Conformal foliations

Similar documents
Conformal foliations and CR geometry

Conformal foliations and CR geometry

Projective space and twistor theory

Classification problems in conformal geometry

The Elements of Twistor Theory

The X-ray transform: part II

Description of a mean curvature sphere of a surface by quaternionic holomorphic geometry

SHEAR-FREE RAY CONGRUENCES ON CURVED SPACE-TIMES. Abstract

The X-ray transform on projective space

H-projective structures and their applications

Minimal surfaces in quaternionic symmetric spaces

Constructing compact 8-manifolds with holonomy Spin(7)

The Strominger Yau Zaslow conjecture

A Class of Discriminant Varieties in the Conformal 3-Sphere

Parabolic geometry in five dimensions

η = (e 1 (e 2 φ)) # = e 3

Representation theory and the X-ray transform

arxiv:math-ph/ v1 31 Oct 2001

DIFFERENTIAL GEOMETRY AND THE QUATERNIONS. Nigel Hitchin (Oxford) The Chern Lectures Berkeley April 9th-18th 2013

LECTURE 5: COMPLEX AND KÄHLER MANIFOLDS

A Joint Adventure in Sasakian and Kähler Geometry

Contact pairs (bicontact manifolds)

Hard Lefschetz Theorem for Vaisman manifolds

Dirac structures. Henrique Bursztyn, IMPA. Geometry, mechanics and dynamics: the legacy of J. Marsden Fields Institute, July 2012

Transport Continuity Property

Conformally invariant differential operators

Super-conformal surfaces associated with null complex holomorphic curves

A Crash Course of Floer Homology for Lagrangian Intersections

Holonomy groups. Thomas Leistner. Mathematics Colloquium School of Mathematics and Physics The University of Queensland. October 31, 2011 May 28, 2012

Some new torsional local models for heterotic strings

TOTALLY REAL SURFACES IN THE COMPLEX 2-SPACE

Riemannian and Sub-Riemannian Geodesic Flows

From holonomy reductions of Cartan geometries to geometric compactifications

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1

Moduli Space of Higgs Bundles Instructor: Marco Gualtieri

Space of surjective morphisms between projective varieties

arxiv: v1 [math.dg] 1 Jul 2014

THE GEOMETRY OF B-FIELDS. Nigel Hitchin (Oxford) Odense November 26th 2009

Projective parabolic geometries

How to recognize a conformally Kähler metric

SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY

KODAIRA DIMENSION OF LEFSCHETZ FIBRATIONS OVER TORI

Conformal Submersions of S 3

Harmonic Morphisms from Complex Projective Spaces*

How to recognise a conformally Einstein metric?

HYPERKÄHLER MANIFOLDS

Infinitesimal Einstein Deformations. Kähler Manifolds

VERY STABLE BUNDLES AND PROPERNESS OF THE HITCHIN MAP

Bubble Tree Convergence for the Harmonic Sequence of Harmonic Surfaces in CP n

Algebraic geometry over quaternions

Two simple ideas from calculus applied to Riemannian geometry

Introduction to Minimal Surface Theory: Lecture 2

Conformal and CR Geometry from the Parabolic Viewpoint

Background on c-projective geometry

New constructions of Hamiltonian-minimal Lagrangian submanifolds

Riemannian Lie Subalgebroid

THE CANONICAL BUNDLE AND REALIZABLE CR HYPERSURFACES

LIMITING CASES OF BOARDMAN S FIVE HALVES THEOREM

Super-conformal surfaces associated with null complex holomorphic curves

GEOMETRY OF GEODESIC SPHERES IN A COMPLEX PROJECTIVE SPACE IN TERMS OF THEIR GEODESICS

Cohomogeneity one hypersurfaces in CP 2 and CH 2

Holonomy groups. Thomas Leistner. School of Mathematical Sciences Colloquium University of Adelaide, May 7, /15

Hopf hypersurfaces in nonflat complex space forms

ON THE GEOMETRY OF CONFORMAL FOLIATIONS WITH MINIMAL LEAVES

ON THE GAUSS CURVATURE OF COMPACT SURFACES IN HOMOGENEOUS 3-MANIFOLDS

ERRATA FOR INTRODUCTION TO SYMPLECTIC TOPOLOGY

Mathematische Annalen

SYMPLECTIC MANIFOLDS, GEOMETRIC QUANTIZATION, AND UNITARY REPRESENTATIONS OF LIE GROUPS. 1. Introduction

TWISTORS AND THE OCTONIONS Penrose 80. Nigel Hitchin. Oxford July 21st 2011

arxiv: v2 [math.dg] 3 Sep 2014

Orthogonal Complex Structures and Twistor Surfaces

On the Dimension of the Stability Group for a Levi Non-Degenerate Hypersurface

MINIMAL VECTOR FIELDS ON RIEMANNIAN MANIFOLDS

BIHARMONIC SUBMANIFOLDS OF GENERALIZED COMPLEX SPACE FORMS 1. INTRODUCTION

CONSIDERATION OF COMPACT MINIMAL SURFACES IN 4-DIMENSIONAL FLAT TORI IN TERMS OF DEGENERATE GAUSS MAP

Real hypersurfaces in a complex projective space with pseudo- D-parallel structure Jacobi operator

The geometry of hydrodynamic integrability

SUBTANGENT-LIKE STATISTICAL MANIFOLDS. 1. Introduction

ADAPTED COMPLEX STRUCTURES AND GEOMETRIC QUANTIZATION

1 Introduction and preliminaries notions

Stable bundles on CP 3 and special holonomies

ALF spaces and collapsing Ricci-flat metrics on the K3 surface

Complexes of Hilbert C -modules

Topic: First Chern classes of Kähler manifolds Mitchell Faulk Last updated: April 23, 2016

CONFORMAL CIRCLES AND PARAMETRIZATIONS OF CURVES IN CONFORMAL MANIFOLDS

TWISTOR AND KILLING FORMS IN RIEMANNIAN GEOMETRY

A Brief History of Morse Homology

On the 5-dimensional Sasaki-Einstein manifold

ON THE MEAN CURVATURE FUNCTION FOR COMPACT SURFACES

Minimal Log Discrepancy of Isolated Singularities and Reeb Orbits

Invariant differential operators on the sphere

X-RAY TRANSFORM ON DAMEK-RICCI SPACES. (Communicated by Jan Boman)

ALF spaces and collapsing Ricci-flat metrics on the K3 surface

LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES

Transparent connections

The parallelism of shape operator related to the generalized Tanaka-Webster connection on real hypersurfaces in complex two-plane Grassmannians

Null Cones to Infinity, Curvature Flux, and Bondi Mass

Lagrangian Submanifolds with Constant Angle Functions in the Nearly Kähler S 3 S 3

Cobordant differentiable manifolds

Complete Constant Mean Curvature surfaces in homogeneous spaces

Transcription:

Séminaire au Laboratoire J.A. Dieudonné de l Université Nice Sophia Antipolis p. 1/17 Conformal foliations Michael Eastwood [joint work with Paul Baird] Australian National University

Séminaire au Laboratoire J.A. Dieudonné de l Université Nice Sophia Antipolis p. 2/17 Disclaimers and references R.P. Kerr, I. Robinson,... 1961 R. Penrose and W. Rindler, Spinors and Space-time vol. 2, Chapter 7, Cambridge University Press 1986 P. Baird and J.C. Wood, Harmonic morphisms and shear-free ray congruences (2002), http://www.maths.leeds.ac.uk/pure/staff/wood/bwbook/bwbook.html P. Baird and J.C. Wood, Harmonic Morphisms between Riemannian Manifolds, Oxford University Press 2003 P. Baird and R. Pantilie, Harmonic morphisms on heaven spaces, Bull. Lond. Math. Soc. 41 (2009) 198 204 P. Nurowski, Construction of conjugate functions, Ann. Glob. Anal. Geom. 37 (2010) 321 326 P. Baird and M.G. Eastwood, CR geometry and conformal foliations, http://arxiv.org/abs/1011.4717

Séminaire au Laboratoire J.A. Dieudonné de l Université Nice Sophia Antipolis p. 3/17 Conjugate functions f=f (q, r, s) g=g(q, r, s) s.t. f= q g=r { f, g =0 f 2 = g 2 f= q 2 r 2 s 2 g=2q r 2 + s 2 f= r q2 + r 2 + s 2 g= s q2 + r 2 + s 2 r 2 + s 2 r 2 + s 2 f= (1 q2 r 2 s 2 )r+ 2qs r 2 + s 2 g= (1 q2 r 2 s 2 )s 2qr r 2 + s 2 R 3 S 3 R 2 S 2 Hopf

Séminaire au Laboratoire J.A. Dieudonné de l Université Nice Sophia Antipolis p. 4/17 The implicit function theorem If M N is a hypersurface ( non-singular) Then M={ f= 0} locally ( non-degenerate) OK if M and N are smooth ( f smooth) OK if M and N are complex ( f holomorphic) What if M and N are CR? ( f CR)? Yes if M and N are also real-analytic No in general!

Séminaire au Laboratoire J.A. Dieudonné de l Université Nice Sophia Antipolis p. 5/17 CR geometry H T M and J : H Hsuch that J 2 = Id ( rank R H is even) [H 0,1, H 0,1 ] H 0,1 where H 0,1 {X JX= ix} Examples H= T M where M is a complex manifold M 2n 1 C n and H T M JT M, a CR manifold of hypersurface type Q {[Z] CP 3 Z 1 2 + Z 2 2 = Z 3 2 + Z 4 2 }, the Levi-indefinite hyperquadric incp 3 f : M Cis a CR function X f= 0 X Γ(H 0,1 )

Séminaire au Laboratoire J.A. Dieudonné de l Université Nice Sophia Antipolis p. 6/17 CR functions {[Z] CP 2 Z 1 2 + Z 2 2 = Z 3 2 }= three-sphere CP 2......... Theorem (H. Lewy 1956) CR holomorphic extension {[Z] CP 3 Z 1 2 + Z 2 2 = Z 3 2 + Z 4 2 }=Q......... CP 3 Corollary CR holomorphic extension Hence, a CR function on Q is real-analytic!

Séminaire au Laboratoire J.A. Dieudonné de l Université Nice Sophia Antipolis p. 7/17 CR submanifolds of Q Suppose Q open Ω f C is a CR function. Then M { f= 0} Ωis a CR submanifold, i.e. T M H is preserved by J. Conversely, suppose M Ω open Q is a 3-dim l CR submanifold M is real-analytic. Then M= M Q for M CP 3 a complex hypersurface M={ f= 0} for f :Ω C CR and real-analytic. Q: Can we drop real-analyticity? A: NO

Séminaire au Laboratoire J.A. Dieudonné de l Université Nice Sophia Antipolis p. 8/17 Conformal foliations U= unit vector field onω open R 3. U ω=0 ω,ω =0 ω dω=0 U is transversally conformal L U preserves the conformal metric orthogonal to its leaves h isothermal coördinates C h= f+ ig d f, dg =0 d f 2 = dg 2 dh, dh = 0 dh=ω ω,ω =0 dω=0 conjugate functions!

Séminaire au Laboratoire J.A. Dieudonné de l Université Nice Sophia Antipolis p. 9/17 Integrable Hermitian structures Suppose J : TR 4 TR 4 satisfies J 2 = Id 0 u v w u 0 w v J= v w o u J SO(4) w v u 0 u 2 + v 2 + w 2 = 1 [T 0,1, T 0,1 ] T 0,1 where T 0,1 {X JX= ix} R 3 ={(p, q, r, s) R 4 p=0} R 4 Then U ( J p) R 3= ( u q + v r + w s) R 3 is transversally conformal.

Séminaire au Laboratoire J.A. Dieudonné de l Université Nice Sophia Antipolis p. 10/17 Twistor fibration CP 3 \{z 3 = z 4 = 0} [z 1, z 2, z 3, z 4 ] τ [ ] [ p+iq R 4 1 z2 z = 3 + z 4 z 1 r+is z 3 2 + z 4 2 z 1 z 3 z 4 z 2 τ 1 (x) { J : T x R 4 T x R 4 J 2 = Id J SO(T x R 4 ) } ] Theorem A sectionr 4 open Ω J CP 3 ofτdefines an integrable Hermitian structure if and only if M J(Ω) is a complex submanifold.

Séminaire au Laboratoire J.A. Dieudonné de l Université Nice Sophia Antipolis p. 11/17 Twistor fibration cont d CP 3 \{z 3 = z 4 = 0} [z 1, z 2, z 3, z 4 ] τ [ ] [ p+iq R 4 1 z2 z = 3 + z 4 z 1 r+is z 3 2 + z 4 2 z 1 z 3 z 4 z 2 R 3 ={p=0} τ 1 (R 3 )={[z] CP 3 R( z 2 z 3 + z 4 z 1 )=0}=Q\I τ 1 (x) {U T x R 3 U 2 =1} Q\I unit sphere bundle Theorem A sectionr 3 open Ω U Q ofτ : Q\I R 3 defines a conformal foliation if and only if M U(Ω) is a CR submanifold. ]

Séminaire au Laboratoire J.A. Dieudonné de l Université Nice Sophia Antipolis p. 12/17 The story so far Compactify: CP 3 Q=S (TS 3 ) S 4 S 3 CP 3 Q complex surface = M? M = CR three-fold Hermitian structure? conformal foliation ( ) Proofs: check in local coördinates Real-analytic case: M = M Q et cetera

Séminaire au Laboratoire J.A. Dieudonné de l Université Nice Sophia Antipolis p. 13/17 Smooth counterexample ( ) 2 ( ) 2 f f Eikonal equation: + = 1 r s Plenty of non-analytic solutions: s Γ f= signed distance toγ } f (q, r, s) = f (r, s) g(q, r, s) = q d f, dg =0 d f 2 = dg 2 r QED

Séminaire au Laboratoire J.A. Dieudonné de l Université Nice Sophia Antipolis p. 14/17 Real-analytic refinements ω= C-valued real-analytic null 1-form onω open R 3 ω dω=0 σ dω=0 σ s.t. σ,ω =0 dω=0 M CP 3 S C 4 \{0} (andπ( S )= M) S C 4 \{0} such that S is Lagrangian

Séminaire au Laboratoire J.A. Dieudonné de l Université Nice Sophia Antipolis p. 15/17 Explicit formulæ Q C R 3 (z, q, r, s) CP 3 C 3 (z, z 1, z 2 ) z 1 = (r+is)z iq z 2 = iqz (r is) ω 2z dq+i(1+z 2 ) dr+(1 z 2 ) ds ω,ω =0 ω dω=2 dz dz 1 dz 2 z=z(q, r, s) implicitly by z=φ(z 1, z 2 ) holomorphic dz= Φ z 1 dz 1 + Φ z 2 dz 2 ω dω=0 } {{ }

Séminaire au Laboratoire J.A. Dieudonné de l Université Nice Sophia Antipolis p. 16/17 Explicit formulæ cont d C 2 R 3 (w, z, q, r, s) C 4 (w, z, z 1, z 2 ) z 1 = (r+is)z iqw z 2 = iqz (r is)w ω 2wz dq+i(w 2 + z 2 ) dr+(w 2 z 2 ) ds ω,ω =0 dω = 2i(dz dz 1 dw dz 2 ) = 2id(z dz 1 w dz 2 ) z=z(q, r, s) w=w(q, r, s) by z dz 1 w dz 2 = d(ξ(z 1, z 2 )) NB: Lagrangian w.r.t. dz dz 1 dw dz 2 dω=0

THANK YOU Séminaire au Laboratoire J.A. Dieudonné de l Université Nice Sophia Antipolis p. 17/17