Riemannian and Sub-Riemannian Geodesic Flows

Size: px
Start display at page:

Download "Riemannian and Sub-Riemannian Geodesic Flows"

Transcription

1 Riemannian and Sub-Riemannian Geodesic Flows Mauricio Godoy Molina 1 Joint with E. Grong Universidad de La Frontera (Temuco, Chile) Potsdam, February Partially funded by grant Anillo ACT 1415 PIA CONICYT (Chile) Mauricio Godoy M. (UFRO) Geodesic Flows February, / 24

2 Outline 1 Introduction: Geometry and restrictions 2 Geodesic Flows 3 Results Mauricio Godoy M. (UFRO) Geodesic Flows February, / 24

3 Philosophy: Restrictions in mechanics In classical analytic mechanics we study systems of the form Differential equation + restrictions. Usually: restrictions on the position and/or velocity, but restr. on the velocity can hide restr. on the position. Definition (heuristic) Restrictions on the position (hidden or not) are called holonomic. In what follows, we call non-holonomic to those restrictions on velocity not hiding restrictions on the position. Mauricio Godoy M. (UFRO) Geodesic Flows February, / 24

4 Hidden restrictions In examples 1-3: a particle P moves in R 3 with position r = r (t), velocity v = v (t) and under certain restrictions. Example 1: v r P moves on the sphere of radius r (0) centered at 0. In other words, v r is holonomic since it hides a restriction on the position. Definition The restriction on v can be integrated to a restriction on r. Mauricio Godoy M. (UFRO) Geodesic Flows February, / 24

5 Perturbing restrictions Example 2: v k v = a ı + b j P moves on a horizontal plane. Holonomic again. But... what if we modify the problem slightly? Example 3: v ( k x j ) v = a ı + b ( j + x k ). Non-holonomic! Moreover: Theorem (Folklore) Small perturbations of restrictions are non-holonomic. Mauricio Godoy M. (UFRO) Geodesic Flows February, / 24

6 Mathematical formulation Previous fact: Most restrictions are non-holonomic. That s why we want to understand them. Space of configurations: Q, with dim Q = dof. Restrictions: v (t) span{x 1,..., X k }. Example 1: Q = sphere, v (t) span { θ, ϕ } in spherical coordinates. Example 2: Q = horizontal plane, v (t) span { ı, j }. Example 3: Q = R 3, v (t) span { ı, j + x k }. Definition The flow of X Γ(Q) is the function Q R Q given by e τx p = solution of { γ(s) = X(γ(s)) γ(0) = p in time s = τ. Mauricio Godoy M. (UFRO) Geodesic Flows February, / 24

7 Detecting holonomy I Flow of ı : e τ ı (x, y, z) = (x + τ, y, z). Flow of j : e τ j (x, y, z) = (x, y + τ, z). Flow of j + x k : e τ( j +x k ) (x, y, z) = (x, y + τ, z + τx). Theorem (Frobenius, 1877) A restriction H = span{x 1,..., X k } is holonomic iff d dτ e τy e τx e τy e τx p H, X, Y H, p Q. τ=0 Explanation? Mauricio Godoy M. (UFRO) Geodesic Flows February, / 24

8 Detecting holonomy II For simplicity: t = τ. Suppose X and Y restrictions in H. We follow X, afterward Y, Is the velocity of this new curve a restriction? If yes, then H is holonomic. we come back using X, finally we come back using Y. Definition The process described above is called commuting flows. Mauricio Godoy M. (UFRO) Geodesic Flows February, / 24

9 Detecting holonomy III Example 2: Holonomic d dτ e τ j e τ ı e τ j e τ ı (x, y, z) = τ=0 d dτ (x, y, z) = (0, 0, 0) span { ı, } j. τ=0 }{{} constant! Example 3: Non-holonomic d dτ e τ( j +x k ) e τ ı e τ( j +x k ) e τ ı (x, y, z) = τ=0 d dτ (x, y, z + τ) = (0, 0, 1) = k / span { ı, } j + x k. τ=0 Mauricio Godoy M. (UFRO) Geodesic Flows February, / 24

10 Outline 1 Introduction: Geometry and restrictions 2 Geodesic Flows 3 Results Mauricio Godoy M. (UFRO) Geodesic Flows February, / 24

11 Affine control systems Given H = span{x 1,..., X k }, k n, we have the control problem k ẋ = u i X i (x) ẋ H. Same question: i=1 Given x 0, x T M, can we find ū 1,..., ū k such that x(0) = x 0 y x(t ) = x T? (SAC) BIG observation: The controllability of (SAC) is a consequence of H being completely non-holonomic. Definition H is completely non-holonomic if we can obtain any velocity by commuting flows in H. Mauricio Godoy M. (UFRO) Geodesic Flows February, / 24

12 Geodesics Suppose that (SAC) is controllable. k ẋ = u i X i (x) ẋ H Problem i=1 Given x 0, x T M, we want to find ū = (ū 1,..., ū k ) such that x(0) = x 0, x(t ) = x T and 1 ( J(ū) = min J(u) = min u 1 (t) u k (t) 2) dt. u u 2 Usually: A curve γ with control ū is called sr-geodesic if k < n and R-geodesic if k = n. (SAC) Mauricio Godoy M. (UFRO) Geodesic Flows February, / 24

13 Cometric and metric Consider a bilinear non-negative tensor h on T M (a cometric) and h : T M T M = TM, p h (p, ) H = im h are the restrictions on M endowed with the metric h( h p, h q) = h (p, q) Fact (H, h) determines uniquely h. Besides ker h = Ann H. Mauricio Godoy M. (UFRO) Geodesic Flows February, / 24

14 Hamiltonian and flows The Hamiltonian H h associated to the metric h is simply H h (p) = 1 2 h (p, p). If ω is the canonical 2-form on T M, then Definition The Hamiltonian vector field H h is given by dh h (X) = ω( H h, X), X X(M). If h is a (sub-)riemannian metric, then e t H h geodesic flow. is the (sub-)riemannian Mauricio Godoy M. (UFRO) Geodesic Flows February, / 24

15 Outline 1 Introduction: Geometry and restrictions 2 Geodesic Flows 3 Results Mauricio Godoy M. (UFRO) Geodesic Flows February, / 24

16 Motivating problem I Theorem (Montgomery) Given a principal G-bundle G M π N (+ technical hypotheses), then the normal sub-riemannian geodesics on M defined by H = (ker dπ) are given by γ sr (t) = exp r (tv) exp G ( ta(v)), where A is the g-valued connection one form. Idea: Compute Riemannian geodesics in M. Project down to N. Horizontally lift the curve to M. Mauricio Godoy M. (UFRO) Geodesic Flows February, / 24

17 Horizontal lift Given a submersion π : M N and a vector v T x N, then at each x π 1 (x) there is a unique vector v T x M such that d x π( v) = v. This is the horizontal lift of v. For a vector field X Γ(TN), define X by X x = X x. The horizontal lift γ of γ : [0, T ] N at 2 x is the unique solution to γ = γ, γ(0) = x 2 Obviously π x = γ(0) Mauricio Godoy M. (UFRO) Geodesic Flows February, / 24

18 Motivating problem II Montgomery s theorem can be used for some examples. Hopf fibration: U(1) S 2n+1 CP 1 Quaternionic Hopf fibration: Sp(1) S 4n+3 HP n Grassmannians: U(n) V n,k Gr n,k BUT there are true fibrations: S 7 S 15 OP 1 = S 8 (octonionic Hopf). What to do when there is no group? Remark (Ornea, Parton, Piccinni, Vuletescu 2013) The situation is worse than expected: ANY v.f. tangent to the leaves of S 7 S 15 S 8 has a zero. Mauricio Godoy M. (UFRO) Geodesic Flows February, / 24

19 Taming metrics Let (M, H, h) a sub-riemannian manifold. A Riemannian metric g on M tames h if g H = h. Natural question Is there a relation between the geodesics of g and the ones of h? Let V = H with respect to g. Define v = g V. Technical tool The following formula defines a conection (Bott) X Y =pr H g pr H X pr HY + pr V g pr V X pr VY + pr H [pr V X, pr H Y ] + pr V [pr H X, pr V Y ]. Mauricio Godoy M. (UFRO) Geodesic Flows February, / 24

20 Key Lemma Lemma (G., Grong) If {, } denotes the Poisson bracket wrt ω, then {H h, H v } = {H h, H g } = 0 g = 0 If Π M : T M M is the canonical projection, then exp sr : U x T x M M, exp r : V x T x M M, exp sr (x, tp) = (Π M e t H h )(p) exp r (x, t p) = (Π M e t H g )(p) Consequence exp r (x, t p) = ( Π M e t H h e t H v) (p) = ( Π M e t H v e t H h) (p). Mauricio Godoy M. (UFRO) Geodesic Flows February, / 24

21 Main result I Theorem (G., Grong) (M, g) Riemannian + F tot. geodesic Riem. foliation of M w/subbundle V. Define (M, H, h) where H = V and h = g H. Then, for any x M and p T M exp sr (x, tp) = exp r (exp r (x, t p), tpr V P t p), where P t is the parallel transport along exp r (x, t p) Compare with Montgomery s geodesics γ sr (t) = exp r (tv) exp G ( ta(v)). Mauricio Godoy M. (UFRO) Geodesic Flows February, / 24

22 Main result II If we assume that V is integrable, then we know more. Theorem (G., Grong) Every curve of the form exp sr (x, tp) is the horizontal lift of the projection of the curve exp r (x, t p) iff (a) V is the orthogonal complement of H. (b) The leaves of the foliation of V are totally geodesic. For the interested few: Riemannian and Sub-Riemannian Geodesic Flows. To appear J. Geom. Analysis (I guess this year) Mauricio Godoy M. (UFRO) Geodesic Flows February, / 24

23 Examples For principal bundles (+ technical conditions), the formula exp sr (x, tp) = exp r (exp r (x, t p), tpr V P t p) coincides with Montgomery s result The result can be applied to S 7 S 15 S 8, but we have no explicit formulas yet (M.Sc. problem anyone?) If (M, H, h), where H = ker α for α Ω 1 (M) contact, then g = 0 iff L Z g = 0, where Z is the Reeb vector field, g(z) = 1 and g H = h Mauricio Godoy M. (UFRO) Geodesic Flows February, / 24

24 Mauricio Godoy M. (UFRO) Geodesic Flows February, / 24

TRANSITIVE HOLONOMY GROUP AND RIGIDITY IN NONNEGATIVE CURVATURE. Luis Guijarro and Gerard Walschap

TRANSITIVE HOLONOMY GROUP AND RIGIDITY IN NONNEGATIVE CURVATURE. Luis Guijarro and Gerard Walschap TRANSITIVE HOLONOMY GROUP AND RIGIDITY IN NONNEGATIVE CURVATURE Luis Guijarro and Gerard Walschap Abstract. In this note, we examine the relationship between the twisting of a vector bundle ξ over a manifold

More information

Solvable Lie groups and the shear construction

Solvable Lie groups and the shear construction Solvable Lie groups and the shear construction Marco Freibert jt. with Andrew Swann Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel 19.05.2016 1 Swann s twist 2 The shear construction The

More information

Some topics in sub-riemannian geometry

Some topics in sub-riemannian geometry Some topics in sub-riemannian geometry Luca Rizzi CNRS, Institut Fourier Mathematical Colloquium Universität Bern - December 19 2016 Sub-Riemannian geometry Known under many names: Carnot-Carathéodory

More information

H-projective structures and their applications

H-projective structures and their applications 1 H-projective structures and their applications David M. J. Calderbank University of Bath Based largely on: Marburg, July 2012 hamiltonian 2-forms papers with Vestislav Apostolov (UQAM), Paul Gauduchon

More information

Minimal surfaces in quaternionic symmetric spaces

Minimal surfaces in quaternionic symmetric spaces From: "Geometry of low-dimensional manifolds: 1", C.U.P. (1990), pp. 231--235 Minimal surfaces in quaternionic symmetric spaces F.E. BURSTALL University of Bath We describe some birational correspondences

More information

Subriemannian geodesics - an introduction

Subriemannian geodesics - an introduction - an introduction Department of Theoretical Physics Comenius University Bratislava fecko@fmph.uniba.sk Student Colloqium and School on Mathematical Physics, Stará Lesná, Slovakia, August 24-30, 2009 -

More information

TWISTOR AND KILLING FORMS IN RIEMANNIAN GEOMETRY

TWISTOR AND KILLING FORMS IN RIEMANNIAN GEOMETRY TWISTOR AND KILLING FORMS IN RIEMANNIAN GEOMETRY Andrei Moroianu CNRS - Ecole Polytechnique Palaiseau Prague, September 1 st, 2004 joint work with Uwe Semmelmann Plan of the talk Algebraic preliminaries

More information

Infinitesimal Einstein Deformations. Kähler Manifolds

Infinitesimal Einstein Deformations. Kähler Manifolds on Nearly Kähler Manifolds (joint work with P.-A. Nagy and U. Semmelmann) Gemeinsame Jahrestagung DMV GDM Berlin, March 30, 2007 Nearly Kähler manifolds Definition and first properties Examples of NK manifolds

More information

Transport Continuity Property

Transport Continuity Property On Riemannian manifolds satisfying the Transport Continuity Property Université de Nice - Sophia Antipolis (Joint work with A. Figalli and C. Villani) I. Statement of the problem Optimal transport on Riemannian

More information

Holonomy groups. Thomas Leistner. School of Mathematical Sciences Colloquium University of Adelaide, May 7, /15

Holonomy groups. Thomas Leistner. School of Mathematical Sciences Colloquium University of Adelaide, May 7, /15 Holonomy groups Thomas Leistner School of Mathematical Sciences Colloquium University of Adelaide, May 7, 2010 1/15 The notion of holonomy groups is based on Parallel translation Let γ : [0, 1] R 2 be

More information

Hamiltonian Systems of Negative Curvature are Hyperbolic

Hamiltonian Systems of Negative Curvature are Hyperbolic Hamiltonian Systems of Negative Curvature are Hyperbolic A. A. Agrachev N. N. Chtcherbakova Abstract The curvature and the reduced curvature are basic differential invariants of the pair: Hamiltonian system,

More information

Geodesic Equivalence in sub-riemannian Geometry

Geodesic Equivalence in sub-riemannian Geometry 03/27/14 Equivalence in sub-riemannian Geometry Supervisor: Dr.Igor Zelenko Texas A&M University, Mathematics Some Preliminaries: Riemannian Metrics Let M be a n-dimensional surface in R N Some Preliminaries:

More information

Conification of Kähler and hyper-kähler manifolds and supergr

Conification of Kähler and hyper-kähler manifolds and supergr Conification of Kähler and hyper-kähler manifolds and supergravity c-map Masaryk University, Brno, Czech Republic and Institute for Information Transmission Problems, Moscow, Russia Villasimius, September

More information

Geometric Structures in Mathematical Physics Non-existence of almost complex structures on quaternion-kähler manifolds of positive type

Geometric Structures in Mathematical Physics Non-existence of almost complex structures on quaternion-kähler manifolds of positive type Geometric Structures in Mathematical Physics Non-existence of almost complex structures on quaternion-kähler manifolds of positive type Paul Gauduchon Golden Sands, Bulgaria September, 19 26, 2011 1 Joint

More information

Reduction of Homogeneous Riemannian structures

Reduction of Homogeneous Riemannian structures Geometric Structures in Mathematical Physics, 2011 Reduction of Homogeneous Riemannian structures M. Castrillón López 1 Ignacio Luján 2 1 ICMAT (CSIC-UAM-UC3M-UCM) Universidad Complutense de Madrid 2 Universidad

More information

VOLUME GROWTH AND HOLONOMY IN NONNEGATIVE CURVATURE

VOLUME GROWTH AND HOLONOMY IN NONNEGATIVE CURVATURE VOLUME GROWTH AND HOLONOMY IN NONNEGATIVE CURVATURE KRISTOPHER TAPP Abstract. The volume growth of an open manifold of nonnegative sectional curvature is proven to be bounded above by the difference between

More information

ARITHMETICITY OF TOTALLY GEODESIC LIE FOLIATIONS WITH LOCALLY SYMMETRIC LEAVES

ARITHMETICITY OF TOTALLY GEODESIC LIE FOLIATIONS WITH LOCALLY SYMMETRIC LEAVES ASIAN J. MATH. c 2008 International Press Vol. 12, No. 3, pp. 289 298, September 2008 002 ARITHMETICITY OF TOTALLY GEODESIC LIE FOLIATIONS WITH LOCALLY SYMMETRIC LEAVES RAUL QUIROGA-BARRANCO Abstract.

More information

Projective parabolic geometries

Projective parabolic geometries Projective parabolic geometries David M. J. Calderbank University of Bath ESI Wien, September 2012 Based partly on: Hamiltonian 2-forms in Kähler geometry, with Vestislav Apostolov (UQAM), Paul Gauduchon

More information

SYMPLECTIC MANIFOLDS, GEOMETRIC QUANTIZATION, AND UNITARY REPRESENTATIONS OF LIE GROUPS. 1. Introduction

SYMPLECTIC MANIFOLDS, GEOMETRIC QUANTIZATION, AND UNITARY REPRESENTATIONS OF LIE GROUPS. 1. Introduction SYMPLECTIC MANIFOLDS, GEOMETRIC QUANTIZATION, AND UNITARY REPRESENTATIONS OF LIE GROUPS CRAIG JACKSON 1. Introduction Generally speaking, geometric quantization is a scheme for associating Hilbert spaces

More information

Riemannian geometry of the twistor space of a symplectic manifold

Riemannian geometry of the twistor space of a symplectic manifold Riemannian geometry of the twistor space of a symplectic manifold R. Albuquerque rpa@uevora.pt Departamento de Matemática, Universidade de Évora Évora, Portugal September 004 0.1 The metric In this short

More information

Invariant Nonholonomic Riemannian Structures on Three-Dimensional Lie Groups

Invariant Nonholonomic Riemannian Structures on Three-Dimensional Lie Groups Invariant Nonholonomic Riemannian Structures on Three-Dimensional Lie Groups Dennis I. Barrett Geometry, Graphs and Control (GGC) Research Group Department of Mathematics, Rhodes University Grahamstown,

More information

Some Research Themes of Aristide Sanini. 27 giugno 2008 Politecnico di Torino

Some Research Themes of Aristide Sanini. 27 giugno 2008 Politecnico di Torino Some Research Themes of Aristide Sanini 27 giugno 2008 Politecnico di Torino 1 Research themes: 60!s: projective-differential geometry 70!s: Finsler spaces 70-80!s: geometry of foliations 80-90!s: harmonic

More information

Adapted complex structures and Riemannian homogeneous spaces

Adapted complex structures and Riemannian homogeneous spaces ANNALES POLONICI MATHEMATICI LXX (1998) Adapted complex structures and Riemannian homogeneous spaces by Róbert Szőke (Budapest) Abstract. We prove that every compact, normal Riemannian homogeneous manifold

More information

Holonomy groups. Thomas Leistner. Mathematics Colloquium School of Mathematics and Physics The University of Queensland. October 31, 2011 May 28, 2012

Holonomy groups. Thomas Leistner. Mathematics Colloquium School of Mathematics and Physics The University of Queensland. October 31, 2011 May 28, 2012 Holonomy groups Thomas Leistner Mathematics Colloquium School of Mathematics and Physics The University of Queensland October 31, 2011 May 28, 2012 1/17 The notion of holonomy groups is based on Parallel

More information

EXERCISES IN POISSON GEOMETRY

EXERCISES IN POISSON GEOMETRY EXERCISES IN POISSON GEOMETRY The suggested problems for the exercise sessions #1 and #2 are marked with an asterisk. The material from the last section will be discussed in lecture IV, but it s possible

More information

DIRAC STRUCTURES FROM LIE INTEGRABILITY

DIRAC STRUCTURES FROM LIE INTEGRABILITY International Journal of Geometric Methods in Modern Physics Vol. 9, No. 4 (01) 10005 (7 pages) c World Scientific Publishing Company DOI: 10.114/S0198878100058 DIRAC STRUCTURES FROM LIE INTEGRABILITY

More information

Chap. 1. Some Differential Geometric Tools

Chap. 1. Some Differential Geometric Tools Chap. 1. Some Differential Geometric Tools 1. Manifold, Diffeomorphism 1.1. The Implicit Function Theorem ϕ : U R n R n p (0 p < n), of class C k (k 1) x 0 U such that ϕ(x 0 ) = 0 rank Dϕ(x) = n p x U

More information

η = (e 1 (e 2 φ)) # = e 3

η = (e 1 (e 2 φ)) # = e 3 Research Statement My research interests lie in differential geometry and geometric analysis. My work has concentrated according to two themes. The first is the study of submanifolds of spaces with riemannian

More information

THEODORE VORONOV DIFFERENTIAL GEOMETRY. Spring 2009

THEODORE VORONOV DIFFERENTIAL GEOMETRY. Spring 2009 [under construction] 8 Parallel transport 8.1 Equation of parallel transport Consider a vector bundle E B. We would like to compare vectors belonging to fibers over different points. Recall that this was

More information

MINIMAL VECTOR FIELDS ON RIEMANNIAN MANIFOLDS

MINIMAL VECTOR FIELDS ON RIEMANNIAN MANIFOLDS MINIMAL VECTOR FIELDS ON RIEMANNIAN MANIFOLDS OLGA GIL-MEDRANO Universidad de Valencia, Spain Santiago de Compostela, 15th December, 2010 Conference Celebrating P. Gilkey's 65th Birthday V: M TM = T p

More information

ADAPTED COMPLEX STRUCTURES AND GEOMETRIC QUANTIZATION

ADAPTED COMPLEX STRUCTURES AND GEOMETRIC QUANTIZATION R. Szőke Nagoya Math. J. Vol. 154 1999), 171 183 ADAPTED COMPLEX STRUCTURES AND GEOMETRIC QUANTIZATION RÓBERT SZŐKE Abstract. A compact Riemannian symmetric space admits a canonical complexification. This

More information

Let F be a foliation of dimension p and codimension q on a smooth manifold of dimension n.

Let F be a foliation of dimension p and codimension q on a smooth manifold of dimension n. Trends in Mathematics Information Center for Mathematical Sciences Volume 5, Number 2,December 2002, Pages 59 64 VARIATIONAL PROPERTIES OF HARMONIC RIEMANNIAN FOLIATIONS KYOUNG HEE HAN AND HOBUM KIM Abstract.

More information

The parallelism of shape operator related to the generalized Tanaka-Webster connection on real hypersurfaces in complex two-plane Grassmannians

The parallelism of shape operator related to the generalized Tanaka-Webster connection on real hypersurfaces in complex two-plane Grassmannians Proceedings of The Fifteenth International Workshop on Diff. Geom. 15(2011) 183-196 The parallelism of shape operator related to the generalized Tanaka-Webster connection on real hypersurfaces in complex

More information

GEOMETRIC QUANTIZATION

GEOMETRIC QUANTIZATION GEOMETRIC QUANTIZATION 1. The basic idea The setting of the Hamiltonian version of classical (Newtonian) mechanics is the phase space (position and momentum), which is a symplectic manifold. The typical

More information

On the holonomy fibration

On the holonomy fibration based on work with Alejandro Cabrera and Marco Gualtieri Workshop on Geometric Quantization Adelaide, July 2015 Introduction General theme: Hamiltonian LG-spaces q-hamiltonian G-spaces M Ψ Lg /L 0 G /L

More information

Global aspects of Lorentzian manifolds with special holonomy

Global aspects of Lorentzian manifolds with special holonomy 1/13 Global aspects of Lorentzian manifolds with special holonomy Thomas Leistner International Fall Workshop on Geometry and Physics Évora, September 2 5, 2013 Outline 2/13 1 Lorentzian holonomy Holonomy

More information

Relativistic simultaneity and causality

Relativistic simultaneity and causality Relativistic simultaneity and causality V. J. Bolós 1,, V. Liern 2, J. Olivert 3 1 Dpto. Matemática Aplicada, Facultad de Matemáticas, Universidad de Valencia. C/ Dr. Moliner 50. 46100, Burjassot Valencia),

More information

How curvature shapes space

How curvature shapes space How curvature shapes space Richard Schoen University of California, Irvine - Hopf Lecture, ETH, Zürich - October 30, 2017 The lecture will have three parts: Part 1: Heinz Hopf and Riemannian geometry Part

More information

Sub-Riemannian Geometry: Basic Ideas and Examples

Sub-Riemannian Geometry: Basic Ideas and Examples Sub-Riemannian Geometry: Basic Ideas and Examples Abubakr Muhammad Dept. of Electrical Engineering Georgia Institute of Technology, Atlanta, GA, USA. abubakr@ece.gatech.edu Keywords Differential geometry;

More information

A Tour of Subriemannian Geometries,Their Geodesies and Applications

A Tour of Subriemannian Geometries,Their Geodesies and Applications Mathematical Surveys and Monographs Volume 91 A Tour of Subriemannian Geometries,Their Geodesies and Applications Richard Montgomery American Mathematical Society Contents Introduction Acknowledgments

More information

Observer dependent background geometries arxiv:

Observer dependent background geometries arxiv: Observer dependent background geometries arxiv:1403.4005 Manuel Hohmann Laboratory of Theoretical Physics Physics Institute University of Tartu DPG-Tagung Berlin Session MP 4 18. März 2014 Manuel Hohmann

More information

Isometries, Local Isometries, Riemannian Coverings and Submersions, Killing Vector Fields

Isometries, Local Isometries, Riemannian Coverings and Submersions, Killing Vector Fields Chapter 15 Isometries, Local Isometries, Riemannian Coverings and Submersions, Killing Vector Fields The goal of this chapter is to understand the behavior of isometries and local isometries, in particular

More information

Isometries, Local Isometries, Riemannian Coverings and Submersions, Killing Vector Fields

Isometries, Local Isometries, Riemannian Coverings and Submersions, Killing Vector Fields Chapter 16 Isometries, Local Isometries, Riemannian Coverings and Submersions, Killing Vector Fields 16.1 Isometries and Local Isometries Recall that a local isometry between two Riemannian manifolds M

More information

Transverse geometry. consisting of finite sums of monomials of the form

Transverse geometry. consisting of finite sums of monomials of the form Transverse geometry The space of leaves of a foliation (V, F) can be described in terms of (M, Γ), with M = complete transversal and Γ = holonomy pseudogroup. The natural transverse coordinates form the

More information

INTRO TO SUBRIEMANNIAN GEOMETRY

INTRO TO SUBRIEMANNIAN GEOMETRY INTRO TO SUBRIEMANNIAN GEOMETRY 1. Introduction to subriemannian geometry A lot of this tal is inspired by the paper by Ines Kath and Oliver Ungermann on the arxiv, see [3] as well as [1]. Let M be a smooth

More information

Manifolds with holonomy. Sp(n)Sp(1) SC in SHGAP Simon Salamon Stony Brook, 9 Sep 2016

Manifolds with holonomy. Sp(n)Sp(1) SC in SHGAP Simon Salamon Stony Brook, 9 Sep 2016 Manifolds with holonomy Sp(n)Sp(1) SC in SHGAP Simon Salamon Stony Brook, 9 Sep 2016 The list 1.1 SO(N) U( N 2 ) Sp( N 4 )Sp(1) SU( N 2 ) Sp( N 4 ) G 2 (N =7) Spin(7) (N =8) All act transitively on S N

More information

Transparent connections

Transparent connections The abelian case A definition (M, g) is a closed Riemannian manifold, d = dim M. E M is a rank n complex vector bundle with a Hermitian metric (i.e. a U(n)-bundle). is a Hermitian (i.e. metric) connection

More information

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1 Assistant: Saskia Voss Sheet 1 1. Conformal change of Riemannian metrics [3 points] Let (M, g) be a Riemannian manifold. A conformal change is a nonnegative function λ : M (0, ). Such a function defines

More information

Hessian Riemannian Gradient Flows in Convex Programming

Hessian Riemannian Gradient Flows in Convex Programming Hessian Riemannian Gradient Flows in Convex Programming Felipe Alvarez, Jérôme Bolte, Olivier Brahic INTERNATIONAL CONFERENCE ON MODELING AND OPTIMIZATION MODOPT 2004 Universidad de La Frontera, Temuco,

More information

HOMOTOPY PROPERTIES OF HORIZONTAL LOOP SPACES AND APPLICATIONS TO CLOSED SUB-RIEMANNIAN GEODESICS

HOMOTOPY PROPERTIES OF HORIZONTAL LOOP SPACES AND APPLICATIONS TO CLOSED SUB-RIEMANNIAN GEODESICS HOMOTOPY PROPERTIES OF HORIZONTAL LOOP SPACES AND APPLICATIONS TO CLOSED SUB-RIEMANNIAN GEODESICS ANTONIO LERARIO AND ANDREA MONDINO Abstract. Given a manifold M and a proper sub-bundle T M, we investigate

More information

Hard Lefschetz Theorem for Vaisman manifolds

Hard Lefschetz Theorem for Vaisman manifolds Hard Lefschetz Theorem for Vaisman manifolds Antonio De Nicola CMUC, University of Coimbra, Portugal joint work with B. Cappelletti-Montano (Univ. Cagliari), J.C. Marrero (Univ. La Laguna) and I. Yudin

More information

Invariant Nonholonomic Riemannian Structures on Three-Dimensional Lie Groups

Invariant Nonholonomic Riemannian Structures on Three-Dimensional Lie Groups Invariant Nonholonomic Riemannian Structures on Three-Dimensional Lie Groups Dennis I. Barrett Geometry, Graphs and Control (GGC) Research Group Department of Mathematics (Pure and Applied) Rhodes University,

More information

1. Geometry of the unit tangent bundle

1. Geometry of the unit tangent bundle 1 1. Geometry of the unit tangent bundle The main reference for this section is [8]. In the following, we consider (M, g) an n-dimensional smooth manifold endowed with a Riemannian metric g. 1.1. Notations

More information

Riemannian submersions and eigenforms of the Witten Laplacian

Riemannian submersions and eigenforms of the Witten Laplacian Proceedings of The Sixteenth International Workshop on Diff. Geom. 16(2012) 143-153 Riemannian submersions and eigenforms of the Witten Laplacian Hyunsuk Kang Department of Mathematics, Korea Institute

More information

Distance to curves and surfaces in the Heisenberg group

Distance to curves and surfaces in the Heisenberg group Distance to curves and surfaces in the Heisenberg group Università di Bologna 3 giugno 2012 Survey based on... Fausto Ferrari, N.A. Metric normal and distance function in the Heisenberg group, Math.Z.

More information

Math 550 / David Dumas / Fall Problems

Math 550 / David Dumas / Fall Problems Math 550 / David Dumas / Fall 2014 Problems Please note: This list was last updated on November 30, 2014. Problems marked with * are challenge problems. Some problems are adapted from the course texts;

More information

From symplectic to spin geometry

From symplectic to spin geometry From symplectic to spin geometry Jean-Philippe Michel University of Luxembourg Jean-Philippe MICHEL (UL) NCTS-CPT Workshop Hsinshu, 24-02-2011 1 / 16 Quantization for spinless system classical quantum

More information

Seminar Geometrical aspects of theoretical mechanics

Seminar Geometrical aspects of theoretical mechanics Seminar Geometrical aspects of theoretical mechanics Topics 1. Manifolds 29.10.12 Gisela Baños-Ros 2. Vector fields 05.11.12 and 12.11.12 Alexander Holm and Matthias Sievers 3. Differential forms 19.11.12,

More information

Contact pairs (bicontact manifolds)

Contact pairs (bicontact manifolds) Contact pairs (bicontact manifolds) Gianluca Bande Università degli Studi di Cagliari XVII Geometrical Seminar, Zlatibor 6 September 2012 G. Bande (Università di Cagliari) Contact pairs (bicontact manifolds)

More information

NOTES ON FIBER BUNDLES

NOTES ON FIBER BUNDLES NOTES ON FIBER BUNDLES DANNY CALEGARI Abstract. These are notes on fiber bundles and principal bundles, especially over CW complexes and spaces homotopy equivalent to them. They are meant to supplement

More information

Multi-moment maps. CP 3 Journal Club. Thomas Bruun Madsen. 20th November 2009

Multi-moment maps. CP 3 Journal Club. Thomas Bruun Madsen. 20th November 2009 Multi-moment maps CP 3 Journal Club Thomas Bruun Madsen 20th November 2009 Geometry with torsion Strong KT manifolds Strong HKT geometry Strong KT manifolds: a new classification result Multi-moment maps

More information

BACKGROUND IN SYMPLECTIC GEOMETRY

BACKGROUND IN SYMPLECTIC GEOMETRY BACKGROUND IN SYMPLECTIC GEOMETRY NILAY KUMAR Today I want to introduce some of the symplectic structure underlying classical mechanics. The key idea is actually quite old and in its various formulations

More information

A Joint Adventure in Sasakian and Kähler Geometry

A Joint Adventure in Sasakian and Kähler Geometry A Joint Adventure in Sasakian and Kähler Geometry Charles Boyer and Christina Tønnesen-Friedman Geometry Seminar, University of Bath March, 2015 2 Kähler Geometry Let N be a smooth compact manifold of

More information

Background on c-projective geometry

Background on c-projective geometry Second Kioloa Workshop on C-projective Geometry p. 1/26 Background on c-projective geometry Michael Eastwood [ following the work of others ] Australian National University Second Kioloa Workshop on C-projective

More information

Recent progress on the explicit inversion of geodesic X-ray transforms

Recent progress on the explicit inversion of geodesic X-ray transforms Recent progress on the explicit inversion of geodesic X-ray transforms François Monard Department of Mathematics, University of Washington. Geometric Analysis and PDE seminar University of Cambridge, May

More information

Complex line bundles. Chapter Connections of line bundle. Consider a complex line bundle L M. For any integer k N, let

Complex line bundles. Chapter Connections of line bundle. Consider a complex line bundle L M. For any integer k N, let Chapter 1 Complex line bundles 1.1 Connections of line bundle Consider a complex line bundle L M. For any integer k N, let be the space of k-forms with values in L. Ω k (M, L) = C (M, L k (T M)) Definition

More information

Cobordant differentiable manifolds

Cobordant differentiable manifolds Variétés différentiables cobordant, Colloque Int. du C. N. R. S., v. LII, Géométrie différentielle, Strasbourg (1953), pp. 143-149. Cobordant differentiable manifolds By R. THOM (Strasbourg) Translated

More information

HARMONIC COHOMOLOGY OF SYMPLECTIC FIBER BUNDLES

HARMONIC COHOMOLOGY OF SYMPLECTIC FIBER BUNDLES HARMONIC COHOMOLOGY OF SYMPLECTIC FIBER BUNDLES OLIVER EBNER AND STEFAN HALLER Abstract. We show that every de Rham cohomology class on the total space of a symplectic fiber bundle with closed Lefschetz

More information

arxiv: v1 [math.sg] 6 Nov 2015

arxiv: v1 [math.sg] 6 Nov 2015 A CHIANG-TYPE LAGRANGIAN IN CP ANA CANNAS DA SILVA Abstract. We analyse a simple Chiang-type lagrangian in CP which is topologically an RP but exhibits a distinguishing behaviour under reduction by one

More information

Complete integrability of geodesic motion in Sasaki-Einstein toric spaces

Complete integrability of geodesic motion in Sasaki-Einstein toric spaces Complete integrability of geodesic motion in Sasaki-Einstein toric spaces Mihai Visinescu Department of Theoretical Physics National Institute for Physics and Nuclear Engineering Horia Hulubei Bucharest,

More information

A Crash Course of Floer Homology for Lagrangian Intersections

A Crash Course of Floer Homology for Lagrangian Intersections A Crash Course of Floer Homology for Lagrangian Intersections Manabu AKAHO Department of Mathematics Tokyo Metropolitan University akaho@math.metro-u.ac.jp 1 Introduction There are several kinds of Floer

More information

CHARACTERISTIC CLASSES

CHARACTERISTIC CLASSES 1 CHARACTERISTIC CLASSES Andrew Ranicki Index theory seminar 14th February, 2011 2 The Index Theorem identifies Introduction analytic index = topological index for a differential operator on a compact

More information

Atiyah classes and homotopy algebras

Atiyah classes and homotopy algebras Atiyah classes and homotopy algebras Mathieu Stiénon Workshop on Lie groupoids and Lie algebroids Kolkata, December 2012 Atiyah (1957): obstruction to existence of holomorphic connections Rozansky-Witten

More information

Geometry of almost-product (pseudo-)riemannian manifold. manifolds and the dynamics of the observer. Aneta Wojnar

Geometry of almost-product (pseudo-)riemannian manifold. manifolds and the dynamics of the observer. Aneta Wojnar Geometry of almost-product (pseudo-)riemannian manifolds and the dynamics of the observer University of Wrocªaw Barcelona Postgrad Encounters on Fundamental Physics, October 2012 Outline 1 Motivation 2

More information

GEOMETRIA ZBIORÓW ZER PÓL KONFOREMNYCH

GEOMETRIA ZBIORÓW ZER PÓL KONFOREMNYCH GEOMETRIA ZBIORÓW ZER PÓL WEKTOROWYCH KONFOREMNYCH 5 lipca 2011 r. Geometry of the zero sets of conformal vector fields Seminarium z Geometrii Różniczkowej Politechnika Wroc lawska, Instytut Matematyki

More information

Lecture II: Geometric Constructions Relating Different Special Geometries I

Lecture II: Geometric Constructions Relating Different Special Geometries I Lecture II: Geometric Constructions Relating Different Special Geometries I Vicente Cortés Department of Mathematics University of Hamburg Winter School Geometry, Analysis, Physics Geilo (Norway), March

More information

HYPERKÄHLER MANIFOLDS

HYPERKÄHLER MANIFOLDS HYPERKÄHLER MANIFOLDS PAVEL SAFRONOV, TALK AT 2011 TALBOT WORKSHOP 1.1. Basic definitions. 1. Hyperkähler manifolds Definition. A hyperkähler manifold is a C Riemannian manifold together with three covariantly

More information

Impulsive Control of Lagrangian Systems and Locomotion in Fluids. Alberto Bressan

Impulsive Control of Lagrangian Systems and Locomotion in Fluids. Alberto Bressan Manuscript submitted to AIMS journals Volume X, Number X, XX 2X Website http://aimsciences.org pp. X XX Impulsive Control of Lagrangian Systems and Locomotion in Fluids Alberto Bressan Department of Mathematics

More information

Real Hypersurfaces with Pseudo-parallel Normal Jacobi Operator in Complex Two-Plane Grassmannians

Real Hypersurfaces with Pseudo-parallel Normal Jacobi Operator in Complex Two-Plane Grassmannians Filomat 31:12 (2017), 3917 3923 https://doi.org/10.2298/fil1712917d Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Real Hypersurfaces

More information

Geometric and Spectral Properties of Hypoelliptic Operators

Geometric and Spectral Properties of Hypoelliptic Operators Geometric and Spectral Properties of Hypoelliptic Operators aster Thesis Stine. Berge ay 5, 017 i ii Acknowledgements First of all I want to thank my three supervisors; Erlend Grong, Alexander Vasil ev

More information

Eva Miranda. UPC-Barcelona. (joint with Victor Guillemin and Ana Rita Pires) Zaragoza, February

Eva Miranda. UPC-Barcelona. (joint with Victor Guillemin and Ana Rita Pires) Zaragoza, February From b-poisson manifolds to symplectic mapping torus and back Eva Miranda UPC-Barcelona (joint with Victor Guillemin and Ana Rita Pires) Zaragoza, February 8 2011 Eva Miranda (UPC) Poisson Day February

More information

Steepest descent method on a Riemannian manifold: the convex case

Steepest descent method on a Riemannian manifold: the convex case Steepest descent method on a Riemannian manifold: the convex case Julien Munier Abstract. In this paper we are interested in the asymptotic behavior of the trajectories of the famous steepest descent evolution

More information

Citation Osaka Journal of Mathematics. 49(3)

Citation Osaka Journal of Mathematics. 49(3) Title ON POSITIVE QUATERNIONIC KÄHLER MAN WITH b_4=1 Author(s) Kim, Jin Hong; Lee, Hee Kwon Citation Osaka Journal of Mathematics. 49(3) Issue 2012-09 Date Text Version publisher URL http://hdl.handle.net/11094/23146

More information

On the 5-dimensional Sasaki-Einstein manifold

On the 5-dimensional Sasaki-Einstein manifold Proceedings of The Fourteenth International Workshop on Diff. Geom. 14(2010) 171-175 On the 5-dimensional Sasaki-Einstein manifold Byung Hak Kim Department of Applied Mathematics, Kyung Hee University,

More information

Hopf hypersurfaces in nonflat complex space forms

Hopf hypersurfaces in nonflat complex space forms Proceedings of The Sixteenth International Workshop on Diff. Geom. 16(2012) 25-34 Hopf hypersurfaces in nonflat complex space forms Makoto Kimura Department of Mathematics, Ibaraki University, Mito, Ibaraki

More information

Conformal foliations

Conformal foliations Séminaire au Laboratoire J.A. Dieudonné de l Université Nice Sophia Antipolis p. 1/17 Conformal foliations Michael Eastwood [joint work with Paul Baird] Australian National University Séminaire au Laboratoire

More information

Symplectic geometry of deformation spaces

Symplectic geometry of deformation spaces July 15, 2010 Outline What is a symplectic structure? What is a symplectic structure? Denition A symplectic structure on a (smooth) manifold M is a closed nondegenerate 2-form ω. Examples Darboux coordinates

More information

1: Lie groups Matix groups, Lie algebras

1: Lie groups Matix groups, Lie algebras Lie Groups and Bundles 2014/15 BGSMath 1: Lie groups Matix groups, Lie algebras 1. Prove that O(n) is Lie group and that its tangent space at I O(n) is isomorphic to the space so(n) of skew-symmetric matrices

More information

zi z i, zi+1 z i,, zn z i. z j, zj+1 z j,, zj 1 z j,, zn

zi z i, zi+1 z i,, zn z i. z j, zj+1 z j,, zj 1 z j,, zn The Complex Projective Space Definition. Complex projective n-space, denoted by CP n, is defined to be the set of 1-dimensional complex-linear subspaces of C n+1, with the quotient topology inherited from

More information

DIFFERENTIAL GEOMETRY, LECTURE 16-17, JULY 14-17

DIFFERENTIAL GEOMETRY, LECTURE 16-17, JULY 14-17 DIFFERENTIAL GEOMETRY, LECTURE 16-17, JULY 14-17 6. Geodesics A parametrized line γ : [a, b] R n in R n is straight (and the parametrization is uniform) if the vector γ (t) does not depend on t. Thus,

More information

The automorphism groups of foliations with transverse linear connection. Author copy

The automorphism groups of foliations with transverse linear connection. Author copy Cent. Eur. J. Math. 11(12) 2013 2076-2088 DOI: 10.2478/s11533-013-0307-8 Central European Journal of Mathematics The automorphism groups of foliations with transverse linear connection Research Article

More information

Lectures on Lie groups and geometry

Lectures on Lie groups and geometry Lectures on Lie groups and geometry S. K. Donaldson March 25, 2011 Abstract These are the notes of the course given in Autumn 2007 and Spring 2011. Two good books (among many): Adams: Lectures on Lie groups

More information

Projective space and twistor theory

Projective space and twistor theory Hayama Symposium on Complex Analysis in Several Variables XVII p. 1/19 Projective space and twistor theory Michael Eastwood [ Toby Bailey Robin Graham Paul Baird Hubert Goldschmidt ] Australian National

More information

Many of the exercises are taken from the books referred at the end of the document.

Many of the exercises are taken from the books referred at the end of the document. Exercises in Geometry I University of Bonn, Winter semester 2014/15 Prof. Christian Blohmann Assistant: Néstor León Delgado The collection of exercises here presented corresponds to the exercises for the

More information

WARPED PRODUCTS PETER PETERSEN

WARPED PRODUCTS PETER PETERSEN WARPED PRODUCTS PETER PETERSEN. Definitions We shall define as few concepts as possible. A tangent vector always has the local coordinate expansion v dx i (v) and a function the differential df f dxi We

More information

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = CALCULUS ON MANIFOLDS 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = a M T am, called the tangent bundle, is itself a smooth manifold, dim T M = 2n. Example 1.

More information

Poisson Manifolds Bihamiltonian Manifolds Bihamiltonian systems as Integrable systems Bihamiltonian structure as tool to find solutions

Poisson Manifolds Bihamiltonian Manifolds Bihamiltonian systems as Integrable systems Bihamiltonian structure as tool to find solutions The Bi hamiltonian Approach to Integrable Systems Paolo Casati Szeged 27 November 2014 1 Poisson Manifolds 2 Bihamiltonian Manifolds 3 Bihamiltonian systems as Integrable systems 4 Bihamiltonian structure

More information

Eva Miranda. UPC-Barcelona and BGSMath. XXV International Fall Workshop on Geometry and Physics Madrid

Eva Miranda. UPC-Barcelona and BGSMath. XXV International Fall Workshop on Geometry and Physics Madrid b-symplectic manifolds: going to infinity and coming back Eva Miranda UPC-Barcelona and BGSMath XXV International Fall Workshop on Geometry and Physics Madrid Eva Miranda (UPC) b-symplectic manifolds Semptember,

More information

Sub-Riemannian geometry of spheres and rolling of manifolds

Sub-Riemannian geometry of spheres and rolling of manifolds Sub-Riemannian geometry of spheres and rolling of manifolds MAURICIO GODOY MOLINA Dissertation for the degree of Philosophiae Doctor (PhD) Department of Mathematics University of Bergen February 2011 Preface

More information

On implicit Lagrangian differential systems

On implicit Lagrangian differential systems ANNALES POLONICI MATHEMATICI LXXIV (2000) On implicit Lagrangian differential systems by S. Janeczko (Warszawa) Bogdan Ziemian in memoriam Abstract. Let (P, ω) be a symplectic manifold. We find an integrability

More information