IDEAL OP AMP ANALYSIS

Similar documents
BASIC SQUARE WAVE-TRIANGULAR WAVE OSCILLATOR

Figure Circuit for Question 1. Figure Circuit for Question 2

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

u (t t ) + e ζωn (t tw )

ESE319 Introduction to Microelectronics. Output Stages

ECE Circuit Theory. Final Examination. December 5, 2008

ENGN3227 Analogue Electronics. Problem Sets V1.0. Dr. Salman Durrani

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A =

ECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OP-AMP) Circuits

Operational Amplifiers

U1 is zero based because its noninverting terminal is connected to circuit common. Therefore, the circuit reference voltage is 0 V.

Homework Assignment 08

Ver 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2)

Frequency Dependent Aspects of Op-amps

E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1

Homework Assignment 09

The Approximating Impedance

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130

LECTURE 8 Fundamental Models of Pulse-Width Modulated DC-DC Converters: f(d)

Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode

Design Engineering MEng EXAMINATIONS 2016

ECE3050 Assignment 7

Lecture 7: Transistors and Amplifiers

Alternating Current Circuits. Home Work Solutions

55:041 Electronic Circuits The University of Iowa Fall Exam 2

55:041 Electronic Circuits The University of Iowa Fall Final Exam

analyse and design a range of sine-wave oscillators understand the design of multivibrators.

ECE2210 Final given: Spring 08

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS

Feedback design for the Buck Converter

EE 321 Analog Electronics, Fall 2013 Homework #3 solution

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

Nonlinear Op-amp Circuits

ELECTRONIC SYSTEMS. Basic operational amplifier circuits. Electronic Systems - C3 13/05/ DDC Storey 1

5-V Low Drop Fixed Voltage Regulator TLE 4275

V in (min) and V in (min) = (V OH -V OL ) dv out (0) dt = A p 1 V in = = 10 6 = 1V/µs

Designing Information Devices and Systems I Spring 2019 Homework 11

Summary Notes ALTERNATING CURRENT AND VOLTAGE

ECE 6412, Spring Final Exam Page 1

Operational Amplifiers

AC Circuits Homework Set

Time Varying Circuit Analysis

DIGITAL TO ANALOG CONVERTERS

0 t < 0 1 t 1. u(t) =

Operational amplifiers (Op amps)

ECE137B Final Exam. There are 5 problems on this exam and you have 3 hours There are pages 1-19 in the exam: please make sure all are there.

Homework 6 Solutions and Rubric

Problem Set 4 Solutions

Sinusoidal Steady State Analysis (AC Analysis) Part II

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points):

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1

ECE 201 Fall 2009 Final Exam

ECE2210 Final given: Fall 13

Circuit Analysis-II. Circuit Analysis-II Lecture # 5 Monday 23 rd April, 18

PHYS225 Lecture 9. Electronic Circuits

PS12038 Intellimod Module Application Specific IPM 25 Amperes/1200 Volts

Small Signal Model. S. Sivasubramani EE101- Small Signal - Diode

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review.

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16

PT5108. High-PSRR 500mA LDO GENERAL DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATIONS. Ripple Rejection vs Frequency. Ripple Rejection (db)

SECTION #1 - The experimental setup

Basics of Network Theory (Part-I)

Three Phase Circuits

ECE 2210 Final given: Spring 15 p1

2.004 Dynamics and Control II Spring 2008

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.

Microelectronic Circuit Design Fourth Edition - Part I Solutions to Exercises

Monolithic N-Channel JFET Duals

Lecture 35: FRI 17 APR Electrical Oscillations, LC Circuits, Alternating Current I

EE-201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6) None of above

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 1 EXAMINATIONS 2012/2013 XE121. ENGINEERING CONCEPTS (Test)

ECE 220 Laboratory 4 Volt Meter, Comparators, and Timer

Experiment #6. Thevenin Equivalent Circuits and Power Transfer

Accurate Fourier Analysis for Circuit Simulators

Errata to LINEAR CIRCUITS, VOL1 DECARLO/LIN, EDITION 3 CHAPTERS 1 11 (updated 8/23/10)

OPERATIONAL AMPLIFIER APPLICATIONS

Phase Control Thyristor Type SKT552/16E

REACTANCE. By: Enzo Paterno Date: 03/2013

Operational amplifiers (Op amps)

Operational Amplifier (Op-Amp) Operational Amplifiers. OP-Amp: Components. Internal Design of LM741

ET4119 Electronic Power Conversion 2011/2012 Solutions 27 January 2012

Frequency Response. Re ve jφ e jωt ( ) where v is the amplitude and φ is the phase of the sinusoidal signal v(t). ve jφ

EE105 Fall 2014 Microelectronic Devices and Circuits

Monolithic N-Channel JFET Dual

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 7 DC BIASING FETS (CONT D)

Midterm Exam 2. Prof. Miloš Popović

Prof. Shayla Sawyer CP08 solution

Chemical Instrumentation CHEM*3440 Mid-Term Examination Fall 2006 Tuesday, October 24

MICROELECTRONIC CIRCUIT DESIGN Second Edition


Lecture 4: Feedback and Op-Amps

Biasing BJTs CHAPTER OBJECTIVES 4.1 INTRODUCTION

EIT Quick-Review Electrical Prof. Frank Merat

Section 4. Nonlinear Circuits

SINUSOIDAL STEADY STATE CIRCUIT ANALYSIS

5-V Low Drop Fixed Voltage Regulator TLE

Lectures on STABILITY

ECS 40, Fall 2008 Prof. Chang-Hasnain Test #3 Version A

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Transcription:

EXECSE No.1 Assuming ideal op amps, determine for each and every circuit shown below. A) 1,8k B) V 30k 1k 0,1V k 1k C) D) k K 0,5V 1V 3k 1,5V K k 4k E) F) 15V V 14k 15k 5V 3.9K 1,5k 5,1k 8V 3k 16k 15k k 15V 1

No. Assume typical op amp data for circuits A through E and worst case values for circuit F. Op amp parameters for V S ±15V minimum typical maximum O/ voltage swing ±1V ±13,5V / voltage range ±11V ±1,5V Short circuit current ±1 ±0 A) Determine V x. D) Determine. 6V 4,7k 1K k Vx 3,3k 16V 1V 1,8k 8V V 680 00 16V B) Determine for 6V and 6V. 16V 0k E) Determine. 30K 5V 1V 6,8k 16V 6,8k 1V C) Determine. 15V F) Determine the maximum value of 3 if we do no want to saturate the inputs of the op amp given and V range from 8 to10. 100k V 3V V1 3 16V 15V V 3 16V

No.3 Assume ideal op amps for each of the following circuits. Do not use any formulas, you must be able to derive them on your own. Mark up the circuit diagrams thoroughly for solutions. A) Determine B, A vf and Z iḟ B) Determine 3, A vf and Z iḟ E F 3 B C) Determine A vf and Z iḟ D) Determine and Z if seen by each /. E F V1 V E) Determine and Z if seen by each /. F) Determine B, and Z if seen by each / V1 V V1 V F B V3 1,5 1 1 3

No.4 100k () (t ) (t 1 ) 1 E C F t ( ) t1 (AC ) dt if ω 10 F C F 0,1 µf (ave) SW () ( ) for a squarewave W A) Draw the output waveform with respect to shown for frequencies of 50 Hz, 100 Hz, 1 khz and 10 khz label waveforms with AC and DC values as well as W and SW. 1V 1V 0,6 0,4 B) f is a V pp squarewave with a 50% duty cycle, calculate the frequency of that will produce 1 V pp C) epeat step B for 75% duty cycle. D) f is a 10 V pp triangular wave with a frequency of 5 khz, draw the expected O/ waveform with respect to. No.5 A) Determine the output waveform relative to an input triangular wave with a 10 V amplitude and a frequency of 50 Hz. 100 0,1 µf B) Determine the output waveform relative to an input square wave with a V amplitude and a frequency of 50 Hz. C) What is the function of the 100Ω resistor? dv F C in E dt 0,1 if ω E C E No.6 below. Determine the O/ waveform relative to an input V (rms) 1 khz sinewave for each circuit shown A) 300K B) 300K 0,1 µf 75K 75K 4

No.7 HASE SHFE sing ideal op amp analysis, prove that A VF 1 jx C 1 jx C A VF 1 C 1 / A VF arctan X C 1 No.8 HASE SHFE sing ideal op amp analysis, prove that A VF 1 jx C 1 jx C A VF 1 / A VF arctan X C 1 C / 1 No.9 Howland current source rove that the load current is given by the following equation: Vx L Hint: Work out currents in terms of and unknown V x. L L No.10 BDGE AMLFE 15V rove that is given by the following equation: F 15* 1 1 ( 1 1 ) F ² 15V 5

SOLONS No.1A ) V V 1,8k V V 1 1 k 1 1V B) 0,1V 0,1 1k 1k 0,1 30k 3V 3V 1,5V E) 15V F) 1V 14V 15k 0,133 V 14k 0,933 1,333V 1 5V 1V 1 16k 16V 1,066 15k 15V 0,133,333V 1,333 5,V 0,68V 0,1333 3.9K 5,1k 1, 1, 1,5k 3,V 8V 1,6 C) D) 0,5V 1,5V k 1,15 1,15 4,15V K 0,5V 1V,5V 11,5V 3k 1,15V K,5V 0,375 0,5V 3V 1,5V 0,15 0,5 0,15 k 4k 0,5 1,5V 0,15 1,8V 3k k 3,V 3,88V 6

No. A) 1,489 1V 0,7 4,7k 6V 7V 0,789 V x 3,3k 3.6V.6V 1,8k 1V 8V 1V C) V 3V 3V 15V 15V No feedback, the output saturates with a polarity determined by the sign of the differential / voltage: A d (V V ) (3) V sat 13,5V 13.5V B) 4,833V 6V 6,8k 6V 0k 16V 16V 0,483 14,5V ositive feedback will make the output saturate with a polarity determined by the sign of the differential / voltage. With 6V applied to the ve / of the op amp, the O/ should be of the opposite polarity, therefore assume V sat 14,5V and determine the V and verify the sign of the differential / voltage in order to validate your assumption of V sat, that is: 4,833V 0k A d (V V ) (4,836) therefore the assumption was valid. 6V 6,8k 6V 16V 0,483 14,5V Same procedure here, except now V is negative, therefore the O/ polarity is expected to be positive: V sat 14,5V Verify assumption with sign of V d (V V ) A d (V V ) (4,83(6)) 16V 7

D) 1K V 16V k 4V 6V 1,5 1K 1,5V 1,5 16V k 3,75V V 680 V 16V 3 6V 30 00 V 680 V 16V 0 3,75V 1,5 18,75 00 Output of op amp has reached current limit, E) 5V 0,5 6,8k 0,5 15V 1V 1V 30k 15V 15V 0,5 1,5 5V notice that V V and ve feedback is rendered ineffective not forcing V V 0,3875 3,875V 6,8k 1,15V 0,3875 1V 1V 30k 10,5V 10,5 0,5 1,05 mpossible voltage, therefore V sat 10,5V typical. Output of op amp has reached saturation, notice that V V and ve feedback is rendered ineffective not forcing V V F) 100k V1 3 16V V or V max 16 4 1V 3 < 1V/8,68 138 V 10 max 8,8 8,68 3 1V max 0,1 16V 3 should be less than 138 in order to keep V and V inside a safe range of ±1V. 8

9

No.3 E) VE V1 VE V VE V3 3 1,5 3 V V 0,4 V 3 F F) VE V1 VE V B F F V 0,4 V 3 3 V 3,5 1 V V 3 1 V 3,5 1 1 0,4V 3 Z if 3 V 3,5 V 1 V 3 V V F V 1 0,4V 3 V 0,4V 3 V 0,4V 3 V 1 0,4V 3 F V 1 V 0,8V 3 V F ( ) 0,4V 3 V V 0,8V 1 3 [ ] [ ] 0,4V 3 V 1 V 1,6V 3 V 3 V V 1 Z if 1 V 1 Z if V V 1 V 1 0,4V 3 V V 0,4V 3 to balance the inputs: 1 0,4V 3 V 1 1 0, 4V 3 V ( ) V F F 0 ( ) F V 1 V F 1 F V 1 F V 1 N0.3 E) Z if 1 V 1 1 Z if V B 1 to balance inputs Z if1 and Z if are not constant, but will vary as V 3 changes. Onthe other hand, Z if3 is fixed and does is not affected by either V 1 or V. 0,4 1 1,5 1 0,6 1 1,5 1 10

No.4 f F 10 π F C F 10 π 100k 0,1µ 159 Hz then () 1 E C F t ( ) t 1 ( AC) dt A) V (ave) V () V SW ( ) W (DC) 0,V 1V AEA 1V AEA 0,V DC ( ) 1000 t (AC ) dt 0,6 0,4 t 1 ( ) 1000 area ut V DC ntegral does not apply for 50 Hz and 100 Hz. ut 0,48V pp at 1 khz and 48 mvpp at 10 khz B) ( ) 1000 t t 1 (AC ) dt ( ) 1000 area 1000 1000 F 1V F 500 Hz F > 159 Hz integral OK. N O V pp 1 V pp AEA AEA DC level DC level C) ( ) 1000 t t 1 (AC ) dt ( ) 1000 area 1000 0,5 50 F 1 F 50 Hz N O / 1V AEA V pp 3 4 DC level 1 V pp DC level A E A 1V F > 159 Hz integral OK. V (ave) V () V SW ( ) (DC) 0,5V W 11

No.4 D) N 10 V pp AEA 100 µ s AEA DC level ( ) 1000 t (AC ) dt O 0,5 V pp DC level ( ) 1000 area t 1 1000 100µ 5 ( ) 0,5V O/ is a parabolic wave, not a sine wave. No.5 A) dv F C in E dt 0,1µ ± 1 ms m5v O 10 V pp N / 10 V pp 5V p 5V p ms 5V p 5V p B) On edges we have: 0,1µ ( ± ) m m V sat N 1V p ms 1V p On flat portions we have: 0,1µ ( ±0) 0 he O/ spikes settle down O V sat 50 µs V sat 50 µs in 5τ 5 E C E 50 µs C) o stabilise negative feedback in order to avoid self oscillations from the circuit. 1

No.6 A),83Vp 8,3 µap 8,3 µap 300K 8,49Vp OFF ON 8,49Vp 0,7V 75K 8,3 µap 0,7 300K 8,3 µap 8,3 µap ON,83Vp 0,7V OFF 75K 0,7V N,83V p t O O,8 3 V p t 8,4 9 V p 13

N0.6 B) DC,83Vp,83Vp 75K DC 6,5 µa DC 300K 6,5 µa DC D ON 6,5 µa DC D1 OFF 0,1 µf 106,1 µa DC 7,96V DC 79,6 µa N O O 7,96V DC (A V E A G E),8 3 V D O N,83V D1 ON 1,06 V pp 8,4 9 V t NOE: he bottom of the O/ waveform will not be exactly 8,49 practice. first iteration Assume (ave ) 8, 49V C(ave) ( ) Q C C(ave ) t C sec ond iteration (ave) (peak ) ( ) C(ave) 7,94 7,94 300K ( ) C (ave) C C(ave ) C 8,49 1,13 105,65 µa 105,65 µ 1m 0,1µ third iteration (not necessary) (ave) 8,49 1,056 7, 96V 8, 49 8,49 113, µa 300K 113, µ 1m 1,13V 0,1µ 7,94 1,056V 14

No.7 hase Shifter No.8 hase Shifter C 1 1 C 1 V jx C V V 1 V 1 V V V in 1 V 1 1 1 jx C jx C A VF V o 1 1 jx C jx 1 1 C jx C A VF A VF jx C jx C X C ( X C ) 1 1 / A VF AAN X C AAN X C / A VF AAN X C ( ) V ( in) jx C jx C V in jx C 1 1 1 jx C ( ) A VF V o 1 1 jx C jx 1 1 C jx C A VF A VF jx C jx C X C 1 ( X C ) 1 / A VF AAN X C AAN X C / A VF AAN X C 15

No.9 Howland current source No.10 Bridge Amplifier 15V VE L L in 4 F 4 3 15V From the circuit diagram, we have: From the circuit diagram, we have: L in 1 L 1 1 1 1 1 4 3 4 15 1 15 1 1 4 15 1 15 1 15 1 1 ( 1 1 ) 15 4 1 1 1 1 ( ) 0 4 F 15 1 F 1 1 1 ( ) 16

Filename: OAASS Directory: C:\CLADE\ELE emplate: C:\WNDOWS\Application Data\Microsoft\emplates\Normal.dot itle: OAAN Subject: 99FALL Author: CLADE SAOL Keywords: Comments: Creation Date: 9/18/00 4:0 M Change Number: Last Saved On: 9/18/00 4:0 M Last Saved By: ALGONQN COLLEGE otal Editing ime: 1 Minute Last rinted On: 9/18/00 4:1 M As of Last Complete rinting Number of ages: 16 Number of Words: 670 (approx.) Number of Characters: 3,81 (approx.)