Chapter (a) ζ. ω. 5 2 (a) Type 0 (b) Type 0 (c) Type 1 (d) Type 2 (e) Type 3 (f) Type 3. (g) type 2 (h) type (a) K G s.

Similar documents
ELEC 372 LECTURE NOTES, WEEK 4 Dr. Amir G. Aghdam Concordia University

Introduction to Control Systems

CONTROL SYSTEMS. Chapter 7 : Bode Plot. 40dB/dec 1.0. db/dec so resultant slope will be 20 db/dec and this is due to the factor s

System Control. Lesson #19a. BME 333 Biomedical Signals and Systems - J.Schesser

State space systems analysis

The Performance of Feedback Control Systems

Time Response. First Order Systems. Time Constant, T c We call 1/a the time constant of the response. Chapter 4 Time Response

Automatic Control Systems

EECE 301 Signals & Systems Prof. Mark Fowler

CONTROL ENGINEERING LABORATORY

Lecture 30: Frequency Response of Second-Order Systems

Last time: Ground rules for filtering and control system design

ECEN620: Network Theory Broadband Circuit Design Fall 2014

THE CONCEPT OF THE ROOT LOCUS. H(s) THE CONCEPT OF THE ROOT LOCUS

Last time: Completed solution to the optimum linear filter in real-time operation

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

Fig. 1: Streamline coordinates

We will look for series solutions to (1) around (at most) regular singular points, which without

Lecture 11. Course Review. (The Big Picture) G. Hovland Input-Output Limitations (Skogestad Ch. 3) Discrete. Time Domain

High-Speed Serial Interface Circuits and Systems. Lect. 4 Phase-Locked Loop (PLL) Type 1 (Chap. 8 in Razavi)

Brief Review of Linear System Theory

Dynamic Response of Linear Systems

EE Control Systems

STABILITY OF THE ACTIVE VIBRATION CONTROL OF CANTILEVER BEAMS

a 1 = 1 a a a a n n s f() s = Σ log a 1 + a a n log n sup log a n+1 + a n+2 + a n+3 log n sup () s = an /n s s = + t i

ECM Control Engineering Dr Mustafa M Aziz (2013) SYSTEM RESPONSE

ECE 422 Power System Operations & Planning 6 Small Signal Stability. Spring 2015 Instructor: Kai Sun

Chapter #5 EEE Control Systems

Mechatronics. Time Response & Frequency Response 2 nd -Order Dynamic System 2-Pole, Low-Pass, Active Filter

Performance-Based Plastic Design (PBPD) Procedure

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed.

Explicit scheme. Fully implicit scheme Notes. Fully implicit scheme Notes. Fully implicit scheme Notes. Notes

Course Outline. Designing Control Systems. Proportional Controller. Amme 3500 : System Dynamics and Control. Root Locus. Dr. Stefan B.

1 Routh Array: 15 points

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Chapter 2 Feedback Control Theory Continued

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

Root Locus Contents. Root locus, sketching algorithm. Root locus, examples. Root locus, proofs. Root locus, control examples

1it is said to be overdamped. When 1, the roots of

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j

Erick L. Oberstar Fall 2001 Project: Sidelobe Canceller & GSC 1. Advanced Digital Signal Processing Sidelobe Canceller (Beam Former)

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

ELEC 372 LECTURE NOTES, WEEK 1 Dr. Amir G. Aghdam Concordia University

Chapter 7: The z-transform. Chih-Wei Liu

Heat Equation: Maximum Principles

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax:

Homework 12 Solution - AME30315, Spring 2013

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis

Isolated Word Recogniser

ELEC 372 LECTURE NOTES, WEEK 6 Dr. Amir G. Aghdam Concordia University

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing

Adaptive control design for a Mimo chemical reactor

EE 508 Lecture 6. Dead Networks Scaling, Normalization and Transformations

Statistical Inference Procedures

Weak formulation and Lagrange equations of motion

Complex Numbers Solutions

Class 07 Time domain analysis Part II 2 nd order systems

Problem 1. Problem Engineering Dynamics Problem Set 9--Solution. Find the equation of motion for the system shown with respect to:

x c the remainder is Pc ().

EE Control Systems LECTURE 14

Gain-scheduling of Acceleration Estimator for Low-velocity Measurement with Encoders

Zeta-reciprocal Extended reciprocal zeta function and an alternate formulation of the Riemann hypothesis By M. Aslam Chaudhry

Digital Control System

LECTURE 13 SIMULTANEOUS EQUATIONS

Feedback Control Systems (FCS)

2.004 Dynamics and Control II Spring 2008

COMPARISONS INVOLVING TWO SAMPLE MEANS. Two-tail tests have these types of hypotheses: H A : 1 2

ME 375 FINAL EXAM Wednesday, May 6, 2009

Massachusetts Institute of Technology Dynamics and Control II

EE 508 Lecture 6. Scaling, Normalization and Transformation

STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN ( )

Lecture 8 - SISO Loop Design

FREE VIBRATION RESPONSE OF A SYSTEM WITH COULOMB DAMPING

ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY REGRESSION ANALYSIS

Definition of z-transform.

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd,

Homework 7 Solution - AME 30315, Spring s 2 + 2s (s 2 + 2s + 4)(s + 20)

EE 4343 Lab#4 PID Control Design of Rigid Bodies

Professor: Mihnea UDREA DIGITAL SIGNAL PROCESSING. Grading: Web: MOODLE. 1. Introduction. General information

Assignment 1 - Solutions. ECSE 420 Parallel Computing Fall November 2, 2014

Chapter #2 EEE Subsea Control and Communication Systems

Chapter 4 : Laplace Transform

MAT 271 Project: Partial Fractions for certain rational functions

Digital Control System

Reliable Decentralized PID Stabilization of MIMO Systems

732 Appendix E: Previous EEE480 Exams. Rules: One sheet permitted, calculators permitted. GWC 352,

376 CHAPTER 6. THE FREQUENCY-RESPONSE DESIGN METHOD. D(s) = we get the compensated system with :

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

The Root Locus Method

MODERN CONTROL SYSTEMS

Dr. Seeler Department of Mechanical Engineering Fall 2009 Lafayette College ME 479: Control Systems and Mechatronics Design and Analysis

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0

MEM 355 Performance Enhancement of Dynamical Systems Root Locus Analysis

TR/46 OCTOBER THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION A. TALBOT

Chapter 7, Solution 1C.

1the 1it is said to be overdamped. When 1, the roots of

Transcription:

Chapter 5 5 1 (a) ζ. ω 0 707 rad / ec (b) 0 ζ 0. 707 ω rad / ec (c) ζ 0. 5 1 ω 5 rad / ec (d) 0. 5 ζ 0. 707 ω 0. 5 rad / ec 5 (a) Type 0 (b) Type 0 (c) Type 1 (d) Type (e) Type 3 (f) Type 3 (g) type (h) type 1 5 3 (a) K G p lim ( ) 1000 K lim G( ) 0 K lim G( ) 0 0 v 0 a 0 (b) K p lim G( ) 0 K v lim G( ) 1 K lim G( ) 0 0 5 1 a 0

(c) K p lim G( ) 0 K lim G( ) K v 0 K a lim G( ) 0 0 (d) K p lim G( ) 0 K v lim G( ) 0 K a lim G( ) 1 0 (e) K p lim G( ) 0 K v lim G( ) 1 K lim G( ) 0 0 a 0 (f) K p lim G( ) 0 K v lim G( ) 0 K lim G( ) K a 0 5 4 (a) Iput Error Cotat Steady tate Error u t K 1000 p 1 1001 tu t K 0 v t u ()/ t K a 0 (b) Iput Error Cotat Steady tate Error u t K p 0 tu t K 1 v 1 t u ()/ t K a 0 (c) Iput Error Cotat Steady tate Error u () t K 0 p 5

tu () t K K 1/ K v t u ()/ t K a 0 The above reult are valid if the value of K correpod to a table cloed loop ytem. (d) The cloed loop ytem i utable. It i meaigle to coduct a teady tate error aalyi. (e) Iput Error Cotat Steady tate Error u t K p 0 tu t K 1 v 1 t u ()/ t K a 0 (f) Iput Error Cotat Steady tate Error u () t K 0 p tu () t K 0 v t u ()/ t K K 1/ K a The cloed loop ytem i table for all poitive value of K. Thu the above reult are valid. 5 5 (a) K H ( 0) 1 M G( ) ( ) H 1 + GH ( ) ( ) 3 + 1 + + 3+ 3 a 3, a 3, a, b 1, b 1. 0 1 0 1 Uit tep Iput: e 1 bk 0 H 1 K H a 0 3 5 3

Uit ramp iput: a b K 3 1 0. Thu e. 0 0 H Uit parabolic Iput: a b K 0 ad a b K 1 0. Thu e. 0 0 H 1 1 H (b) K H ( 0) 5 H G( ) 1 M( ) a 5, a 5, b 1, b 0. 0 1 0 1 1 + GH ( ) ( ) + 5+ 5 Uit tep Iput: e 1 bk 1 5 K a 5 5 H 0 0 H 1 1 0 Uit ramp Iput: i 0: a b K 0 i 1: a b K 5 0 0 0 H 1 1 H e a b K 1 1 ak 0 H H 5 1 5 5 Uit parabolic Iput: e (c) K H ( 0) 1/ 5 H G( ) M( ) 1 + GH ( ) ( ) + 5 The ytem i table. 4 3 + 15 + 50 + + 1 a 1, a 1, a 50, a 15, b 5, b 1 0 1 3 0 1 Uit tep Iput: e 1 bk 5/5 K a 1 H 0 0 H 1 5 1 0 Uit ramp Iput: 5 4

i 0: a b K 0 i 1: a b K 4/ 5 0 0 0 H 1 1 H e a b K 1 1 ak 0 H H 1 1/ 5 4 1/ 5 Uit parabolic Iput: e (d) K H ( 0) 10 H G( ) 1 M( ) The ytem i table. 3 1 + GH ( ) ( ) + 1 + 5+ 10 a 10, a 5, a 1, b 1, b 0, b 0 0 1 0 1 Uit tep Iput: e 1 bk 1 10 K a 10 10 H 0 0 H 1 1 0 Uit ramp Iput: i 0: a b K 0 i 1: a b K 5 0 0 0 H 1 1 H e a b K 1 1 ak 0 H H 5 100 005. Uit parabolic Iput: e 5 6 (a) M ( ) + 4 K 4 3 H 1 The ytem i table. + 16 + 48 + 4 + 4 Uit tep Iput: a 4, a 4, a 48, a 16, b 4, b 1, b 0, b 0 0 1 3 0 1 3 e 1 bk 4 K a 4 H 0 0 H 1 1 0 Uit ramp iput: i 0: a b K 0 i 1: a b K 4 1 3 0 0 0 H 1 1 H 5 5

e a b K 1 1 ak 0 H H 4 1 3 4 4 Uit parabolic Iput: e (b) M( ) K( + 3) K 3 H 1 The ytem i table for K > 0. + 3 + ( K+ ) + 3K a 3K, a K+, a 3, b 3K, b K 0 1 0 1 Uit tep Iput: e 1 bk 3K K a 3K H 0 0 H 1 1 0 Uit ramp Iput: i 0: a b K 0 i 1: a b K K + K 0 0 0 H 1 1 H e a b K 1 1 ak 0 H H K+ K 3K 3K Uit parabolic Iput: e The above reult are valid for K > 0. (c) M + 5 10 H ( ) H( ) K lim ( ) 4 3 H + 15 + 50 + 10 + 5 0 Uit tep Iput: a 0, a 10, a 50, a 15, b 5, b 1 0 1 3 0 1 e 1 a bk 1 50 1 1 H K H a 10 1.4 Uit ramp Iput: 5 6

Uit parabolic Iput: e e (d) M ( ) K( + 5) K H 1 The ytem i table for 0 < K < 04. 4 3 + 17 + 60 + 5K + 5K a 5K, a 5K, a 60, a 17, b 5K, b K 0 1 3 0 1 Uit tep Iput: e 1 bk 5K K a 5K H 0 0 H 1 1 0 Uit ramp Iput: i 0: a b K 0 i 1: a b K 5K K 4K 0 0 0 H 1 1 H e Uit parabolic Iput: a b K 1 1 ak 0 H H 5K K 5K e 4 5 The reult are valid for 0 < K < 04. 5 7

5-7) Type of the ytem i zero 1 3 5 1 1 3 5 1 5 11 5 Pole: -.013 + 1.8773i, -.013-1.8773i, ad -0.5974 Zero: -1 5-8) 5( + 1) ( + )( + 3) 5 1 3 a) Poitio error: lim G lim b) Velocity error: lim lim c) Acceleratio error: lim lim 0 5-9) a) Steady tate error for uit tep iput: Referrig to the reult of problem 5-8, 0 b) Steady tate error for ramp iput: 5 8

Regardig the reult of problem 5-8, c) Steady tate error for parabolic iput: Regardig the reult of problem 5-8, 0 5-10) 4( + 1) ( + ) a) Step error cotat: lim b) Ramp error cotat: lim c) Parabolic error cotat: lim 5-11) 3 4 where x 1 i a uit tep iput, x i a ramp iput, ad x 3 i a uit parabola iput. Sice the ytem i liear, the the effect of X() i the ummatio of effect of each idividual iput. That i: 3 4 So: 0 0 4 5 9

5-1) The tep iput repoe of the ytem i: 1 1 1 1 1 Therefore: 1 1 1 The rie time i the time that uit tep repoe value reache from 0.1 to 0.9. The: It i obviou that t r > 0, the: A k < 1, the 0 Therefore.. 0 or.. which yield: 0 1 1.. 1 1.. 0 5 13) Y( ) G ( ) E( ) KG ( ) 0 p 100K 1+ KG ( ) 0( 1+ 0. + 100K ) t p t Type 1 ytem. 5K Error cotat: K, K, K 0 p v a 1 + 100K t (a) rt () u(): t e (b) r() t tu (): t e (c) rt () tu ()/ t : e 1 K a 1 0 1 + K p 1 1 K + 100 K 5K v t 5 10

5 14 G p 100 Y( ) KG ( ) p ( ) G ( ) ( 1+ 01. )( 1+ 05. ) E( ) 0 1+ K G ( ) 100K G ( ) 0 ( 1+ 01. )( 1+ 0. 5) + 100K t t p 5K Error cotat: K, K, K 0 p v a 1 + 100K t (a) rt () u(): t e (b) r() t tu (): t e (c) rt () tu ()/ t : e 1 K a 1 0 1 + K p 1 1 K + 100 K 5K v t Sice the ytem i of the third order, the value of K ad K t mut be cotraied o that the ytem i table. The characteritic equatio i Routh Tabulatio: ( ) 3 K K t + 1 + 0 + 000 + 100 0 3 1 0 1 0 + 000K 1 100K 40 + 4000K 100K 1 100K t t Stability Coditio: K > 0 ( K ) 1+ 100K 1 t 1 1+ 100 5K > 0 or > t 5K 1 Thu, the miimum teady tate error that ca be obtaied with a uit ramp iput i 1/1. 5 11

5 15 (a) From Figure 3P 9, KK KK + KKKK 1 i b 1 i t 1 + + Θ () R + L ( R + L )( B + J ) o a a a a t t Θ () KK KK + KKKK KKKKN r 1 i b 1 i t 1 i 1 + + + R + L R + L B + J R + L B + J ( )( ) ( )( ) a a a a t t a a t t [ ( R + L)( B + J) + KK ( B + J) + KK + KKKK] a a t t 1 t t i b 1 i t ( ) ( ) Θ ( ) o Θ + + + + + + + + 3 ( ) L J L B R J K K J R B K K KK K K K K B KK K K N r a t a t a t 1 t a t i b i 1 t 1 t 1 i 1 () (), () lim Θ () 0 e θ r t u t Θ r 0 Provided that all the pole of Θ ( ) are all i the left half plae. e (b) For a uit ramp iput, Θ r ( ) 1/. e lim θ ( t) lim Θ ( ) t e 0 e RB+ KKB+ KK + KKKK a t 1 t i b 1 i t KK K K N 1 i if the limit i valid. 5 1

5 16 (a) Forward path trafer fuctio: [(t) 0]: K(1 + 0.0 ) Y( ) ( + 5) K(1 + 0.0 ) G () E ( ) KK t 5 KK 1+ ( + 5) ( + + t ) Type 1 ytem. 1 Error Cotat: K, K, K 0 p v a K 1 1 For a uit ramp iput, r() t tu (), t R(), e lim e() t lim E() K t 0 K t v t Routh Tabulatio: 3 1 KK + 0.0K t 1 0 5 K ( ) 5K K + 0.0 K t 5 K Stability Coditio: ( ) K > 0 5 K + 0.0 K > 0 or K > 0.0 t t (b) With r(t) 0, t u t N 1 () (), () /. Sytem Trafer Fuctio with N() a Iput: K ( ) ( 5) Y + K N K(1 + 0.0 ) KK + + K K + + K ( ) 3 ( ) t 5 0.0 t 1 + + Steady State Output due to (t): ( + 5) ( + 5) y lim y( t) lim Y( ) 1 if the limit i valid. t 0 5 13

5 17 You may ue MATLAB i all Routh Hurwitz calculatio. 1. Activate MATLAB. Go to the directory cotaiig the ACSYS oftware. 3. Type i Acy 4. The pre the trafer fuctio Symbolic ad eter the Characteritic equatio 5. The pre the Routh Hurwitz butto 6. For example look at below Figure 5 14

(a) () t 0, r() t tu (). t Forward path Trafer fuctio: Y() K( + α)( + 3) G () E () 1 0 ( ) Type 1 ytem. Ramp error cotat: K lim G( ) 3Kα v 0 Steady tate error: e 1 1 K 3K v v 3 Characteritic equatio: + K + [ K( 3+ α) 1] + 3α K 0 Routh Tabulatio: 1 3K+ αk 1 K 3αK 3 1 0 K( 3K+ αk 1) 3αK K 3αK Stability Coditio: 1 3K 3K+ αk 1 3α > 0 or K > + 3+ α αk > 0 (b) Whe r(t) 0, t u t N 1 () (), () /. Trafer Fuctio betwee (t) ad y(t): K( + 3) Y( ) 1 K( + 3) 3 N( ) K( + α)( + 3) + K + [ K( + α) 1] + 3α K r 0 1+ ( 1) Steady State Output due to (t): y lim y( t) lim Y( ) 0 if the limit i valid. t 0 5 15

5 18 Percet maximum overhoot 0.5 e πζ 1 ζ Thu ( ) πζ 1 ζ l 0.5 1.386 π ζ 1.9 1 ζ Solvig for ζ from the lat equatio, we have ζ 0.404. Peak Time t max ω π 1 ζ 001. ec. Thu, ω π 001. 1 ( 0.404) 343.4 rad / ec Trafer Fuctio of the Secod order Prototype Sytem: Y( ) ω 117916 R ( ) + ζω + ω + 77. 3+ 117916 5 16

Exteded MATLAB olutio of problem imilar to 5 19 5 7 appear later o e.g. 5 58 5 19 Cloed Loop Trafer Fuctio: Characteritic equatio: Y( ) 5K R K K ( ) () + 5+ 500 + 5 t ( ) K K t + 5+ 500 + 5 0 For a ecod order prototype ytem, whe the maximum overhoot i 4.3%, ζ 0. 707. Rie Time: ω 5K, ζω 5+ 500K 1.414 5K t 1 0.4167 ζ +. 917ζ. 164 0. ec Thu ω 108. rad / ec t r ω ω Thu, K ω ( 10. 8) + K ω 10. 3 4.68 5 500 1.414 15. 3 Thu K t t 0. 006 5 5 500 With K 4.68 ad K t 0. 006, the ytem trafer fuctio i Y ( ) 117 R ( ) + 15. 3+ 117 Uit tep Repoe: y 0.1 at t 0.047 ec. y 0.9 at t 0.44 ec. t r 0.44 0. 047 0. 197 ec. y max 0. 043 ( 4.3% max. overhoot) 5 17

5 0 Cloed loop Trafer Fuctio: Characteritic Equatio: Y( ) 5K R K K ( ) () + 5+ 500 + 5 t ( ) K K t + 5+ 500 + 5 0 πζ Whe Maximum overhoot 10%, l 0.1.3 πζ ( ) 5.3 1 ζ Solvig for ζ, we get ζ 0.59. 1 ζ The Natural udamped frequecy i ω 5K Thu, 5+ 500 K ζω 118. ω Rie Time: t 1 0.4167 ζ. 917ζ. t r. ω ω + 01 17696 ec. Thu ω 17. 7 rad / ec ω 1588. K 1. 58 Thu K 0. 0318 t 5 500 With K 1.58 ad K t 0. 0318, the ytem trafer fuctio i Y ( ) 313 R ( ) + 0. 88+ 314.5 Uit tep Repoe: y 0.1 whe t 0.08 ec. y 0.9 whe t 0.131 ec. t r 0. 131 0. 08 0. 103 ec. y max 11. ( 10% max. overhoot) 5 18

5 1 Cloed Loop Trafer Fuctio: Characteritic Equatio: Y ( ) 5K R ( ) + ( 5+ 500K ) + 5K ( ) t t πζ + 5+ 500K + 5K 0 Whe Maximum overhoot 0%, l 0. 1.61 πζ ( ).59 1 ζ Solvig for ζ, we get ζ 0.456. 1 ζ The Natural udamped frequecy ω 5K 5+ 500K ζω 0. 91ω Rie Time: 1 0.4167 ζ. 917ζ t r 005. ω ω t + 1.4165 1.4165 ec. Thu, ω 8. 33 005. ω K 31. 5+ 500K 0. 91ω 584. Thu, K 0. 0417 t t 5 With K 3.1 ad K t 0. 0417, the ytem trafer fuctio i Y ( ) 80. 59 R ( ) + 584. + 80. 59 Uit tep Repoe: y 0.1 whe t 0.0178 ec. y 0.9 whe t 0.07 ec. t r 0. 07 0. 0178 0. 054 ec. y max 1. ( 0% max. overhoot) 5 19

5 Cloed Loop Trafer Fuctio: Characteritic Equatio: Y( ) 5K R K K ( ) () + 5+ 500 + 5 t ( ) K K t + 5+ 500 + 5 0 Delay time t d 11. + 0. 15ζ + 0.469ζ ω 01. ec. 1.43 Whe Maximum overhoot 4.3%, ζ 0. 707. t d 01. ω ec. Thu ω 14.3 rad/ec. ω 14.3 K 8.1 5 + 500K t ζω 1.414ω 0.1 5 5 151. Thu K t 0. 030 500 With K 0.1 ad K t 0. 030, the ytem trafer fuctio i Uit Step Repoe: Y ( ) 0. 5 R ( ) + 01. + 0. 5 Whe y 0.5, t 0.1005 ec. Thu, t d 0. 1005 ec. y max 1043. ( 4.3% max. overhoot) 5 0

5 3 Cloed Loop Trafer Fuctio: Characteritic Equatio: Y( ) 5K R K K ( ) () + 5+ 500 + 5 t ( ) K K t + 5+ 500 + 5 0 Delay time t d 11. + 0. 15ζ + 0.469ζ ω 1337. 005. ω 1337. Thu, ω 6. 74 005. ω 6.74 K 8.6 5 5 5 + 500K ζω 0. 59 6. 74 3155. Thu K 0. 0531 t t With K 8.6 ad K t 0. 0531, the ytem trafer fuctio i Y ( ) 715 R ( ) + 3155. + 715 Uit Step Repoe: y 0.5 whe t 0.0505 ec. Thu, t d 0. 0505 ec. y max 11007. ( 10. 07% max. overhoot) 5 1

5 4 Cloed Loop Trafer Fuctio: Characteritic Equatio: Y( ) 5K R K K ( ) () + 5+ 500 + 5 t ( ) K K t + 5+ 500 + 5 0 For Maximum overhoot 0., ζ 0.456. Delay time t d 11. + 0. 15ζ + 0.469 ζ 1.545 001. ω ω ec. 1.545 Natural Udamped Frequecy ω 15.45 rad/ec. Thu, 001. ω 15737.7 K 69.5 5 5 5 + 500 ζω 0.456 15.45 114.41 Thu, K t 0.188 K t With K 69.5 ad K t 0.188, the ytem trafer fuctio i Y ( ) 15737. 7 R ( ) + 114.41+ 15737. 7 Uit tep Repoe: y 0.5 whe t 0.0101 ec. Thu, t d 0. 0101 ec. y max 1. ( 0% max. overhoot) 5

5 5 Cloed Loop Trafer Fuctio: Characteritic Equatio: Y( ) 5K R K K ( ) () + 5+ 500 + 5 t ( ) K K t + 5 + 5000 + 5 0 ζ 0. 6 ζω 5 + 500K 1.ω t 3. 3. Settlig time t 01. ζω 06. ω 3. ec. Thu, ω 53. 33 rad / ec 006. K t 1.ω 5 ω 0118. K 113. 76 500 5 Sytem Trafer Fuctio: Y ( ) 844 R ( ) + 64+ 844 Uit tep Repoe: y(t) reache 1.00 ad ever exceed thi value at t 0.098 ec. Thu, t 0. 098 ec. 5 3

5 6 (a) Cloed Loop Trafer Fuctio: Characteritic Equatio: Y( ) 5K R K K ( ) () + 5+ 500 + 5 t ( ) K K t + 5+ 500 + 5 0 For maximum overhoot 0.1, ζ 0. 59. 5 + 500 ζω 0. 59ω 118. ω K t Settlig time: t 3. 3. 005. ζω 059. ω 3. ec. ω 108.47 005. 059. K t 118. ω 5 ω 0.46 K 470. 63 500 5 Sytem Trafer Fuctio: Y ( ) 11765. 74 R ( ) + 18+ 11765. 74 Uit Step Repoe: y(t) reache 1.05 ad ever exceed thi value at t 0.048 ec. Thu, t 0. 048 ec. (b) For maximum overhoot 0., ζ 0.456. 5 + 500 ζω 0. 91ω K t 3. 3. 3. Settlig time t 001. ec. ω 70175. ζω 0.456ω 0.456 001. rad / ec K t 0. 91 ω 5 1.7 500 Sytem Trafer Fuctio: Y ( ) 49453 Uit Step Repoe: R ( ) + 640+ 49453 5 4

y(t) reache 1.05 ad ever exceed thi value at t 0.0074 ec. Thu, t 0. 0074 ec. Thi i le tha the calculated value of 0.01 ec. 5 5

5 7 Cloed Loop Trafer Fuctio: Characteritic Equatio: Y( ) 5K R K K ( ) () + 5+ 500 + 5 t ( ) K K t + 5+ 500 + 5 0 Dampig ratio ζ 0. 707. Settlig time t Sytem Trafer Fuctio: 4.5ζ 31815. 01. ec. Thu, ω 31815. rad/ec. ω ω ω 5+ 500K ζω 44.986 Thu, K 0. 08 K 40.488 t t ζ Y ( ) 101. R ( ) + 44.986+ 101. Uit Step Repoe: The uit tep repoe reache 0.95 at t 0.09 ec. which i the meaured t. 5 6

5 8 (a) Whe ζ 05., the rie time i 1 0.4167 ζ +. 917ζ 151. 1 t r ω ω ec. Thu ω 151. rad/ec. The ecod order term of the characteritic equatio i writte + ζω + ω + 151. +. 313 0 3 The characteritic equatio of the ytem i + ( a+ 30) + 30a+ K 0 Dividig the characteritic equatio by + 151. +. 313, we have For zero remaider, 8.48 a 45. 63 Thu, a 16. K 65874. +. 313a 69. 58 Forward Path Trafer Fuctio: G ( ) 69. 58 ( + 16. )( + 30) Uit Step Repoe: y 0.1 whe t 0.355 ec. y 0.9 whe t 1.43 ec. Rie Time: t r 1.43 0. 355 1075. ec. 5 7

(b) The ytem i type 1. (i) For a uit tep iput, e 0. (ii) For a uit ramp iput, K G v K 60. 58 1 lim ( ) 1.45 e 069. 0 30a 30 16. K v 5 9 (a) Characteritic Equatio: 3 + 3 + ( + K) K 0 Apply the Routh Hurwitz criterio to fid the rage of K for tability. Routh Tabulatio: 3 1 + K 1 0 3 6+ 4K 3 K K Stability Coditio: 1.5 < K < 0 Thi implifie the earch for K for two equal root. Whe K 0.7806, the characteritic equatio root are: 0.347, 0.347, ad.3054. (b) Uit Step Repoe: (K 0.7806) 5 8

(c) Uit Step Repoe (K 1) The tep repoe i (a) ad (b) all have a egative uderhoot for mall value of t. Thi i due to the zero of G() that lie i the right half plae. 5 9

5 30 (a) The tate equatio of the cloed loop ytem are: dx dt 1 dx x + 5x 6x k x k x + r 1 1 1 1 dt The characteritic equatio of the cloed loop ytem i + 1 5 Δ + ( 1+ k ) + ( 30+ 5k + k ) 0 1 6 + k + k 1 For ω 10 rad / ec, 30 + 5k + k ω 100. Thu 5k + k 70 1 1 k (b) For ζ 0. 707, ζω 1+ k. Thu ω 1+. 1.414 ( 1+ k ) ω 30 + 5 k + k Thu k 59 + 10k 1 1 (c) For ω ζ 10 rad / ec ad 0. 707, 5k + k 100 ad 1 + k ζω 14.14 Thu k 1314. Solvig for k, we have k 1137.. 1 1 1 (d) The cloed loop trafer fuctio i Y( ) 5 5 R k k k ( ) ( ) ( ) + + 1 + 30+ 5 + + 14.14 + 100 1 5 For a uit tep iput, lim y( t ) lim Y ( ) 005. t 0 100 (e) For zero teady tate error due to a uit tep iput, 30 + 5k + k 5 Thu 5k + k 5 1 1 5 30

Parameter Plae k 1 veru k : 5 31 (a) Cloed Loop Trafer Fuctio (b) Characteritic Equatio: ( K + K ) Y( ) 100 P D R + K+ K ( ) 100 100 D P + 100K + 100K 0 D P The ytem i table for K P > 0 ad K > 0. D (b) For ζ, ζω ω 1 100K. D 10 K Thu ω 100K 0 K K 0. K P D P D P (c) See parameter plae i part (g). 5 31

(d) See parameter plae i part (g). (e) Parabolic error cotat K a 1000 ec ( ) K G K K K K lim ( ) lim100 + 100 1000 Thu 10 a P D P P 0 0 (f) Natural udamped frequecy ω 50 rad/ec. ω K P Thu K P 10 50 5 (g) Whe K P 0, K K D G ( ) 100 100 D (pole zero cacellatio) 5 3

5 3 (a) Forward path Trafer Fuctio: Y() KK 10K i G () E ( ) J(1 T) KK 0.001 0.01 10K [ + + ] i t ( + + t) K 1 Whe r() t tu (), t K lim G() e v 0 K K t v K t K (b) Whe r(t) 0 Y() 1+ T 1+ 0.1 T ( ) J(1 + T) + K K + KK 0.001 + 0.01+ 10K + 10K [ ] ( ) d i t i t For T d 1 1 ( ) lim y( t ) lim Y ( ) t 0 10K if the ytem i table. (c) The characteritic equatio of the cloed loop ytem i 3 0. 001 + 0. 01 + 0. 1 + 10K 0 The ytem i utable for K > 0.1. So we ca et K to jut le tha 0.1. The, the miimum value of the teady tate value of y(t) i 1 10 K K 01. + 1 However, with thi value of K, the ytem repoe will be very ocillatory. The maximum overhoot will be early 100%. (d) For K 0.1, the characteritic equatio i 3 3 4 t 0. 001 + 0. 01 + 10K + 1 0 or + 10 + 10 K + 1000 0 t 5 33

For the two complex root to have real part of /5. we let the characteritic equatio be writte a ( )( ) 3 a b a b ab + + 5 + 0 or + ( + 5) + (5 + ) + 0 The, a + 5 10 a 5 ab 1000 b 00 5a + b 10 K K 0. 05 The three root are: a 5 a 5. 5± j13. 9 4 t t 5-33) Rie time:..... 0.56 Peak time:.. 0.785 Maximum overhoot:. Settlig time:. 0 0.69.. 1.067. 0.095 5 34

5-34) K ( J + a + KK f ) exp 0. ξ 0.456 0.1 ω 0.353 0.15 5.4.. 5.49. 19.88 5 35

5-35) a) 6.5 6.5 1 1. 6.5 1.. Subtitutig ito equatio () give: 7.5 6.5 6.5 6.5 Sice the ytem i multi iput ad multi output, there are 4 trafer fuctio a:,,, To fid the uit tep repoe of the ytem, let coider 6.5 6.5 6.5 6.5 1 1 1 6.5 By lookig at the Laplace traform fuctio table: where co 1 1 1 i 1 b) 5 36

Therefore: A a reult: which mea: 1 1 The uit tep repoe i: 1 1 Therefore a a reult: 1 1 1 i 1 where ω 1 ad ξ ω 1 / c) 4 Therefore: 1 1 A a reult, the tep repoe of the ytem i: 1 1 By lookig up at the Laplace trafer fuctio table: 5 37

5-36) MATLAB CODE (a) where ω 1, ad ξ ω 1 ξ 1 / i 1 where θ co -1 (ξ -1) co -1 (0.5), therefore, clear all Amat[-1-1;6.5 0] Bmat[1 1;1 0] Cmat[1 0;0 1] Dmat[0 0;0 0] dip(' State-Space Model i:') Statemodel(Amat,Bmat,Cmat,Dmat) [ma,a]ize(amat); rakarak(amat); dip(' Characteritic Polyomial:') chareqpoly(amat); 1 3 i 3 % p poly(a) where A i a -by- matrix retur a +1 elemet %row vector whoe elemet are the coefficiet of the characteritic %polyomialdet(i-a). The coefficiet are ordered i decedig power. [mchareq,chareq]ize(chareq); ym ''; polyym(chareq,) dip(' Equivalet Trafer Fuctio Model i:') HmatCmat*iv(*eye()-Amat)*Bmat+Dmat Sice the ytem i multi iput ad multi output, there are 4 trafer fuctio a: To fid the uit tep repoe of the ytem, let coider,,, 6.5 6.5 5 38

Let obtai thi term ad fid Y () time repoe for a tep iput. HHmat(,) ilaplace(h/) Pretty(H) Hpolytf([13/],chareq) tep(hpoly) H 13/(*^+*+13) a 1-1/5*exp(-1/*t)*(5*co(5/*t)+i(5/*t)) Trafer fuctio: 6.5 ------------- ^ + + 6.5 13 --------------- + + 13 To fid the tep repoe H11, H1, ad H1 follow the ame procedure. Other part are the ame. 5 39

5-37) Impule repoe: a).. b) c) where α co -1 ξ ad 1, therefore, 1 i 1 1 i 1 1 1 1 i 1 5-38) Ue the approach i 5-36 except: HHmat(,) ilaplace(h) Pretty(H) Hpolytf([13/],chareq) impule(hpoly) H 13/(*^+*+13) a 13/5*exp(-1/*t)*i(5/*t) Trafer fuctio: 6.5 ------------- ^ + + 6.5 13 --------------- + + 13 5 40

Other part are the ame. 5-39) a) The diplacemet of the bar i: The the equatio of motio i: i 0 A x i a fuctio of θ ad chagig with time, the co If θ i mall eough, the i θ θ ad co θ 1. Therefore, the equatio of motio i rewritte a: 0 5 41

(b) To fid the uit tep repoe, you ca ue the ymbolic approach how i Toolbox -1-1: clear all %tf( ); ym B L K ThetaB*//L/(B*+K) ilaplace(theta) Theta B/L/(B*+K) a 1/L*exp(-K*t/B) Alteratively, aig value to B L K ad fid the tep repoe ee olutio to problem 5-36. 5 40 (a) K t 10000 oz - i / rad The Forward Path Trafer Fuctio: 1 9 10 K G () 4 3 7 9 1 ( + 5000 + 1.067 10 + 50.5 10 + 5.74 10 ) 1 9 10 K ( + 116)( + 4883)( + 41.68 + j3178.3)( + 41.68 j3178.3) Routh Tabulatio: 5 1 7 1 1.067 10 5.74 10 4 9 1 5000 50.5 10 9 10 K 3 5 1 9 5.7 10 5. 7 10 18. 10 K 0 8 7 1. 895 10 + 1579. 10 K 9 10 K 1 13 1 9 16. 6 10 + 8.473 10 K. 84 10 K 9 + 1579. K 0 1 9 10 K 5 4

From the 1 row, the coditio of tability i 165710 + 8473K. 84K > 0 or K 98114. K 58303.47 < 0 or ( K + 19.43)( K 3000. 57) < 0 Stability Coditio: 0 < K < 3000.56 The critical value of K for tability i 3000.56. With thi value of K, the root of the characteritic equatio are: 4916.9, 41.57 + j3113.3, 41.57 + j3113.3, j75.68, ad j75.68 (b) K L 1000 oz i/rad. The forward path trafer fuctio i 11 9 10 K G () 4 3 6 9 11 ( + 5000 + 1.58 10 + 5.05 10 + 5.74 10 ) 11 9 10 K (1 + 116.06)( + 488.8)( + 56.48 + j1005)( + 56.48 j1005) (c) Characteritic Equatio of the Cloed Loop Sytem: 5 4 6 3 9 11 11 + 5000 + 1. 58 10 + 5. 05 10 + 5. 74 10 + 9 10 K 0 Routh Tabulatio: 5 1 6 11 1.58 10 5.74 10 4 9 11 5000 5.05 10 9 10 K 3 5 11 8 5.7 10 5. 74 10 18. 10 K 0 7 6 11 4.6503 10 + 15734. 10 K 9 10 K 1 18 15 14 6. 618 10 + 377.43 10 K. 83 10 0 11 7 6 4.6503 10 + 15734. 10 9 10 K K K 5 43

4 From the 1 row, the coditio of tability i 6. 618 10 + 3774.3K. 83K > 0 Or, K 133. 73K 93990 < 0 or ( K 1400)( K + 67. 14) < 0 Stability Coditio: 0 < K < 1400 The critical value of K for tability i 1400. With thi value of K, the characteritic equatio root are: 4885.1, 57.465 + j676, 57.465 j676, j748.44, ad j748.44 (c) K L. Forward Path Trafer Fuctio: K K K i G () J J + J T m L ( ) L J + R J + R L + R B + K K a T a T m a a m i b 891100K 891100K + 5000+ 566700 ( + 116)( + 4884) ( ) Characteritic Equatio of the Cloed Loop Sytem: 3 + 5000 + 566700 + 891100 K 0 Routh Tabulatio: 3 1 0 1 566700 5000 891100K 566700 178.K 8991100K From the 1 row, the coditio of K for tability i 566700 178.K > 0. 5 44

Stability Coditio: 0 < K < 3179.78 The critical value of K for tability i 3179.78. With K 3179.78, the characteritic equatio root are 5000, j75.79, ad j75.79. Whe the motor haft i flexible, K L i fiite, two of the ope loop pole are complex. A the haft become tiffer, K L icreae, ad the imagiary part of the ope loop pole alo icreae. Whe K L, the haft i rigid, the pole of the forward path trafer fuctio are all real. Similar effect are oberved for the root of the characteritic equatio with repect to the value of K L. 5 41 (a) 100( + ) G ( ) 1 G( ) c 1 K p lim G( ) 00 0 Whe d(t) 0, the teady tate error due to a uit tep iput i e 1 1 1 0. 00505 1 + K 1 00 199 p (b) + α 100( + )( + α) G ( ) G( ) K e 0 c p ( 1) (c) α 5 maximum overhoot 5.6% α 50 maximum overhoot % α 500 maximum overhoot 54.6% 5 45

A the value of α icreae, the maximum overhoot icreae becaue the dampig effect of the zero at α become le effective. Uit Step Repoe: (d) rt () G (). dt () u () t D () 1 0 ad 1 c Sytem Trafer Fuctio: (r 0) Y( ) D ( ) r 0 3 100( + ) + 100 + ( 199 + 100α) + 00α Output Due to Uit Step Iput: Y( ) 3 100( + ) + 100 + ( 199 + 100α) + 00α 00 1 y lim y( t) lim Y( ) t 0 00α α (e) rt () 0, dt () u() t G ( ) c + α 5 46

Sytem Trafer Fuctio [r(t) 0] Y( ) D ( ) r 0 3 100 ( + 0 + 100 + ( 199 + 100α) + 00α 1 D ( ) y lim y( t) lim Y( ) 0 t 0 (f) Y( ) α 5 D ( ) r 0 Y( ) α 50 D ( ) r 0 Y( ) α 5000 D ( ) r 0 3 100 ( + ) + 100 + 699+ 1000 3 100 ( + ) + 100 + 5199+ 10000 3 100 ( + ) + 100 + 50199+ 100000 Uit Step Repoe: (g) A the value of α icreae, the output repoe y(t) due to r(t) become more ocillatory, ad the overhoot i larger. A the value of α icreae, the amplitude of the output repoe y(t) due to d(t) become maller ad more ocillatory. 5 47

5 4 (a) Forward Path Trafer fuctio: Characteritic Equatio: H( ) 10N N G ( ) E( ) ( + 1)( + 10) ( + 1) + + N 0 N1: Characteritic Equatio: + + 1 0 ζ 05. ω 1 rad/ec. Maximum overhoot e πζ 1 ζ 0. 163 (16.3%) Peak time t max ω π 1 ζ 3. 68 ec. N10: Characteritic Equatio: + 10 0 ζ 0. 158 ω 10 rad/ec. πζ 1 ζ Maximum overhoot e 0. 605 (60.5%) Peak time t (b) Uit Step Repoe: N 1 max ω π 1 ζ 1006. ec. 5 48

Secod order Sytem Third order Sytem Maximum overhoot 0.163 0.06 Peak time 3.68 ec. 3.68 ec. Uit Step Repoe: N 10 Secod order Sytem Third order Sytem Maximum overhoot 0.605 0.96 Peak time 1.006 ec. 1.13 ec. 5 49

5 43 Uit Step Repoe: Whe T z i mall, the effect i lower overhoot due to improved dampig. Whe T z i very large, the overhoot become very large due to the derivative effect. T z improve the rie time, ice 1+ T z derivative cotrol or a high pa filter. i a 5 50

5 44 Uit Step Repoe The effect of addig the pole at 1 to G() i to icreae the rie time ad the overhoot. The ytem i T p le table. Whe T p > 0. 707, the cloed loop ytem i table. 5 51

5-45) You may ue the ACSYS oftware developed for thi book. For decriptio refer to Chapter 9. We ue a MATLAB code imilar to toolbox --1 ad thoe i Chapter 5 to olve thi problem. (a) Uig Toolbox 5-9-3 clear all um []; de [0-0.55-1.5]; Gzpk(um,de,1) t0:0.001:15; tep(g,t); hold o; for Tz[1 5 0]; t0:0.001:15; um [-1/Tz]; de [0-0.55-1.5]; Gzpk(um,de,1) tep(g,t); hold o; ed xlabel('time(ec)') ylabel('y(t)') title('uit-tep repoe of the ytem') Zero/pole/gai: 1 ------------------ (+0.55) (+1.5) Zero/pole/gai: (+1) ------------------ (+0.55) (+1.5) Zero/pole/gai: (+0.) ------------------ (+0.55) (+1.5) Zero/pole/gai: (+0.05) ------------------ (+0.55) (+1.5) 5 5

(b) clear all for Tz[0 1 5 0]; t0:0.001:15; um [Tz 1]; de [1 ]; Gtf(um,de) tep(g,t); hold o; ed xlabel('time(ec)') ylabel('y(t)') title('uit-tep repoe of the ytem') Trafer fuctio: 1 ------------- ^ + + Trafer fuctio: + 1 ------------- ^ + + Trafer fuctio: 5 + 1 ------------- ^ + + 5 53

Trafer fuctio: 0 + 1 ------------- ^ + + Follow the ame procedure for other part. 5-46) Sice the ytem i liear we ue uperpoitio to fid Y, for iput X ad D Firt, coider D 0 k K J + a K f The 1 ; 5 54

Kk ( J + a + KK k) f Accordig to above block diagram: Now coider X 0, the: 1 1 1 k K J + a K f +1 Accordigly, ad 1 I thi cae, E() D-KY() 1 1 1 5 55

Now the teady tate error ca be eaily calculated by: 1 1/: lim 1 1 lim lim 1 0 1 1 : lim lim lim (c) The overall repoe i obtaied through uperpoitio Y() Y() + Y() D 0 X 0 yt () yt () + yt () d() t 0 x() t 0 1 1 1 MATLAB clear all ym K k J a Kf X1/; D1/^ YK*k*X/(*(J*+a+K*k*Kf)+K*k)+k*(Kf+)*D/(*(J*+a)+k*(Kf+)*K) ilaplace(y) D 1/^ Y K*k//(*(J*+a+K*k*Kf)+K*k)+k*(Kf+)/^/(*(J*+a)+k*(Kf+)*K) a 1+t/K+1/k/K^/Kf/(a^+*a*K*k+K^*k^- 4*J*K*k*Kf)^(1/)*ih(1/*t/J*(a^+*a*K*k+K^*k^-4*J*K*k*Kf)^(1/))*exp(- 1/*(a+K*k)/J*t)*(a^+a*K*k-*J*K*k*Kf)-coh(1/*t/J*(a^+*a*K*k*Kf+K^*k^*Kf^- 4*J*K*k)^(1/))*exp(-1/*(a+K*k*Kf)/J*t)-(a+K*k*Kf)/(a^+*a*K*k*Kf+K^*k^*Kf^- 4*J*K*k)^(1/)*ih(1/*t/J*(a^+*a*K*k*Kf+K^*k^*Kf^-4*J*K*k)^(1/))*exp(- 1/*(a+K*k*Kf)/J*t)+1/k/K^/Kf*a*(-1+exp(- 1/*(a+K*k)/J*t)*coh(1/*t/J*(a^+*a*K*k+K^*k^-4*J*K*k*Kf)^(1/))) 5 56

5-47) (a) Fid the e( t) dt whe e(t) i the error i the uit tep repoe. 0 A the ytem i table the e( t) dt will coverge to a cotat value: 0 0 E( ) e( t) dt lim lim E( ) 0 0 Y ( ) G( ) ( A1 + 1)( A X ( ) 1 + G( ) ( B + 1)( B 1 + 1)...( A + 1)...( B m + 1) + 1) m Try to relate thi to Equatio (5-40). G () 1 E ( ) X() Y() X() X() X() 1 + G ( ) 1 + G ( ) ( A+ 1)( A+ 1)...( A+ 1) ( B+ 1)( B + 1)...( B + 1) ( A+ 1)( A+ 1)...( A+ 1) X X 1 1 m 1 1 ( ) ( ) ( B 1 + 1)( B + 1)...( Bm+ 1) ( B 1 + 1)( B + 1)...( Bm+ 1) 1 ( B 1 + 1)( B + 1)...( Bm+ 1) ( A 1 + 1)( A + 1)...( A + 1) lim E ( ) lim 0 0 ( B 1 + 1)( B+ 1)...( Bm+ 1) B + B + L+ B A + A + L+ A ( ) ( ) 1 m 1 ( B+ 1)( B+ 1)...( B + 1) ( B 1 + 1)( B + 1)...( Bm+ 1) ( A 1 + 1)( A + 1)...( A + 1) 1 m () 1 G ( A 1 + 1)( A + 1)...( A + 1) G () ( B 1 + 1)( B + 1)...( Bm+ 1) ( A 1 + 1)( A + 1)...( A + 1) 1 ( A+ 1)( A+ 1)...( A+ 1) e B B B 1 lim 1 0 0 ( 1 + 1)( + 1)...( m + 1) 5 57

(b) Calculate Recall 1 K 1 lim G( ) 0 G () 1 E ( ) X() Y() X() X() X() 1 + G ( ) 1 + G ( ) Hece 1 1 1 1 lim E ( ) lim X( ) lim lim 0 01 + G ( ) 0 + G ( ) 0 G ( ) K Ramp Error Cotat v 5 58

5-48) 10 5 10 10 35 5 10 Comparig with the ecod order prototype ytem ad matchig deomiator: 5 10 35 exp 10.5 Let ξ 0.4 ad ω 80 The 1.386 0.10 1 3. 0.1 80, 0 0.69 35 9 56.5 clear all p9; K56.5; um [10 10*K]; de [1 35+p 5*p+10*K]; Gtf(um,de) tep(g); xlabel('time(ec)') ylabel('y(t)') title('uit-tep repoe of the ytem') Trafer fuctio: 10 + 56.5 ----------------- ^ + 64 + 188 5 59

5-49) Accordig to the maximum overhoot: which hould be le tha t, the or 1 jω π / t ω 1 ξ σ π / t ω 1 ξ 5 60

5-50) Uig a d order prototype ytem format, from Figure 5-15, ω i the radial ditace from the complex cojugate root to the origi of the -plae, the ω with repect to the origi of the how regio i ω 3.6. Therefore the atural frequecy rage i the regio how i aroud.6 ω 4.6 O the other had, the dampig ratio ζ at the two dahed radial lie i obtaied from: ζ co/ i ζ co/ i The approximatio from the figure give: ζ 0.56 ζ 0.91 Therefore 0.56 ζ 0.91 b) A K p, the: 1 If the root of the characteritic equatio are aumed to be lied i the cetre of the how regio: Comparig with the characteritic equatio: c) The characteritic equatio 3 3 6130 1 6 13 3.5 0 i a ecod order polyomial with two root. Thee two root ca be determied by two term (p+kk p ) ad KK p K I which iclude four parameter. Regardle of the p ad K p value, we ca alway chooe K ad o that to place the root i a deired locatio. 5 61

5-51) a) By ubtitutig the value: b) Speed of the motor i lim 10. 19.3. 0. 0.109 0. 0.109 (c) d) 0. 0.109 0. 0.109 0. 0.109 A a reult: 0. 0.109 0. e) A exp 0., the, ξ 0.404 Accordig to the trafer fuctio, 0.109, the where 0. K<0.0845 f) A..., the 0.6, a 0., therefore; 1.. 0.14/ 5 6

g) MATLAB clear all for K[0.5 1 ]; t0:0.001:15; um [0.*K]; de [1 0.109 0.*K]; Gtf(um,de) tep(g,t); hold o; ed xlabel('time(ec)') ylabel('y(t)') title('uit-tep repoe of the ytem') Trafer fuctio: 0.1 ------------------- ^ + 0.109 + 0.1 Trafer fuctio: 0. ------------------- ^ + 0.109 + 0. Trafer fuctio: 0.4 ------------------- ^ + 0.109 + 0.4 5 63

Rie time decreae with K icreaig. Overhoot icreae with K. 5 64

5-5) exp 0.1, therefore, ξ 0.59 A., the,... 3.6 1 3 3 3 Therefore: 3 3 If p i a o-domiat pole; therefore comparig both ide of above equatio ad: 3 3 If we coider p 10a (o-domiat pole), ξ 0.6 ad ω 4, the: 4.8 10 3 48 16 3 160 160 8.3 89.8 83 clear all K160; a8.3; b89.8; p83; um [K K*a]; de [1 3+b 3*b+K K*a]; Gtf(um,de) tep(g); xlabel('time(ec)') ylabel('y(t)') title('uit-tep repoe of the ytem') Trafer fuctio: 160 + 138 ------------------------------- ^3 + 9.8 ^ + 49.4 + 138 5 65

Both Overhoot ad ettlig time value are met. No eed to adjut parameter. 5-53) For the cotroller ad the plat to be i erie ad uig a uity feedback loop we have: MATLAB USE toolbox 5-8-3 clear all um[ 1 3]; deom[ 3+qrt(9 40) 3 qrt(9 40) 0.0+qrt(.004.07) 0.0 qrt(.004.07) 10]; Gzpk(um,deom,60) rlocu(g) Zero/pole/gai: 60 (+1) (+) (+3) (+10) (^ + 0.04 + 0.0664) (^ + 6 + 40) 5 66

Note the ytem ha two domiat complex pole cloe to the imagiary axi. Let zoom i the root locu diagram ad ue the curor to fid the parameter value. 5 67

A how for K0.933 the domiat cloed loop pole are at 0.46±j 0.66 AND OVERSHOOT IS ALMOST 10%. Icreaig K will puh the pole cloer toward le domiat zero ad pole. A a proce the deig proce become le trivial ad more difficult. To cofirm ue Mfeedback(G*.933,1) %See toolbox 5 4 tep(m) Zero/pole/gai: 55.98 (+3) (+) (+1) (+7.048) (^ + 0.9195 + 0.603) (^ + 8.07 + 85.9) 5 68

To reduce rie time, the pole have to move to left to make the ecodary pole more domiat. A a reult the little bump i the left had ide of the above graph hould rie. Try K3: >> Mfeedback(G*3,1) Zero/pole/gai: 180 (+3) (+) (+1) (+5.01) (^ + 1.655 + 1.058) (^ + 9.375 + 08.9) >> tep(m) **Try a higher K value, but lookig at the root locu ad the time plot, it appear that the overhoot ad rie time criteria will ever be met imultaeouly. 5 69

K5 Mfeedback(G*5,1) %See toolbox 5-4- tep(m) Zero/pole/gai: 300 (+3) (+) (+1) --------------------------------------------------------- (+4.434) (^ + 1.958 + 1.5) (^ + 9.648 + 39.1) 5 70

5 71

5-54) Forward path Trafer Fuctio: M( ) K G ( ) 3 1 M( ) + ( 0 + a) + ( 00 + 0a) + 00a K For type 1 ytem, 00a K 0 Thu K 00a Ramp error cotat: K v K 00a lim G( ) 5 Thu a 10 K 000 0 00 + 0a 00 + 0a MATLAB Symbolic tool ca be ued to olve above. We ue it to fid the root for the ext part: >> ym a K >>olve(5*00+5*0*a 00a) a 10 >> D(^+0*+00)*+a)) D (^+0*+00)*(+a) >> expad(d) a ^3+^*a+0*^+0**a+00*+00*a >> olve(a,) a a 10+10*i 10 10*i The forward path trafer fuctio i The cotroller trafer fuctio i 5 7

G () 000 ( + 30+ 400) ( + + ) ( + + ) G () 0 10 100 G () c G () 30 400 p MATLAB The maximum overhoot of the uit tep repoe i 0 percet. clear all K000; a10; um []; de [-10+10i -10-10i -a]; Gzpk(um,de,K) tep(g); xlabel('time(ec)') ylabel('y(t)') title('uit-tep repoe of the ytem') Zero/pole/gai: 000 ------------------------- (+10) (^ + 0 + 00) Clearly PO0. 5 73

5-55) Forward path Trafer Fuctio: M( ) K G ( ) 3 1 M( ) + ( 0 + a) + ( 00 + 0a) + 00a K For type 1 ytem, 00a K 0 Thu K 00a Ramp error cotat: K v K 00a lim G( ) 9 Thu a 90 K 18000 0 00 + 0a 00 + 0a MATLAB Symbolic tool ca be ued to olve above. We ue it to fid the root for the ext part: >> ym a K olve(9*00+9*0*a 00*a) a 90 >>D(^+0*+00)*+a)) D (^+0*+00)*(+a) >> expad(d) a ^3+^*a+0*^+0**a+00*+00*a >> olve(a,) a a 10+10*i 10 10*i The forward path trafer fuctio i The cotroller trafer fuctio i 5 74

G () 18000 ( + 110+ 000) ( + + ) ( + + ) G () 180 10 100 G () c G ( ) 110 000 p The maximum overhoot of the uit tep repoe i 4.3 percet. From the expreio for the ramp error cotat, we ee that a a or K goe to ifiity, K v approache 10. Thu the maximum value of K v that ca be realized i 10. The difficultie with very large value of K ad a are that a high gai amplifier i eeded ad urealitic circuit parameter are eeded for the cotroller. clear all K18000; a90; um []; de [-10+10i -10-10i -a]; Gzpk(um,de,K) tep(g); xlabel('time(ec)') ylabel('y(t)') title('uit-tep repoe of the ytem') Zero/pole/gai: 18000 ------------------------- (+90) (^ + 0 + 00) PO i le tha 4. 5 75

5-56) (a) Ramp error Cotat: MATLAB clear all ym Kp Kd kv Gum(Kp+Kd*)*1000 Gde (*(+10)) GGum/Gde Kv*G 0 eval(kv) Gum 1000*Kp+1000*Kd* Gde *(+10) G (1000*Kp+1000*Kd*)//(+10) Kv (1000*Kp+1000*Kd*)/(+10) 0 a 100*Kp ( + ) 1000 K K 1000K P D P K lim 100K 1000 v P 0 ( + 10) 10 Thu K P 10 Kp10 clear ym Mum(Kp+Kd*)*1000//(+10) Mde1+(Kp+Kd*)*1000//(+10) 5 76

Kp 10 Mum (10000+1000*Kd*)//(+10) Mde 1+(10000+1000*Kd*)//(+10) a (^+10*+10000+1000*Kd*)//(+10) Characteritic Equatio: ( ) Match with a d order prototype ytem + 10 + 1000K + 1000K 0 D P ω 1000K P 10000 100 rad/ec ζω 10 + 1000K D 0. 5 100 100 olve(10+1000*kd 100) a 9/100 90 Thu K D 1000 009. Ue the ame procedure for other part. (b) For K v 1000 ad ζ 0. 707, ad from part (a), ω 100 rad/ec, 131.4 ζω 10 + 1000K D 0. 707 100 141.4 Thu K D 0. 1314 1000 (c) For K v 1000 ad ζ 1.0, ad from part (a), ω 100 rad/ec, 190 ζω 10 + 1000K D 1 100 00 Thu K D 1000 019. 5 77

5-57) The ramp error cotat: ( K + K ) 1000 P D K lim 100K 10, 000 Thu K 100 v P P 0 ( + 10) The forward path trafer fuctio i: ( + K ) 1000 100 G () ( + 10) D clear all for KD0.:0.:1.0; um [-100/KD]; de [0-10]; Gzpk(um,de,1000); Mfeedback(G,1) tep(m); hold o; ed xlabel('time(ec)') ylabel('y(t)') title('uit-tep repoe of the ytem') Zero/pole/gai: 1000 (+500) (^ + 1010 + 5e005) Zero/pole/gai: 1000 (+50) (+434.1) (+575.9) Zero/pole/gai: 1000 (+166.7) (+07.7) (+80.3) 5 78

Zero/pole/gai: 1000 (+15) (+144.4) (+865.6) Zero/pole/gai: 1000 (+100) (+111.3) (+898.7) Ue the curor to obtai the PO ad tr value. For part b the maximum value of KD reult i the miimum overhoot. 5 79

5-58) (a) Forward path Trafer Fuctio: ( + ) 4500K K K P D G () G() G() c p ( + 361.) 4500KK P Ramp Error Cotat: K lim G( ) 1.458KK v 0 361. e 1 0. 080 0. 001 Thu KK P 80. Let K K P K KK 1 ad 80. v P clear all KP1; K80.; figure(1) um [-KP]; de [0-361.]; Gzpk(um,de,4500*K) Mfeedback(G,1) tep(m) hold o; for KD00.0005:0.0005:0.00; um [-KP/KD]; de [0-361.]; Gzpk(um,de,4500*K*KD) Mfeedback(G,1) tep(m) ed xlabel('time(ec)') ylabel('y(t)') title('uit-tep repoe of the ytem') P Zero/pole/gai: 360900 (+1) (+361.) Zero/pole/gai: 360900 (+1) (+0.999) (+3.613e005) Zero/pole/gai: 180.45 (+000) (+361.) Zero/pole/gai: 180.45 (+000) 5 80

(^ + 541.6 + 3.609e005) Zero/pole/gai: 360.9 (+1000) (+361.) Zero/pole/gai: 360.9 (+1000) (^ + 7.1 + 3.609e005) Zero/pole/gai: 541.35 (+666.7) (+361.) Zero/pole/gai: 541.35 (+666.7) (^ + 90.5 + 3.609e005) Zero/pole/gai: 71.8 (+500) (+361.) Zero/pole/gai: 71.8 (+500) (^ + 1083 + 3.609e005) 5 81

K D t r (ec) t (ec) Max Overhoot (%) 0 0.001 0.0166 37.1 0.0005 0.004 0.0081 1.5 0.0010 0.0045 0.00775 1. 0.0015 0.004 0.0065 6.4 0.0016 0.0039 0.00597 5.6 0.0017 0.0038 0.0087 4.8 0.0018 0.0036 0.009 4.0 0.000 0.0033 0.0083.8 5 8

5-59) The forward path Trafer Fuctio: N 0 00( K + K ) P D G () ( + 1)( + 10) To tabilize the ytem, we ca reduce the forward path gai. Sice the ytem i type 1, reducig the gai doe ot affect the teady tate liquid level to a tep iput. Let K P 005. ( + K ) 00 0.05 D G () ( + 1)( + 10) ALSO try other Kp value ad compare your reult. clear all figure(1) KD0 um []; de [0-1 -10]; Gzpk(um,de,00*0.05) Mfeedback(G,1) tep(m) hold o; for KD0.01:0.01:0.1; KD um [-0.05/KD]; Gzpk(um,de,00*KD) Mfeedback(G,1) tep(m) ed xlabel('time(ec)') ylabel('y(t)') title('uit-tep repoe of the ytem') KD 0 Zero/pole/gai: 10 (+1) (+10) Zero/pole/gai: 10 (+10.11) (^ + 0.8914 + 0.9893) KD 0.0100 5 83

Zero/pole/gai: (+5) (+1) (+10) Zero/pole/gai: (+5) (+9.889) (^ + 1.111 + 1.011) KD 0.000 Zero/pole/gai: 4 (+.5) (+1) (+10) Zero/pole/gai: 4 (+.5) (+9.658) (^ + 1.34 + 1.035) KD 0.0300 Zero/pole/gai: 6 (+1.667) (+1) (+10) Zero/pole/gai: 6 (+1.667) (+9.413) (^ + 1.587 + 1.06) KD 0.0400 Zero/pole/gai: 8 (+1.5) (+1) (+10) Zero/pole/gai: 8 (+1.5) (+9.153) (^ + 1.847 + 1.093) 5 84

KD 0.0500 Zero/pole/gai: 10 (+1) (+1) (+10) Zero/pole/gai: 10 (+1) (+8.873) (+1.17) (+1) KD 0.0600 Zero/pole/gai: 1 (+0.8333) (+1) (+10) Zero/pole/gai: 1 (+0.8333) (+8.569) (+1.773) (+0.658) KD 0.0700 Zero/pole/gai: 14 (+0.7143) (+1) (+10) Zero/pole/gai: 14 (+0.7143) (+8.3) (+.1) (+0.547) KD 0.0800 Zero/pole/gai: 16 (+0.65) (+1) (+10) Zero/pole/gai: 16 (+0.65) (+7.85) (+.673) (+0.4765) 5 85

KD 0.0900 Zero/pole/gai: 18 (+0.5556) (+1) (+10) Zero/pole/gai: 18 (+0.5556) (+7.398) (+3.177) (+0.455) KD 0.1000 Zero/pole/gai: 0 (+0.5) (+1) (+10) Zero/pole/gai: 0 (+0.5) (+0.3861) (+3.803) (+6.811) 5 86

Uit tep Repoe Attribute: K D t (ec) Max Overhoot (%) 0.01 5.159 1.7 0.0 4.57 7.1 0.03.35 3. 0.04.56 0.8 0.05.71 0 0.06 3.039 0 0.10 4.317 0 Whe K D 005. the rie time i.71 ec, ad the tep repoe ha o overhoot. 5 87

5-60) (a) For e 1, ( K + K ) 00 P D K lim G( ) lim 0K 1 v P 0 0 ( + 1)( + 10) Thu K P 005. Forward path Trafer Fuctio: ( + K ) 00 0.05 D G () ( + 1)( + 10) Becaue of the choice of Kp thi i the ame a previou part. 5-61) (a) Forward path Trafer Fuctio: K I 100 K + P G ( ) + 10+ 100 For ( K+ K) 100 P I K 10, K lim G( ) lim K 10 v v I 0 0 ( + 10+ 100) Thu K I 10. G cl ( ) ( ) ( ) P I P 3 3 ( ) ) 100 K + K 100 K + 10 + 10 + 100+ 100 K + K + 10 + 100(1 + K + 1000 P I P (b) Let the complex root of the characteritic equatio be writte a σ + j σ j The quadratic portio of the characteritic equatio i σ ( σ ) + + + 5 0 3 The characteritic equatio of the ytem i ( ) 15 ad 15. + 10 + 100 + 100K + 1000 0 The quadratic equatio mut atify the characteritic equatio. Uig log diviio ad olve for zero remaider coditio. P 5 88

+ (10 σ ) ( ) 3 σ σ K P + + + 5 + 10 + 100 + 100 + 1000 ( σ ) 3 + + + 5 σ ( σ P ) ( ) ( ) (10 σ) + 100K 15 + 1000 (10 σ) + 0σ 4 σ + (10 σ) + 5 ( KP ) 3 100 + 3σ 0σ 15 + σ 10σ + 450σ 150 3 For zero remaider, σ 10σ + 450σ 150 0 (1) ad 100K P + 3σ 0σ 15 0 () The real olutio of Eq. (1) i σ. 8555. From Eq. (), 15+ 0σ 3σ K P 100 15765. The characteritic equatio root are:. 8555+ j15,. 8555 j15, ad 10 + σ 4.89 (c) Root Cotour: 3 Dividig both ide of ( ) + 10 + 100 + 100K + 1000 0 by the term that do ot cotai K p we have: P 100K P 1+ 1+ G 3 + 10 + 100+ 1000 eq 100K 100K P P G () eq 3 + 10 + 100+ 1000 + 10 + 100 ( )( ) Root Cotour: See Chapter 9 toolbox 9 5 for more iformatio clear all Kp.001; um [100*Kp 0]; de [1 10 100 1000]; rlocu(um,de) 5 89

5 90

5-6) (a) Forward path Trafer Fuctio: K I 100 K + P G ( ) + 10+ 100 For ( K+ K) 100 P I K 10, K lim G( ) lim K 10 v v I 0 0 ( + 10+ 100) Thu the forward path trafer fuctio become 100 10 G () ( + K ) ( + 10+ 100) P G cl ( ) ( ) ( ) P I P 3 3 ( ) ) 100 K+ K 100 K+ 10 + 10 + 100+ 100 K + K + 10 + 100(1 + K + 1000 P I P clear all for Kp.4:0.4:; um [100*Kp 1000]; de [1 10 100 0]; [umcl,decl]cloop(um,de); GCLtf(umCL,deCL); tep(gcl) hold o; ed 5 91

Ue the curer to fid the maximum overhoot ad rie time. For example whe K p, PO43 ad tr100%0.15 ec. Trafer fuctio: 00 + 1000 ^3 + 10 ^ + 300 + 1000 5 9

5-63) (a) Forward path Trafer Fuctio: 100 G () ( K+ K) P ( + 10+ 100) I For K v 100, ( K+ K) 100 P I K lim G( ) lim K 100 v I 0 0 ( + 10+ 100) 3 (b) The characteritic equatio i ( ) Routh Tabulatio: + 10 + 100 + 100K + 100K 0 P I Thu K I 100. 3 1 100 + 100K P 1 10 100K 900 P 10,000 0 For tability, 100K 900 > 0 Thu K > 9 P P 0 10,000 7. Activate MATLAB 8. Go to the directory cotaiig the ACSYS oftware. 9. Type i Acy 10. The pre the trafer fuctio Symbolic ad eter the Characteritic equatio 11. The pre the Routh Hurwitz butto 5 93

RH [ 1, 100+100*kp] [ 10, 10000] [ 900+100*kp, 0] [ ( 9000000+1000000*kp)/( 900+100*kp), 0] 5 94

Root Cotour: G eq ( ) 100K 100K P P 3 + 10 + 100+ 10,000 ( + 3. 65)( 6. 85 + j19.4)( 6. 85 j19.4) Root Cotour: See Chapter 9 toolbox 9 5 for more iformatio clear all Kp.001; um [100*Kp 0]; de [1 10 100 10000]; rlocu(um,de) 5 95

(c) K I 100 ( K+ ) 100 100 P G () ( + 10+ 100) The followig maximum overhoot of the ytem are computed for variou value of K P. clear all Kp[15 0 4 5 6 30 40 100 1000]; [N,M]ize(Kp); for i1:m um [100*Kp(i) 10000]; de [1 10 100 0]; [umcl,decl]cloop(um,de); GCLtf(umCL,deCL); figure(i) tep(gcl) ed K P 15 0 4 5 6 30 40 100 1000 5 96

y max 1.794 1.779 1.7788 1.7785 1.7756 1.779 1.78 1.795 1.844 1.859 Whe K P 5, miimum y max 1.7756 Ue: cloe all to cloe all the figure widow. 5 97

5-64) MATLAB olutio i the ame a 5-63. (a) Forward path Trafer Fuctio: 100 G () ( K+ K) P ( + 10+ 100) I For K v 100K I 10, K 10 I 100 (b) 3 Characteritic Equatio: ( ) Routh Tabulatio: + 10 + 100 K + 1 + 1000 0 P 3 1 0 1 100 + 100K 10 1000 100K 1000 P 0 P For tability, K P > 0 Root Cotour: G eq ( ) 3 100K + 10 + 100 + 1000 P 5 98

(c) The maximum overhoot of the ytem for differet value of K P ragig from 0.5 to 0 are computed ad tabulated below. K P 0.5 1.0 1.6 1.7 1.8 1.9.0 3.0 5.0 10 0 y max 1.393 1.75 1.317 1.416 1.44 1.441 1.46 1.8 1.37 1.514 1.64 Whe K P 1.7, maximum y max 1.416 5-65) ( ) + + G ( ) K + K + 1+ K K + c P D D1 P where K K K K K I D P I I K K + K K K K K K K P P D1 I D D1 P I I Forward path Trafer Fuctio: 100 G () G() G() c p ( KD + KP+ KI) ( + 10+ 100) Thu Ad reame the ratio: K / K A, K / K B D P I P K K v I KI lim G( ) 100 100 0 100 100 5 99

ForK D beig ufficietly mall: Forward path Trafer Fuctio: ( K+ ) 100 100 P G () ( + 10+ 100) Characteritic Equatio: ( ) 3 K P + 10 + 100 + 100 + 10, 000 0 For tability, K p >9. Select K p 10 ad oberve the repoe. clear all Kp10; um [100*Kp 10000]; de [1 10 100 0]; [umcl,decl]cloop(um,de); GCLtf(umCL,deCL) tep(gcl) Trafer fuctio: 1000 + 10000 ----------------------------- ^3 + 10 ^ + 1100 + 10000 Obviouly by icreaig Kp more ocillatio will occur. Add K D to reduce ocillatio. clear all Kp10; Kd; um [100*Kd 100*Kp 10000]; de [1 10 100 0]; [umcl,decl]cloop(um,de); GCLtf(umCL,deCL) tep(gcl) 5 100

Trafer fuctio: 00 ^ + 1000 + 10000 ------------------------------ ^3 + 10 ^ + 1100 + 10000 Uit tep Repoe The rie time eem reaoable. But we eed to icreae Kp to improve approach to teady tate. Icreae Kp to Kp30. clear all Kp30; Kd1; um [100*Kd 100*Kp 10000]; de [1 10 100 0]; [umcl,decl]cloop(um,de); GCLtf(umCL,deCL) tep(gcl) Trafer fuctio: 100 ^ + 3000 + 10000 ------------------------------ ^3 + 110 ^ + 3100 + 10000 5 101

To obtai a better repoe cotiue adjutig KD ad KP. 5 10

5-66) Thi problem ha received exteded treatmet i Chapter 6, Cotrol Lab ee Sectio 6-6. For the ake implicity, thi problem we aume the cotrol force f(t) i applied i parallel to the prig K ad damper B. We will ot cocer the detail of what actuator or eor are ued. Let look at Figure 4-84 ad equatio 4-3 ad 4-33. m c x c m c k c k m w c x w m x m w k w c w k w c w y k c y (a) (b) (c) Figure 4-84 Quarter car model realizatio: (a) quarter car, (b) degree of freedom, ad (c) 1 degree of freedom model. The equatio of motio of the ytem i defied a follow: mx &&() t + cx& () t + kx() t cy& () t + ky() t (4-3) which ca be implified by ubtitutig the relatio z(t) x(t) y(t) ad o dimeioalizig the coefficiet to the form && zt + zt & + zt && yt (4-33) () ζω () ω () () The Laplace traform of Eq. (4 33) yield the iput output relatiohip 5 103

Z() 1 Y&& () + ζω+ ω (4-34) Now let apply cotrol ee ectio 6-6 for more detail. m x k k f(t) c y For implicity ad better preetatio, we have caled the cotrol force a kf(t) we rewrite (4-34) a: mx &&() t + cx& () t + kx() t cy& () t + ky() t + kf () t && zt ζω zt & ω zt && yt ω f t () + () + () () + () + ζω+ ω A( ) + ω F( ) A () Y&& () (4-34) Settig the cotroller tructure uch that the vehicle bouce Z () X() Y() i miimized: KI F () 0 KP + K D + Z () Z () 1 A () K + ζω+ ω 1+ KP + KD+ I Z () A () + ζω + ω 1+ K + K + K (( ) ) 3 P D I See Equatio (6-4). For proportioal cotrol K D K I 0. 5 104

Pick ς 0.707 ad ω 1 for implicity. Thi i ow a uderdamped ytem. Ue MATLAB to obtai repoe ow. clear all Kp1; Kd0; Ki0; um [-1 0]; de [1 *0.707+Kd 1+Kp Ki]; Gtf(um,de) tep(g) Trafer fuctio: - --------------------- ^3 + 1.414 ^ + Adjut parameter to get the deired repoe if eceary. The proce i the ame for part b, c ad d. 5 105

5-67) Replace F() with KI F () Xref KP + K D + X () B ζω M K ω M X() 1 Xref () KI + ζω+ ω + KP + KD+ Ue MATLAB to obtai repoe ow. clear all Kp1; Kd0; Ki0; B10; K0; M1; omegaqrt(k/m); zeta(b/m)//omega; um [1 0]; de [1 *zeta*omega+kd omega^+kp Ki]; Gtf(um,de) tep(g) rafer fuctio: ------------------- ^3 + 10 ^ + 1 T0 achieve the proper repoe, adjut cotroller gai accordigly. 5 106

5-68) From problem 4-3 a) Rotatioal kietic eergy: Tralatioal kietic eergy: Relatio betwee tralatioal diplacemet ad rotatioal diplacemet: 1 Potetial eergy: A we kow, the: 1 1 1 By differetiatig, we have: 0 0 Sice caot be zero, the 0 b) 0 c) 5 107

1 1 1 where at the maximum eergy. 1 1 The: 1 1 Or: J d) G () ( m + K) % elect value of m, J ad K K100; J5; m5; Gtf([J],[m 0 K]) Pole(G) impule(g,10) xlabel( 'Time(ec)'); ylabel('amplitude'); Trafer fuctio: 5 ------------ 5 ^ + 100 a 0 +.0000i 0 -.0000i 5 108

Ucotrolled With a proportioal cotroller oe ca adjut the ocillatio amplitude the trafer fuctio i rewritte a: G () cl JK p ( m + K + JK p ) % elect value of m, J ad K Kp0.1 K100; J5; m5; Gtf([J*Kp],[m 0 (K+J*Kp)]) Pole(G) impule(g,10) xlabel( 'Time(ec)'); ylabel('amplitude'); 5 109

Kp 0.1000 Trafer fuctio: 0.5 -------------- 5 ^ + 100.5 a 0 +.0050i 0 -.0050i A PD cotroller mut be ued to damp the ocillatio ad reduce overhoot. Ue Example 5-11-1 a a guide. 5 110

5-69) From Problem 4-6 we have: a) y K( y 1 y ) K( y 1 y ) y 1 μmg& y μmg& y 1 b) From Newto Law: c) If y 1 ad y are coidered a a poitio ad v 1 ad v a velocity variable The: The output equatio ca be the velocity of the egie, which mea Obtaiig require olvig above equatio with repect to Y () From the firt equatio: Subtitutig ito the ecod equatio: 5 111

By olvig above equatio: 1 Replace Force F with a proportioal cotroller o that FK(Z-Z ref ): K P Z ref _ F Z 1 1 1 5-70) Alo ee derivatio i 4-9. x(t) L M F L θ Here i a alterative repreetatio icludig frictio (dampig) μ. I thi cae the agle θ i meaured differetly. Let fid the dyamic model of the ytem: 5 11

1) ) Let. If Φ i mall eough the 1 ad, therefore which give: Φ F Igorig frictio 0. Φ F where ; Igorig actuator dyamic (DC motor equatio), we ca icorporate feedback cotrol uig a erie PD compeator ad uity feedback. Hece, K P +K D R _ F Φ ( ( ) ) ( ) () p D ( ) F K R Φ KR Φ The ytem trafer fuctio i: Φ R ( Cotrol i achieved by eurig tability (K p >B) A ( Kp + KD) D + ( p ) + K A K B 5 113

Ue Routh Hurwitz to etablih tability firt. Ue Acy to do that a demotrated i thi chapter problem. Alo Chapter ha may example. Ue MATLAB to imulate repoe: clear all Kp10; Kd5; A10; B8; um [A*Kd A*Kp]; de [1 Kd A*(Kp-B)]; Gtf(um,de) tep(g) Trafer fuctio: 50 + 100 -------------- ^ + 5 + 0 Adjut parameter to achieve deired repoe. Ue THE PROCEDURE i Example 5-11-1. You may look at the root locu of the forward path trafer fuctio to get a better perpective. 5 114

( K + K ) AK ( z+ ) Φ A E AB fix z ad vary K. p D D clear all z100; Kd0.01; A10; B8; um [A*Kd A*Kd*z]; de [1 0 -(A*B)]; Gtf(um,de) rlocu(g) Trafer fuctio: 0.1 + 10 ---------- ^ 80 D AB For z10, a large K D 0.805 reult i: 5 115

clear all Kd0.805; Kp10*Kd; A10; B8; um [A*Kd A*Kp]; de [1 Kd A*(Kp-B)]; Gtf(um,de) pole(g) zero(g) tep(g) Trafer fuctio: 8.05 + 80.5 ------------------- ^ + 0.805 + 0.5 a -0.405 + 0.5814i -0.405-0.5814i a -10 Lookig at domiat pole we expect to ee a ocillatory repoe with overhoot cloe to deired value. For a better deig, ad to meet rie time criterio, ue Example 5-11-1. 5 116