) = Ĥ Ψ(t) + and

Spin. Nuclear Spin Rules

NMR Relaxation and Molecular Dynamics

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

Timescales of Protein Dynamics

Midterm Exam: CHEM/BCMB 8190 (148 points) Friday, 3 March, 2017

Optimizing Phases of CPMG Pulse Sequence and Applying Exact Solution to Measure Relaxation Time

Magnetic Resonance Imaging in a Nutshell

Physical fundamentals of magnetic resonance imaging

Biomedical Imaging Magnetic Resonance Imaging

An introduction to Solid State NMR and its Interactions

Physics 221A Fall 1996 Notes 13 Spins in Magnetic Fields

NMR Spectroscopy. Guangjin Hou

PRACTICAL ASPECTS OF NMR RELAXATION STUDIES OF BIOMOLECULAR DYNAMICS

Timescales of Protein Dynamics

Fluorescence Spectroscopy

The Nuclear Emphasis

Nuclear magnetic resonance spectroscopy

Slow symmetric exchange

Shortest Paths for Efficient Control of Indirectly Coupled Qubits

The Basics of Magnetic Resonance Imaging

e 2m p c I, (22.1) = g N β p I(I +1), (22.2) = erg/gauss. (22.3)

INTRODUCTION TO NMR and NMR QIP

K ex. Conformational equilibrium. equilibrium K B

Spin-spin coupling I Ravinder Reddy

Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori

NMR Spectroscopy. for 1 st B.Tech INTRODUCTION Lecture -1 Indian Institute of Technology, Dhanbad

Nuclear Magnetic Resonance (NMR)

ν 1H γ 1H ν 13C = γ 1H 2π B 0 and ν 13C = γ 13C 2π B 0,therefore = π γ 13C =150.9 MHz = MHz 500 MHz ν 1H, 11.

Experimental Realization of Shor s Quantum Factoring Algorithm

NMR Spectroscopy of Polymers

How NMR Works Section I

Nuclear Magnetic Resonance

PROTEIN NMR SPECTROSCOPY

COPYRIGHTED MATERIAL. Production of Net Magnetization. Chapter 1

MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY

Magnetic Resonance Imaging

Determining Protein Structure BIBC 100

Magnetic Resonance Imaging (MRI)

Decoupling Theory and Practice

NMR BMB 173 Lecture 16, February

Origin of Chemical Shifts BCMB/CHEM 8190

Relaxation, Multi pulse Experiments and 2D NMR

NMR Spectroscopy. Structural Analysis. Rainer Wechselberger 2009

Transcription:

Control of Spin Systems

The Nuclear Spin Sensor Many Atomic Nuclei have intrinsic angular momentum called spin. The spin gives the nucleus a magnetic moment (like a small bar magnet). Magnetic moments precess in a magnetic field at a precession frequency that depends on the magnetic field strength. The spins are therefore beautiful, very localized (angstrom resolution) probes of local magnetic fields. The chemical environment of a nucleus in a molecule effects the local magnetic field on the nucleus. Probing spins with radio frequency magnetic fields and observing them gives information about chemical environment of the nuclei in a non-invasive way. Therefore field of nuclear magnetic resonance is the single most important analytical tool in science.

The magnetic moment of a single nuclear spin is too weak to detect. The spins are generally detected in the Bulk by making them precess coherently. The precession of nuclear spins is detected or observed by a Magnetic resonance technique.

NOE 1 6 r IS ω = γb (1 0 S σ) I H r IS B 0 M dm = γ M B dt B0 ω0 = γ B 0 y Brf () t M x

Chemistry Pharmaceuticals Life Science Imaging Food Material Research Process Control

One dimensional spectrum

st ( ) = η exp( Rt )exp( Rt)cos(2 πν t)cos(2 πν t ) I 2 s 1 S 1 I 2

Relaxation Optimized Coherent Spectroscopy Singular Optimal Control Problems

Transfer of Polarization Interactions ν I B 0 I z IS z z S ν S (D) J I B (t) rf Spin Hamiltonian: H + H (t) 0 rf

Random collisions with solvent molecules causes stochastic tumbling of the protein molecules S B0 I θ Brf () t C( τ) exp( τ / τ c ) τ J ( ω) 1 +ωτ ωτ c >> 2 1 c 2 2 c 1 πt = k J(0) Spin Diffusion Limit

Optimal Control in Presence of Relaxation d dt d dt x 0 ut () x 1Iz 0 ut () Iz1 I x ut () x I 2 ut () k J x 2 = = 2IS y z () 2IS y z x 3 J k vt () x 3 2IS 0 x z z vt () 0 2 IS x z z 4 4 1 0 0 0 0 0 0 η x x 3 2 2IS y z = =η I x

The control problem

Relaxation Optimized Pulse Elements (ROPE) ur ur 2 2 11 =η

Comparison S x

Iz 0 ut () Iz I x ut () k J d Ix = dt 2IS y z J k vt () 2IS y z 2IS vt () 0 z z 2IS z z

Finite Horizon Problem

Experimental Results H HC z z z Khaneja, Reiss, Luy, Glaser JMR(2003)

Cross-Correlated Relaxation S I S k a k + k kc a c B0 I θ Brf () t ββ βα ν I J 2 ν + I J 2 αβ αα

Optimal control of spin dynamics in the presence of Cross-correlated Relaxation I z IS z z r 1 r 2 β 1 I y β 2 IS y z l 1 l 2 I x IS x z Iz Iz 0 u v 0 0 0 Ix I u k 0 0 x a J k c d Iy v 0 ka kc J 0 Iy dt = IS 0 J kc ka 0 v y z IS y z 0 kc J 0 IS ka u x z IS x z 0 0 0 v u 0 IS z z IS z z

l l 2 1 = η = 1 + ξ 2 ξ ξ = k k 2 a 2 c + k J 2 c 2 Khaneja, Luy, Glaser PNAS(2003)

Khaneja, Luy, Glaser PNAS(2003)

TROPIC: Transverse relaxation optimized polarization transfer induced by cross-correlated relaxation. Groel Protein: 800KDa Room Temperature J = 93 Hz Proton Freq = 750Mhz Ka = 446 Hz Kc = 326 Hz Frueh et. al Journal of Biomolecular NMR (2005)

Control of Bloch Equations d dt x 0 ω0 ut () x y = ω0 0 vt () y z ut () vt () 0 z A 2 2 u v A + ω 0 M dm = γ M B dt B0 ω0 = γ B 0 B 0 x y Brf () t M

d dt Broadband Excitation x 0 ω εut () x y = ω 0 εvt () y z εut () εvt () 0 z 2 2 u + v A ε [1 δ,1 + δ] M dm = γ M B dt B0 ω0 = γ B 0 B 0 x y Brf () t M

Inhomogeneous Ensemble of Bloch Equations d dt x 0 ω εut () x y = ω 0 εvt () y z εut () εvt () 0 z g( ω) ω [ ω B, ω + B] 0 0 f ( ε ) ε [1 δ,1 + δ]

Robust Control Design d dt x 0 0 εvt () x y = 0 0 εut () y z εvt () εut () 0 z ( π ) y π π ( ) ( π ) ( ) 2 2 y x y dx dt = ε [ ut () Ω + vt () Ω ] X x y z ε [1 δ,1 + δ] y x

Robust Control Design by Area Generation dx dt = ε [ ut () Ω + vt () Ω ] X x y U ( t) = exp( Ω ε t)exp( Ω ε t)exp( εω t)exp( εω t) ε I + Ω Ω 2 ( t)[ ε x, ε y] 2 ε Ω z y x y x U ( t)exp( Ω ε tu ) ( t)exp( εω t) ε I + Ω Ω Ω 2 ( t) [ ε x[ ε x, ε y]] 3 x ε Ω y ε x

Lie Algebras, Areas and Robust Control Design Using εω, ε Ω, ε + Ω 3 2k 1 y y, y as generators Choose f ( ε ) f ( ε) = ckε + k 2k 1 such that it is approx. constant for ε [1 δ,1 + δ] exp( f ( ε ) Ω y ) Θ ( ε) = exp( f ( ε) Ω )exp( f ( ε) Ω )exp( f ( ε) Ω ) 1 x 2 y 3 x

B. Pryor, N. Khaneja Journal of Chemical Physics (2006). Fourier Synthesis Methods for Robust Control Design βk U1 = exp( kπεωx)exp( ε Ωy)exp( kπεωx) 2 βk = exp( ε (cos( kπε ) Ω y + sin( kπε ) Ωz)) 2 βk U2 = exp( kπεωx)exp( ε Ωy)exp( kπεωx) 2 βk = exp( ε (cos( kπε ) Ωy sin( kπε ) Ωz)) 2 UU 1 2 = exp( εβk cos( kπε ) Ω y) 1 ε k β cos( kπε ) k ε θ = ε

Fourier Synthesis Methods for Compensation

Time Optimal Control of Quantum Systems K U F k = { ih j } LA K = exp(k) du(t) dt U(0) m G = i[h d + u j H j ]U(t); U(0) = I j=1 Minimum time to go from U(0) to U is the F same as minimum time to go from KU(0) to KU F Khaneja, Brockett, Glaser, Physical Review A, 63, 032308, 2001

Example U = -i λ 1 + i u i B i U λ n B i ss n, U SU(n)

This image cannot currently be displayed. Control Systems on Coset Spaces G/K is a Riemannian Symmetric Space The velocities of the shortest paths in G/K always commute!

Cartan Decompositions, Two-Spin Systems and Canonical Decomposition of SU(4) Interactions S ν S (D) J I α = σ α I ; S α = I σ α ; I α S β = σ α σ β ; I ν I Spin Hamiltonian: H + H (t) 0 rf B 0 B (t) rf G = SU(4); K = SU(2) SU(2) σ x = 1 2 0 1 1 0 ; σ = 1 y 2 0 i i 0 ; σ z = 1 1 0 2 0 1

Geometry, Control and NMR

Reiss, Khaneja, Glaser J. Mag. Reson. 165 (2003) Khaneja, et. al PRA(2007)

Collaborators Steffen Glaser Niels Nielsen Gerhard Wagner Robert Griffin James Lin Jamin Sheriff Philip Owrutsky Mai Van Do Paul Coote Haidong Yuan Jr Shin Li Brent pryor Arthanari Haribabu