Matrix-equation-based strategies for convection-diusion equations

Similar documents
1e N

Fast Iterative Solution of Saddle Point Problems

Lecture 3: Inexact inverse iteration with preconditioning

Computational methods for large-scale linear matrix equations and application to FDEs. V. Simoncini

Finite Difference Methods for Boundary Value Problems

Inexact inverse iteration with preconditioning

A Review of Preconditioning Techniques for Steady Incompressible Flow

Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems

Recent advances in approximation using Krylov subspaces. V. Simoncini. Dipartimento di Matematica, Università di Bologna.

Preconditioned inverse iteration and shift-invert Arnoldi method

Exploiting off-diagonal rank structures in the solution of linear matrix equations

Preconditioners for the incompressible Navier Stokes equations

Multipole-Based Preconditioners for Sparse Linear Systems.

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

Mathematics Research Report No. MRR 003{96, HIGH RESOLUTION POTENTIAL FLOW METHODS IN OIL EXPLORATION Stephen Roberts 1 and Stephan Matthai 2 3rd Febr

Discretization of PDEs and Tools for the Parallel Solution of the Resulting Systems

Efficient Solvers for the Navier Stokes Equations in Rotation Form

Robust solution of Poisson-like problems with aggregation-based AMG

Termination criteria for inexact fixed point methods

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers

DELFT UNIVERSITY OF TECHNOLOGY

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization

Preconditioning for Nonsymmetry and Time-dependence

Qualifying Examination

Time Integration Methods for the Heat Equation

Mathematics and Computer Science

The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method. V. Simoncini. Dipartimento di Matematica, Università di Bologna

Fast solvers for steady incompressible flow

Indefinite Preconditioners for PDE-constrained optimization problems. V. Simoncini

Electromagnetic wave propagation. ELEC 041-Modeling and design of electromagnetic systems

Explicit Jump Immersed Interface Method: Documentation for 2D Poisson Code

Multigrid Methods and their application in CFD

Courant Institute of Mathematical Sciences, New York University, New York, NY 10012,

A Tuned Preconditioner for Inexact Inverse Iteration for Generalised Eigenvalue Problems

Computational methods for large-scale matrix equations and application to PDEs. V. Simoncini

Optimal Left and Right Additive Schwarz Preconditioning for Minimal Residual Methods with Euclidean and Energy Norms

Question 9: PDEs Given the function f(x, y), consider the problem: = f(x, y) 2 y2 for 0 < x < 1 and 0 < x < 1. x 2 u. u(x, 0) = u(x, 1) = 0 for 0 x 1

Computational methods for large-scale matrix equations and application to PDEs. V. Simoncini

Spectral Properties of Saddle Point Linear Systems and Relations to Iterative Solvers Part I: Spectral Properties. V. Simoncini

ON THE ROLE OF COMMUTATOR ARGUMENTS IN THE DEVELOPMENT OF PARAMETER-ROBUST PRECONDITIONERS FOR STOKES CONTROL PROBLEMS

EQUATIONS WITH LOW VISCOSITY HOWARD C. ELMAN UMIACS-TR November 1996

A Block Red-Black SOR Method. for a Two-Dimensional Parabolic. Equation Using Hermite. Collocation. Stephen H. Brill 1 and George F.

Rening the submesh strategy in the two-level nite element method: application to the advection diusion equation

Fast iterative solvers for fractional differential equations

Two-level Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations

Abstract. scalar steady and unsteady convection-diusion equations discretized by nite element, or nite

Exponential integrators for semilinear parabolic problems

On solving linear systems arising from Shishkin mesh discretizations

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends

arxiv: v2 [math.na] 8 Apr 2017

Iterative Methods and High-Order Difference Schemes for 2D Elliptic Problems with Mixed Derivative

Fast iterative solvers for fractional differential equations

On domain decomposition preconditioners for finite element approximations of the Helmholtz equation using absorption

Zonal modelling approach in aerodynamic simulation

Efficient FEM-multigrid solver for granular material

FEniCS Course. Lecture 0: Introduction to FEM. Contributors Anders Logg, Kent-Andre Mardal

DELFT UNIVERSITY OF TECHNOLOGY

Numerical Solutions to Partial Differential Equations

Preconditioned GMRES Revisited

Chebyshev semi-iteration in Preconditioning

Numerical Analysis of Differential Equations Numerical Solution of Elliptic Boundary Value

n i,j+1/2 q i,j * qi+1,j * S i+1/2,j

PROPOSITION of PROJECTS necessary to get credit in the 'Introduction to Parallel Programing in 2014'

Basic Aspects of Discretization

An advanced ILU preconditioner for the incompressible Navier-Stokes equations

Assignment on iterative solution methods and preconditioning

On the numerical solution of large-scale linear matrix equations. V. Simoncini

Computational methods for large-scale matrix equations: recent advances and applications. V. Simoncini

The HJB-POD approach for infinite dimensional control problems

DELFT UNIVERSITY OF TECHNOLOGY

Department of Computer Science, University of Illinois at Urbana-Champaign

20. A Dual-Primal FETI Method for solving Stokes/Navier-Stokes Equations

t x 0.25

Structure preserving preconditioner for the incompressible Navier-Stokes equations

A Finite Element Method for an Ill-Posed Problem. Martin-Luther-Universitat, Fachbereich Mathematik/Informatik,Postfach 8, D Halle, Abstract

IP-PCG An interior point algorithm for nonlinear constrained optimization

Serendipity Finite Element Methods for Cardiac Electrophysiology Models

NAVIER-STOKES OPERATORS HOWARD C. ELMAN UMIACS-TR November Revised July 1996

Transactions on Modelling and Simulation vol 18, 1997 WIT Press, ISSN X

Kasetsart University Workshop. Multigrid methods: An introduction

Application of turbulence. models to high-lift airfoils. By Georgi Kalitzin

Effective matrix-free preconditioning for the augmented immersed interface method

Aggregation-based algebraic multigrid

From Completing the Squares and Orthogonal Projection to Finite Element Methods

FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment

Applied Mathematics 205. Unit III: Numerical Calculus. Lecturer: Dr. David Knezevic

MODIFIED STREAMLINE DIFFUSION SCHEMES FOR CONVECTION-DIFFUSION PROBLEMS. YIN-TZER SHIH AND HOWARD C. ELMAN y

Finite Element Methods

A High-Order Discontinuous Galerkin Method for the Unsteady Incompressible Navier-Stokes Equations

GMRESR: A family of nested GMRES methods

A Robust Preconditioner for the Hessian System in Elliptic Optimal Control Problems

Regularized HSS iteration methods for saddle-point linear systems

UNIVERSITY OF MARYLAND PRECONDITIONERS FOR THE DISCRETE STEADY-STATE NAVIER-STOKES EQUATIONS CS-TR #4164 / UMIACS TR # JULY 2000

Optimal multilevel preconditioning of strongly anisotropic problems.part II: non-conforming FEM. p. 1/36

Multilevel Low-Rank Preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota. Modelling 2014 June 2,2014

Splitting methods with boundary corrections

Solving Large Nonlinear Sparse Systems

Mat1062: Introductory Numerical Methods for PDE

Finite difference method for elliptic problems: I

ON THE GENERALIZED DETERIORATED POSITIVE SEMI-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONER *

Transcription:

Matrix-equation-based strategies for convection-diusion equations Davide Palitta and Valeria Simoncini Dipartimento di Matematica, Università di Bologna davide.palitta3@unibo.it CIME-EMS Summer School 2015 Exploiting Hidden Structure in Matrix Computations. Algorithms and Applications Cetraro, 22-26 June 2015 Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 1 / 23

The convection-diusion equation The convection-diusion equation Convection-diusion equation: ɛ u + w u = f, in Ω R d with d = 2, 3, ɛ > 0 (viscosity parameter), w R d (convection vector) Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 2 / 23

The convection-diusion equation The convection-diusion equation Convection-diusion equation: ɛ u + w u = f, in Ω R d with d = 2, 3, ɛ > 0 (viscosity parameter), w R d (convection vector) Dominant Convection w ɛ Incompressible ow div(w) = 0 Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 2 / 23

The convection-diusion equation The convection-diusion equation Convection-diusion equation: ɛ u + w u = f, in Ω R d with d = 2, 3, ɛ > 0 (viscosity parameter), w R d (convection vector) Dominant Convection w ɛ Incompressible ow div(w) = 0 Further assumptions: w separable coecients, e.g., in 2D w = (w 1, w 2 ) = (φ 1 (x)ψ 1 (y), φ 2 (x)ψ 2 (y)) Ω is a rectangle (parallelepipedal) domain Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 2 / 23

The convection-diusion equation Discretization phase Discretizing by FEM or FD, we get the nonsymmetric linear system Au = f, where A R N N Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 3 / 23

The convection-diusion equation Discretization phase Discretizing by FEM or FD, we get the nonsymmetric linear system Au = f, where A R N N REMARK: The discretization step is crucial to avoid spurious oscillations in the numerical solution: Rene the meshsize h huge increase of N Dierent strategies: Articial diusion SUPG... Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 3 / 23

A matrix-equation-based strategy A matrix-equation-based strategy AIM: Preconditioning the very large and sparse nonsymmetric linear system Au = f, where A R N N with a simplied matrix version of the discretized dierential operator Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 4 / 23

A matrix-equation-based strategy A matrix oriented formulation Poisson equation u xx u yy = f, in Ω = (0, 1) 2 (w/ zero Dirichlet b.c.) Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 5 / 23

A matrix-equation-based strategy A matrix oriented formulation Poisson equation u xx u yy = f, in Ω = (0, 1) 2 (w/ zero Dirichlet b.c.) Discretize Ω with a uniform mesh Ω h with nodes (x i, y j ), i, j = 1,..., n 1. Dene T, F R (n 1) (n 1) such that T = 1 h 2 tridiag( 1, 2, 1) and F i,j = f (x i, y j ) Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 5 / 23

A matrix-equation-based strategy A matrix oriented formulation Poisson equation u xx u yy = f, in Ω = (0, 1) 2 (w/ zero Dirichlet b.c.) Discretize Ω with a uniform mesh Ω h with nodes (x i, y j ), i, j = 1,..., n 1. Dene T, F R (n 1) (n 1) such that T = 1 h 2 tridiag( 1, 2, 1) and F i,j = f (x i, y j ) Centered FD leads to the symmetric linear system Au = f, f = vec(f ) where A = T I n 1 + I n 1 T R (n 1)2 (n 1) 2 Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 5 / 23

A matrix-equation-based strategy A matrix oriented formulation U i,j u(x i, y j ) at interior node (x i, y j ) For each i, j = 1,..., n 1, u xx (x i, y j ) U i 1,j 2U i,j + U i+1,j = 1 [1, 2, 1] h 2 h2 U i 1,j U i,j U i+1,j and u yy (x i, y j ) U i,j 1 2U i,j + U i,j+1 h 2 = 1 1 h 2 [U i,j 1, U i,j, U i,j+1] 2 1 Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 6 / 23

A matrix-equation-based strategy A matrix oriented formulation U i,j u(x i, y j ) at interior node (x i, y j ) For each i, j = 1,..., n 1, u xx (x i, y j ) U i 1,j 2U i,j + U i+1,j = 1 [1, 2, 1] h 2 h2 U i 1,j U i,j U i+1,j and u yy (x i, y j ) U i,j 1 2U i,j + U i,j+1 h 2 = 1 1 h 2 [U i,j 1, U i,j, U i,j+1] 2 1 TU + UT = F Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 6 / 23

A matrix-equation-based strategy A matrix oriented formulation, ɛ u + w u = f Proposition. (2D case) Assume w = (w 1, w 2 ) = (φ 1 (x)ψ 1 (y), φ 2 (x)ψ 2 (y)). Let (x i, y j ) Ω h, i, j = 1,..., n 1, and set, for k = 1, 2, Φ k = diag(φ k (x 1 ),..., φ k (x n 1 )) Ψ k = diag(ψ k (y 1 ),..., ψ k (y n 1 )) Then, the centered FD discretization of the continuous operator leads to the following operator: L : u ɛ u + φ 1 (x)ψ 1 (y)u x + φ 2 (x)ψ 2 (y)u y L h : U ɛt U + ɛut + (Φ 1 B)UΨ 1 + Φ 2 U(B T Ψ 2 ) where B = 1 tridiag( 1, 0, 1) R(n 1) (n 1) 2h Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 7 / 23

A matrix-equation-based strategy The easy case: ɛ u + φ 1 (x)u x + ψ 2 (y)u y = f w = (φ 1 (x), ψ 2 (y)) (common in academic examples!) Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 8 / 23

A matrix-equation-based strategy The easy case: ɛ u + φ 1 (x)u x + ψ 2 (y)u y = f w = (φ 1 (x), ψ 2 (y)) (common in academic examples!) Ψ 1 = Φ 2 = I Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 8 / 23

A matrix-equation-based strategy The easy case: ɛ u + φ 1 (x)u x + ψ 2 (y)u y = f w = (φ 1 (x), ψ 2 (y)) (common in academic examples!) Ψ 1 = Φ 2 = I ɛt U + ɛut + (Φ 1 B)U + U(B T Ψ 2 ) = F Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 8 / 23

A matrix-equation-based strategy The easy case: ɛ u + φ 1 (x)u x + ψ 2 (y)u y = f w = (φ 1 (x), ψ 2 (y)) (common in academic examples!) Ψ 1 = Φ 2 = I ɛt U + ɛut + (Φ 1 B)U + U(B T Ψ 2 ) = F (ɛt + Φ 1 B)U + U(ɛT + B T Ψ 2 ) = F This is a Sylvester equation that can be explicitly and eciently solved! Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 8 / 23

The new preconditioner The general case: preconditioning strategy w = (w 1, w 2 ) = (φ 1 (x)ψ 1 (y), φ 2 (x)ψ 2 (y)) L h : U ɛt U + ɛut + (Φ 1 B)UΨ 1 + Φ 2 U(B T Ψ 2 ) Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 9 / 23

The new preconditioner The general case: preconditioning strategy w = (w 1, w 2 ) = (φ 1 (x)ψ 1 (y), φ 2 (x)ψ 2 (y)) L h : U ɛt U + ɛut + (Φ 1 B)UΨ 1 + Φ 2 U(B T Ψ 2 ) Approximating Ψ 1 ψ 1 I, Φ 2 φ 2 I, where, e.g., ψ 1, φ 2 mean values Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 9 / 23

The new preconditioner The general case: preconditioning strategy w = (w 1, w 2 ) = (φ 1 (x)ψ 1 (y), φ 2 (x)ψ 2 (y)) L h : U ɛt U + ɛut + (Φ 1 B)UΨ 1 + Φ 2 U(B T Ψ 2 ) Approximating Ψ 1 ψ 1 I, Φ 2 φ 2 I, where, e.g., ψ 1, φ 2 mean values P : Y (ɛt + ψ 1 Φ 1 B)Y + Y(ɛT + φ 2 B T Ψ 2 ) Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 9 / 23

Implementation details Implementation details Nonsymmetric linear system: Au = f, A R (n 1)2 (n 1) 2 Solver: GMRES with right preconditioning. Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 10 / 23

Implementation details Implementation details Nonsymmetric linear system: Au = f, A R (n 1)2 (n 1) 2 Solver: GMRES with right preconditioning. At each iteration k: ṽ k = P 1 v k R (n 1)2 Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 10 / 23

Implementation details Implementation details Nonsymmetric linear system: Au = f, A R (n 1)2 (n 1) 2 Solver: GMRES with right preconditioning. At each iteration k: ṽ k = P 1 v k R (n 1)2 How to compute it? Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 10 / 23

Implementation details Implementation details Nonsymmetric linear system: Au = f, A R (n 1)2 (n 1) 2 Solver: GMRES with right preconditioning. At each iteration k: ṽ k = P 1 v k R (n 1)2 How to compute it? 1 Compute G k R (n 1) (n 1) s.t. v k = vec(g k ) 2 Solve (ɛt + ψ 1 Φ 1 B)Y + Y(ɛT + B T φ2 Ψ 2 ) = G k 3 Compute ṽ k = vec(y) Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 10 / 23

Implementation details Implementation details Sylvester equation: (ɛt + ψ 1 Φ 1 B)Y + Y(ɛT + B T φ 2 Ψ 2 ) = G k Solver: KPIK [V. Simoncini, 2007], [T. Breiten, V. Simoncini, M. Stoll, 2014]. Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 11 / 23

Implementation details Implementation details Sylvester equation: (ɛt + ψ 1 Φ 1 B)Y + Y(ɛT + B T φ 2 Ψ 2 ) = G k Solver: KPIK [V. Simoncini, 2007], [T. Breiten, V. Simoncini, M. Stoll, 2014]. Observations: Inner: Inexact method Outer: FGMRES rhs must be low rank: Truncated SVD of G k Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 11 / 23

Implementation details Implementation details Sylvester equation: (ɛt + ψ 1 Φ 1 B)Y + Y(ɛT + B T φ 2 Ψ 2 ) = G k Solver: KPIK [V. Simoncini, 2007], [T. Breiten, V. Simoncini, M. Stoll, 2014]. Observations: Inner: Inexact method Outer: FGMRES rhs must be low rank: Truncated SVD of G k Three parameters: 1 inner tolerance: tol_inner= 10 4 2 truncation tolerance: tol_truncation= 10 2 3 maximum rank allowed: r_max= 10 Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 11 / 23

3D case 3D case To x ideas: Ω = (0, 1) 3. U (k) i,j u(x i, y j, z k ), and dene the tall matrix U := where e j = I (:, j). U (1). U (n 1) n 1 = k=1 (e k U (k) ) R (n 1)2 (n 1) Other orderings are possible. Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 12 / 23

3D case 3D case: L : u ɛ u + w 1 u x + w 2 u y + w 3 u z Proposition. (3D case) Assume w = (w1, w2, w3) s.t. w1 = φ 1(x)ψ 1(y)υ 1(z) w2 = φ 2(x)ψ 2(y)υ 2(z) w3 = φ 3(x)ψ 3(y)υ 3(z) Let (x i, y j, z k ) Ω h, i, j, k = 1,..., n 1, and set, for l = 1, 2, 3, Φ l = diag(φ l (x1),..., φ l (x n 1)) Ψ l = diag(ψ l (y1),..., ψ l (y n 1)) Υ l = diag(υ l (z1),..., υ l (z n 1)) Then, the centered FD discretization leads to the following operator: L h : U (I ɛt )U + ɛut + (ɛt I )U + (Υ 1 Φ 1 B)UΨ 1 + (Υ 2 Φ 2 )UB T Ψ 2 + [(Υ 3 B) Φ 3 ]UΨ 3 Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 13 / 23

Numerical experiments Numerical experiments Competitors on Au = f: GMRES+MI20 FGMRES+AGMG REMARK: our preconditioner/solver is implemented in interpreted Matlab functions while both MI20 and AGMG are fortran90 compiled codes provided with mex les control.one_pass_coarsen= 1, [J. Boyle, M.D. Mihajlovi c, J.A. Scott, 2010] all default parameters, [Y. Notay, 2010] Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 14 / 23

Numerical experiments Test 1. Explicit matrix solution (2D) Consider ɛ u+w u = 0, in Ω = (0, 1) 2 ( ) w = 1 + 1 4 (x + 1)2, 0 Dirichlet b.c.: { u(x, 0) = 1 x [0, 1], u(x, 1) = 0 x [0, 1]. Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 15 / 23

Numerical experiments Test 1. Explicit matrix solution (2D) Consider ɛ u+w u = 0, in Ω = (0, 1) 2 ( ) w = 1 + 1 4 (x + 1)2, 0 Dirichlet b.c.: { u(x, 0) = 1 x [0, 1], u(x, 1) = 0 x [0, 1]. (ɛt + Φ 1 B)U + ɛut = F Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 15 / 23

Numerical experiments Test 1. Explicit matrix solution (2D) ɛ n x FGMRES+AGMG GMRES+MI20 KPIK time (# its) time (# its) time (# its) 0.0333 129 0.1649 (13) 0.2843 ( 7) 0.2131 (24) 0.0333 257 0.3874 (15) 0.5715 ( 8) 0.2817 (32) 0.0333 1025 11.4918 (20) 8.4540 ( 8) 1.5002 (44) 0.0333 1200 12.5441 (17) 8.7843 ( 7) 1.9722 (46) 0.0167 129 0.2150 (14) 0.2750 ( 7) 0.1638 (22) 0.0167 257 0.4356 (14) 0.6533 ( 9) 0.3628 (32) 0.0167 513 2.0712 (15) 2.2171 ( 9) 0.6324 (38) 0.0167 1025 11.5428 (18) 8.0454 ( 8) 2.8454 (64) 0.0167 1200 13.2109 (18) 9.5501 ( 8) 2.1961 (52) 0.0083 129 0.1501 (14) 0.2685 (10) 0.1394 (22) 0.0083 257 0.3651 (15) 0.5871 ( 8) 0.2885 (34) 0.0083 513 1.6615 (14) 2.1814 (10) 0.5439 (42) 0.0083 1025 10.0859 (18) 10.6729 (11) 2.7800 (66) 0.0083 1200 14.4866 (18) 11.0856 ( 9) 2.8459 (58) Table : Test 1 (2D). Performance achieved as the viscosity and mesh parameter vary. tol_outer= 10 8. Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 16 / 23

Numerical experiments Test 2. Preconditioning strategy (2D) Consider ɛ u + w u = 0, in Ω = (0, 1) 2 w = (y(1 (2x + 1) 2 ), 2(2x + 1)(1 y 2 )) Zero Dirichlet b.c. except for the side y = 0: { u(x, 0) = 1 + tanh[10 + 20(2x 1)], 0 x 0.5 u(x, 0) = 2, 0.5 < x 1 slightly modication of Example V in [H.C. Elman, A. Ramage, 2002]. Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 17 / 23

Numerical experiments Test 2. Preconditioning strategy (2D) ɛ n x FGMRES+AGMG GMRES+MI20 FGMRES+KPIK time (# its) time (# its) time (# its) 0.1000 128 0.1081 (11) 0.1989 ( 4) 0.5743 ( 8) 0.1000 256 0.3335 (14) 0.3812 ( 4) 0.5351 ( 7) 0.1000 512 1.0773 (11) 1.1731 ( 4) 1.0543 ( 7) 0.1000 1024 9.2493 (17) 4.3287 ( 4) 2.6372 ( 6) 0.1000 2048 52.0430 (15) 19.6757 ( 4) 16.7394 ( 5) 0.0500 128 0.0936 ( 9) 0.2269 ( 4) 0.5168 (10) 0.0500 256 0.2897 (12) 0.3862 ( 4) 0.6455 ( 9) 0.0500 512 1.2603 (11) 1.2380 ( 4) 1.1769 ( 8) 0.0500 1024 10.3623 (18) 4.3345 ( 4) 3.0812 ( 7) 0.0500 2048 60.5041 (17) 20.4056 ( 4) 14.9237 ( 6) 0.0333 128 0.0882 ( 8) 0.2368 ( 4) 0.6428 (11) 0.0333 256 0.2181 ( 9) 0.4218 ( 4) 0.8149 (11) 0.0333 512 1.5849 (14) 1.1977 ( 4) 1.3786 ( 9) 0.0333 1024 5.4624 (12) 4.4130 ( 4) 3.7214 ( 8) 0.0333 2048 120.9686 (23) 20.1120 ( 4) 17.9188 ( 7) Table : Test 2 (2D). Performance achieved as the viscosity and mesh parameter vary. tol_outer= 10 6. Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 18 / 23

Numerical experiments Test 3. Explicit matrix solution (3D) Consider ɛ u + w u = 1, in Ω = (0, 1) 3 w = (x sin x, y cos y, e z2 1 ) Zero Dirichlet b.c. Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 19 / 23

Numerical experiments Test 3. Explicit matrix solution (3D) Consider ɛ u + w u = 1, in Ω = (0, 1) 3 w = (x sin x, y cos y, e z2 1 ) Zero Dirichlet b.c. [I (ɛt + Φ 1 B) + (ɛt + Ψ 2 B) T I ] U + U (ɛt + BΥ 3 ) = 11 T where 1 is the vector of all ones REMARK: low rank rhs in the matrix equation is crucial for explicit solution! Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 19 / 23

Numerical experiments Test 3. Explicit matrix solution (3D) ɛ n x FGMRES+AGMG GMRES+MI20 KPIK time (# its) time (# its) time (# its) 0.0050 60 1.1250 (14) 1.8022 ( 7) 0.1734 (18) 0.0050 70 2.0385 (14) 3.4253 ( 7) 0.2326 (20) 0.0050 80 3.4803 (14) 4.4297 ( 7) 0.3583 (20) 0.0050 90 5.7324 (15) 6.8705 ( 7) 0.4999 (22) 0.0050 100 8.0207 (15) 9.7207 ( 7) 0.5677 (22) 0.0010 60 1.3011 (14) 1.7854 ( 7) 0.2386 (18) 0.0010 70 1.9509 (14) 2.7829 ( 7) 0.2346 (20) 0.0010 80 3.5291 (14) 4.6576 ( 7) 0.4096 (20) 0.0010 90 5.1344 (14) 6.8176 ( 7) 0.4253 (22) 0.0010 100 7.6815 (14) 9.4935 ( 7) 0.5446 (22) 0.0005 60 1.2560 (14) 1.7341 ( 6) 0.2314 (18) 0.0005 70 2.2242 (14) 2.9667 ( 7) 0.2301 (20) 0.0005 80 3.4558 (14) 4.5964 ( 7) 0.3472 (22) 0.0005 90 4.8076 (14) 6.4841 ( 7) 0.4257 (22) 0.0005 100 7.3914 (14) 9.6274 ( 7) 0.5927 (24) Table : Test 3 (3D). Performance achieved as the viscosity and mesh parameter vary. tol_outer= 10 9. Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 20 / 23

Numerical experiments Test 4. Preconditioning strategy (3D) Consider ɛ u + w u = 1, in Ω = (0, 1) 3 w = (yz(1 x 2 ), 0, e z ) Zero Dirichlet b.c. Other variable aggregations are possible. Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 21 / 23

Numerical experiments Test 4. Preconditioning strategy (3D) Consider ɛ u + w u = 1, in Ω = (0, 1) 3 w = (yz(1 x 2 ), 0, e z ) Zero Dirichlet b.c. The discretization yields ɛt U + U(I ɛt + ɛt I ) + Υ 3 BU + Υ 1 U(Ψ 1 Φ 1 B) = 11 T where 1 is the vector of all ones Other variable aggregations are possible. Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 21 / 23

Numerical experiments Test 4. Preconditioning strategy (3D) Consider ɛ u + w u = 1, in Ω = (0, 1) 3 w = (yz(1 x 2 ), 0, e z ) Zero Dirichlet b.c. The discretization yields ɛt U + U(I ɛt + ɛt I ) + Υ 3 BU + Υ 1 U(Ψ 1 Φ 1 B) = 11 T where 1 is the vector of all ones Υ 1 ῡ 1 I and obtain the preconditioning operator P : Y (ɛt + Υ 3 B)Y + Y(I ɛt + ɛt I + Ψ 1 ῡ 1 Φ 1 B) Other variable aggregations are possible. Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 21 / 23

Numerical experiments Test 4. Preconditioning strategy (3D) ɛ n x FGMRES+AGMG GMRES+MI20 FGMRES+KPIK 0.5000 60 1.2095 (15) 1.8236 ( 7) 1.2027 ( 6) 0.5000 70 2.1041 (15) 3.1649 ( 7) 1.6585 ( 6) 0.5000 80 3.7370 (16) 4.9765 ( 7) 2.4943 ( 6) 0.5000 90 7.5874 (16) 9.2040 ( 8) 3.2513 ( 6) 0.5000 100 7.7626 (16) 11.9912 ( 8) 4.7548 ( 6) 0.1000 60 2.1310 (18) - ( -) 1.5299 ( 8) 0.1000 70 2.8043 (18) - ( -) 1.8926 ( 8) 0.1000 80 5.1219 (19) - ( -) 3.2928 ( 9) 0.1000 90 7.3179 (19) - ( -) 4.6429 ( 9) 0.1000 100 9.5759 (19) - ( -) 6.5590 ( 9) 0.0500 60 1.4318 (18) - ( -) 1.7296 (10) 0.0500 70 2.8427 (19) - ( -) 2.5215 (10) 0.0500 80 4.9616 (20) - ( -) 3.6615 (10) 0.0500 90 7.1038 (20) - ( -) 5.0098 (10) 0.0500 100 10.7181 (21) - ( -) 6.8661 (10) Table : Test 4 (3D). Performance achieved as the viscosity and mesh parameter vary. - stands for excessive time in building the preconditioner. tol_outer= 10 9. Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 22 / 23

Conclusions and outlook Conclusions and outlook Preliminary numerical experiments show that the new approach performs comparably well with respect to state-of-the-art approaches. Generalize the approach to more general settings overcoming the limitation to the use of uniform mesh on rectangle (parallelepipedal) domains. Modify the approach to handle dierent discretization strategies, e.g., SUPG (early attempts in [D.P., 2014, Master's thesis]). Reference: Matrix-equation-based strategies for convection-diusion equations D. Palitta and V. Simoncini ArXiv: 1501.02920 Davide Palitta (UniBo) Matrix equations & conv-di. 23/06/2015 23 / 23