Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems

Size: px
Start display at page:

Download "Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems"

Transcription

1 Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems AMSC Final Report Minghao Wu AMSC Program Dr. Howard Elman Department of Computer Science 1

2 Problem Statement To find the rightmost eigenvalues of: Ax = λbx. where matrices A and B are Real N-by-N Large Sparse Nonsymmetric Depend on one or several parameters

3 Application To determine the stability of the linearized system of the form [1] : B x& = Ax The steady state solution x* is - stable, if all the eigenvalues of Ax = λbx have negative real parts; - unstable, otherwise. 3

4 Basic Arnoldi Algorithm and Implicitly Restarted Arnoldi Properties of basic Arnoldi algorithm Matrix transformation Implicitly restarted Arnoldi 4

5 Arnoldi algorithm [1] Eigensolver - iterative method -based on Krylov subspace k - dimensional Krylov subspace: K k (A,u 1 ) = span{u Au 1 1 A u 1 A k u 1 } - residual of computed eigenpairs is orthogonal to K k - only solves standard eigenvalue problem Ax = λx - converges to well-separated extremal eigenvalues 5

6 Matrix Transformation Shift Invert Transformation [1] T SI = (A-σB) -1 B Ax = λbx λ T SI x= θx θ = 1/(λ-σ) 6

7 Computational Result Example: Olmstead model [] ut = S xx + cu xx + Ru u bst = (1 c) u S u = S = 0 at x = 0, π. u: velocity, S: a quantity related to viscoelastic forces b, c, R: parameters. R: Rayleigh number b =, c = 0.1, R = 0.6, N = 1000, k = 0, σ = 0: rightmost eigenvalues: λ 1, = 0 ± 0.447i residual: Ax i λ i x i / x i = , i = 1, 3 7

8 Implicitly Restarted Arnoldi Motivation - large Krylov subspace is not practical - singular B gives rise to spurious eigenvalues Basic idea of IRA Filter out unwanted eigendirections from the starting vector of Arnoldi algorithm by applying shifted QR algorithm to a small upper Hessenberg matrix [3] 8

9 Computational Result Example [4] : K C T C x 0 M = λ 0 0 x 0 - K (00 00), C (00 100) and M (00 00) are of full rank - eigenvalues lie between -3 and 50 - mimics the eigenproblem arises from Navier-Stokes equation Exact Eigenvalues i.11 ± 1.156i.5036 ± 0.064i i.1318 ± 0.356i.1081 ± 1.353i k = 10, σ = 60 Computed Eigenvalues (IRA) i.11 ± 1.156i.5036 ± 0.064i i.1318 ± 0.356i.1081 ± 1.353i Computed Eigenvalues (basic Arnoldi) ± i (residual 10-4 ) i i i ±.707i ± 0.753i

10 Arnoldi Algorithm with Iterative Linear System Solver How to solve (A - σb)w = b efficiently? (A σb: large, sparse, nonsymmetric) 10

11 GMRES Method GMRES stands for the Generalized Minimal RESidual method. Based on Krylov subspace Solves the following minimization problem min x x 0 + K m b Ax where x 0 is the initial guess and K m is the m dimensional Krylov subspace 11

12 Goal Preconditioning of Ax = b cluster the eigenvalues of the original matrix Basic idea solve M -1 Ax = M -1 b instead of Ax = b where 1) M approximates A ) M -1 is easy to apply Example: incomplete LU factorization (ILU) - Basic idea: drop certain entries in the complete LU factors of the matrix, eg., entries < some threshold - ILU(0): select the allowed fill to exactly match the sparsity pattern of the original matrix A 1

13 Computational Result Example: Olmstead model, N = 5000, R = 4.7, λ 1 = 4.510, σ = 5 solver: GMRES with ILU(0) Method No relaxation Relaxation with BF Number of GMRES iteration at every outer iteration Bouras and Fraysse s relaxation strategy [6] : tolerance GMRES = 10 - ε / r k-1 Run time (sec.) Relative error e e

14 Application in The Study of Dynamical Equilibrium The detection of: multiple steady states change of stability Hopf bifurcation phenomena 14

15 15 Tubular Reactor Model Tubular reactor model [7] with boundary condition ( ) ( ) ( ) ( ) 0,1 / exp 1 / exp = = s on BDy s s Pe t Dy s y s y Pe t y h m θ γ γ θ θ β θ θ θ θ γ γ ( ) ( ) , = = = = = = s at s s y s at Pe s y Pe s y h m θ θ θ y: velocity; θ: temperature; Pe m, Pe h, B, D, γ, β: parameters. D: Damkohler number

16 Computation of Solution Path [8] Published Result [7] Computed Result Pe m = Pe h = 5, B = 0.5, γ = 5, β = 5 16

17 Eigenvalue Problem From Navier-Stokes equations D driven-cavity problem Reynolds number and stability Detection of eigenvalues with large imaginary part 17

18 D Driven-Cavity Problem Equations [5] : u t υ r u r r + u u + p r u = = 0 0 ( ) u x u y u r =, u x = 1 x 4 at y = 1. : velocity, p: pressure, υ>0: kinematic viscosity. Reynolds number: UL R = υ A quantitative measure of the relative contributions of viscous diffusion and convection. 18

19 Reynolds Number And Stability Reynolds Number Rightmost Eigenvalues ± 1.6i ± 1.3i ± 1.37i ± 1.3i ± 1.47i Rightmost eigenvalues change from real to complex at R around As R increases, steady state solution loses its stability. Hopf bifurcation happens at R around Imaginary parts are much larger than real parts (in modulus). Q -Q 1 macroelement, h = -4, nonlinear residual<

20 Conclusions What do we have - Arnoldi and Implicitly Restarted Arnoldi code - Arnoldi with iterative linear system solver - Codes for discretizing several commonly used benchmark problems - Continuation code for single-parameter nonlinear dynamical systems - Validated results for various computational tasks performed on these benchmark problems What s next - Detection of eigenvalues with large imaginary parts - Preconditioning of Arnoldi applied to Navier-Stokes equations - Look at a Navier-Stokes equation with low critical Reynolds number 0

21 Acknowledgement The Implicitly Restarted Arnoldi code is written by Fei Xue, a PhD student of Department of Mathematics, University of Maryland. The software we used to discretize the Navier-Stokes equation and compute its steady state solution is IFISS, Incompressible Flow Iterative Solution Software, developed by: Howard Elman Department of Computer Science, University of Maryland David Silvester Department of Mathematics, University of Manchester Andy Wathern Oxford University, Computing Laboratory 1

22 Reference [1] Meerbergen, K & Roose, D 16 Matrix transformation for computing rightmost eigenvalues of large sparse non-symmetric eigenvalue problems. SIAM J. Numer. Anal. 16, [] Olmstead, W. E., Davis, W. E., Rosenblat, S. H., & Kath, W. L. 186 Bifurcation with memory. SIAM J.Appl. Math. 40, [3] Stewart, G. W. 001 Matrix algorithms, volume II: eigensystems. SIAM. [4] Meergergen, K & Spence, A 17 Implicitly restarted Arnoldi with purification for the shift-invert transformation. Math. Comput. 66, [5] Elman, H & Silvester, D & Wathen, A 005 Finite elements and fast iterative solvers with applications in incompressible fluid dynamics. Oxford University Press [6] Simoncini, V 005 Variable accuracy of matrix-vector products in projection methods for eigencomputation. SIAM J. Numer. Anal. 43, [7] Heinemann, R & Poore, A 181 Multiplicity, stability, and oscilatory dynamics of the tubular reactor.chemical Engineering Science, [8] Spence, A & Graham, Ivan G., Numerical Methods for Bifurcation Problems.

FINDING RIGHTMOST EIGENVALUES OF LARGE SPARSE NONSYMMETRIC PARAMETERIZED EIGENVALUE PROBLEMS

FINDING RIGHTMOST EIGENVALUES OF LARGE SPARSE NONSYMMETRIC PARAMETERIZED EIGENVALUE PROBLEMS FINDING RIGHTMOST EIGENVALUES OF LARGE SPARSE NONSYMMETRIC PARAMETERIZED EIGENVALUE PROBLEMS Department of Mathematics University of Maryland, College Park Advisor: Dr. Howard Elman Department of Computer

More information

Preconditioned inverse iteration and shift-invert Arnoldi method

Preconditioned inverse iteration and shift-invert Arnoldi method Preconditioned inverse iteration and shift-invert Arnoldi method Melina Freitag Department of Mathematical Sciences University of Bath CSC Seminar Max-Planck-Institute for Dynamics of Complex Technical

More information

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers Applied and Computational Mathematics 2017; 6(4): 202-207 http://www.sciencepublishinggroup.com/j/acm doi: 10.11648/j.acm.20170604.18 ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online) A Robust Preconditioned

More information

Finding The Rightmost Eigenvalues of Large Sparse Non-Symmetric Parameterized Eigenvalue Problem

Finding The Rightmost Eigenvalues of Large Sparse Non-Symmetric Parameterized Eigenvalue Problem Fndng he Rghtmost Egenvalues of Large Sparse Non-Symmetrc Parameterzed Egenvalue Problem Mnghao Wu AMSC Program mwu@math.umd.edu Advsor: Professor Howard Elman Department of Computer Scences elman@cs.umd.edu

More information

Finding Rightmost Eigenvalues of Large Sparse. Non-symmetric Parameterized Eigenvalue Problems. Abstract. Introduction

Finding Rightmost Eigenvalues of Large Sparse. Non-symmetric Parameterized Eigenvalue Problems. Abstract. Introduction Finding Rightost Eigenvalues of Large Sparse Non-syetric Paraeterized Eigenvalue Probles Applied Matheatics and Scientific Coputation Progra Departent of Matheatics University of Maryland, College Par,

More information

Efficient iterative algorithms for linear stability analysis of incompressible flows

Efficient iterative algorithms for linear stability analysis of incompressible flows IMA Journal of Numerical Analysis Advance Access published February 27, 215 IMA Journal of Numerical Analysis (215) Page 1 of 21 doi:1.193/imanum/drv3 Efficient iterative algorithms for linear stability

More information

A Review of Preconditioning Techniques for Steady Incompressible Flow

A Review of Preconditioning Techniques for Steady Incompressible Flow Zeist 2009 p. 1/43 A Review of Preconditioning Techniques for Steady Incompressible Flow David Silvester School of Mathematics University of Manchester Zeist 2009 p. 2/43 PDEs Review : 1984 2005 Update

More information

University of Maryland Department of Computer Science TR-5009 University of Maryland Institute for Advanced Computer Studies TR April 2012

University of Maryland Department of Computer Science TR-5009 University of Maryland Institute for Advanced Computer Studies TR April 2012 University of Maryland Department of Computer Science TR-5009 University of Maryland Institute for Advanced Computer Studies TR-202-07 April 202 LYAPUNOV INVERSE ITERATION FOR COMPUTING A FEW RIGHTMOST

More information

University of Maryland Department of Computer Science TR-4975 University of Maryland Institute for Advanced Computer Studies TR March 2011

University of Maryland Department of Computer Science TR-4975 University of Maryland Institute for Advanced Computer Studies TR March 2011 University of Maryland Department of Computer Science TR-4975 University of Maryland Institute for Advanced Computer Studies TR-2011-04 March 2011 LYAPUNOV INVERSE ITERATION FOR IDENTIFYING HOPF BIFURCATIONS

More information

Fast solvers for steady incompressible flow

Fast solvers for steady incompressible flow ICFD 25 p.1/21 Fast solvers for steady incompressible flow Andy Wathen Oxford University wathen@comlab.ox.ac.uk http://web.comlab.ox.ac.uk/~wathen/ Joint work with: Howard Elman (University of Maryland,

More information

Lecture 3: Inexact inverse iteration with preconditioning

Lecture 3: Inexact inverse iteration with preconditioning Lecture 3: Department of Mathematical Sciences CLAPDE, Durham, July 2008 Joint work with M. Freitag (Bath), and M. Robbé & M. Sadkane (Brest) 1 Introduction 2 Preconditioned GMRES for Inverse Power Method

More information

Preconditioners for the incompressible Navier Stokes equations

Preconditioners for the incompressible Navier Stokes equations Preconditioners for the incompressible Navier Stokes equations C. Vuik M. ur Rehman A. Segal Delft Institute of Applied Mathematics, TU Delft, The Netherlands SIAM Conference on Computational Science and

More information

Fast Iterative Solution of Saddle Point Problems

Fast Iterative Solution of Saddle Point Problems Michele Benzi Department of Mathematics and Computer Science Emory University Atlanta, GA Acknowledgments NSF (Computational Mathematics) Maxim Olshanskii (Mech-Math, Moscow State U.) Zhen Wang (PhD student,

More information

A reflection on the implicitly restarted Arnoldi method for computing eigenvalues near a vertical line

A reflection on the implicitly restarted Arnoldi method for computing eigenvalues near a vertical line A reflection on the implicitly restarted Arnoldi method for computing eigenvalues near a vertical line Karl Meerbergen en Raf Vandebril Karl Meerbergen Department of Computer Science KU Leuven, Belgium

More information

Arnoldi Methods in SLEPc

Arnoldi Methods in SLEPc Scalable Library for Eigenvalue Problem Computations SLEPc Technical Report STR-4 Available at http://slepc.upv.es Arnoldi Methods in SLEPc V. Hernández J. E. Román A. Tomás V. Vidal Last update: October,

More information

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Timo Heister, Texas A&M University 2013-02-28 SIAM CSE 2 Setting Stationary, incompressible flow problems

More information

1. Introduction. In this paper we consider the large and sparse eigenvalue problem. Ax = λx (1.1) T (λ)x = 0 (1.2)

1. Introduction. In this paper we consider the large and sparse eigenvalue problem. Ax = λx (1.1) T (λ)x = 0 (1.2) A NEW JUSTIFICATION OF THE JACOBI DAVIDSON METHOD FOR LARGE EIGENPROBLEMS HEINRICH VOSS Abstract. The Jacobi Davidson method is known to converge at least quadratically if the correction equation is solved

More information

Inexact inverse iteration with preconditioning

Inexact inverse iteration with preconditioning Department of Mathematical Sciences Computational Methods with Applications Harrachov, Czech Republic 24th August 2007 (joint work with M. Robbé and M. Sadkane (Brest)) 1 Introduction 2 Preconditioned

More information

Mathematics and Computer Science

Mathematics and Computer Science Technical Report TR-2007-002 Block preconditioning for saddle point systems with indefinite (1,1) block by Michele Benzi, Jia Liu Mathematics and Computer Science EMORY UNIVERSITY International Journal

More information

Inner-outer Iterative Methods for Eigenvalue Problems - Convergence and Preconditioning

Inner-outer Iterative Methods for Eigenvalue Problems - Convergence and Preconditioning Inner-outer Iterative Methods for Eigenvalue Problems - Convergence and Preconditioning submitted by Melina Annerose Freitag for the degree of Doctor of Philosophy of the University of Bath Department

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 18 Outline

More information

Preconditioning for Nonsymmetry and Time-dependence

Preconditioning for Nonsymmetry and Time-dependence Preconditioning for Nonsymmetry and Time-dependence Andy Wathen Oxford University, UK joint work with Jen Pestana and Elle McDonald Jeju, Korea, 2015 p.1/24 Iterative methods For self-adjoint problems/symmetric

More information

Recent advances in approximation using Krylov subspaces. V. Simoncini. Dipartimento di Matematica, Università di Bologna.

Recent advances in approximation using Krylov subspaces. V. Simoncini. Dipartimento di Matematica, Università di Bologna. Recent advances in approximation using Krylov subspaces V. Simoncini Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it 1 The framework It is given an operator

More information

IFISS: A computational laboratory for investigating incompressible flow problems. Elman, Howard C. and Ramage, Alison and Silvester, David J.

IFISS: A computational laboratory for investigating incompressible flow problems. Elman, Howard C. and Ramage, Alison and Silvester, David J. IFISS: A computational laboratory for investigating incompressible flow problems Elman, Howard C. and Ramage, Alison and Silvester, David J. 22 MIMS EPrint: 22.8 Manchester Institute for Mathematical Sciences

More information

Solving Large Nonlinear Sparse Systems

Solving Large Nonlinear Sparse Systems Solving Large Nonlinear Sparse Systems Fred W. Wubs and Jonas Thies Computational Mechanics & Numerical Mathematics University of Groningen, the Netherlands f.w.wubs@rug.nl Centre for Interdisciplinary

More information

Department of Computer Science, University of Illinois at Urbana-Champaign

Department of Computer Science, University of Illinois at Urbana-Champaign Department of Computer Science, University of Illinois at Urbana-Champaign Probing for Schur Complements and Preconditioning Generalized Saddle-Point Problems Eric de Sturler, sturler@cs.uiuc.edu, http://www-faculty.cs.uiuc.edu/~sturler

More information

A Tuned Preconditioner for Inexact Inverse Iteration for Generalised Eigenvalue Problems

A Tuned Preconditioner for Inexact Inverse Iteration for Generalised Eigenvalue Problems A Tuned Preconditioner for for Generalised Eigenvalue Problems Department of Mathematical Sciences University of Bath, United Kingdom IWASEP VI May 22-25, 2006 Pennsylvania State University, University

More information

Rational Krylov methods for linear and nonlinear eigenvalue problems

Rational Krylov methods for linear and nonlinear eigenvalue problems Rational Krylov methods for linear and nonlinear eigenvalue problems Mele Giampaolo mele@mail.dm.unipi.it University of Pisa 7 March 2014 Outline Arnoldi (and its variants) for linear eigenproblems Rational

More information

The quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors u satisfying

The quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors u satisfying I.2 Quadratic Eigenvalue Problems 1 Introduction The quadratic eigenvalue problem QEP is to find scalars λ and nonzero vectors u satisfying where Qλx = 0, 1.1 Qλ = λ 2 M + λd + K, M, D and K are given

More information

CONVERGENCE BOUNDS FOR PRECONDITIONED GMRES USING ELEMENT-BY-ELEMENT ESTIMATES OF THE FIELD OF VALUES

CONVERGENCE BOUNDS FOR PRECONDITIONED GMRES USING ELEMENT-BY-ELEMENT ESTIMATES OF THE FIELD OF VALUES European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006 P. Wesseling, E. Oñate and J. Périaux (Eds) c TU Delft, The Netherlands, 2006 CONVERGENCE BOUNDS FOR PRECONDITIONED GMRES USING ELEMENT-BY-ELEMENT

More information

Eigenvalue Problems CHAPTER 1 : PRELIMINARIES

Eigenvalue Problems CHAPTER 1 : PRELIMINARIES Eigenvalue Problems CHAPTER 1 : PRELIMINARIES Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Mathematics TUHH Heinrich Voss Preliminaries Eigenvalue problems 2012 1 / 14

More information

EIGIFP: A MATLAB Program for Solving Large Symmetric Generalized Eigenvalue Problems

EIGIFP: A MATLAB Program for Solving Large Symmetric Generalized Eigenvalue Problems EIGIFP: A MATLAB Program for Solving Large Symmetric Generalized Eigenvalue Problems JAMES H. MONEY and QIANG YE UNIVERSITY OF KENTUCKY eigifp is a MATLAB program for computing a few extreme eigenvalues

More information

ON A GENERAL CLASS OF PRECONDITIONERS FOR NONSYMMETRIC GENERALIZED SADDLE POINT PROBLEMS

ON A GENERAL CLASS OF PRECONDITIONERS FOR NONSYMMETRIC GENERALIZED SADDLE POINT PROBLEMS U..B. Sci. Bull., Series A, Vol. 78, Iss. 4, 06 ISSN 3-707 ON A GENERAL CLASS OF RECONDIIONERS FOR NONSYMMERIC GENERALIZED SADDLE OIN ROBLE Fatemeh anjeh Ali BEIK his paper deals with applying a class

More information

c 2006 Society for Industrial and Applied Mathematics

c 2006 Society for Industrial and Applied Mathematics SIAM J. MATRIX ANAL. APPL. Vol. 28, No. 4, pp. 1069 1082 c 2006 Society for Industrial and Applied Mathematics INEXACT INVERSE ITERATION WITH VARIABLE SHIFT FOR NONSYMMETRIC GENERALIZED EIGENVALUE PROBLEMS

More information

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems P.-O. Persson and J. Peraire Massachusetts Institute of Technology 2006 AIAA Aerospace Sciences Meeting, Reno, Nevada January 9,

More information

Efficient Solvers for the Navier Stokes Equations in Rotation Form

Efficient Solvers for the Navier Stokes Equations in Rotation Form Efficient Solvers for the Navier Stokes Equations in Rotation Form Computer Research Institute Seminar Purdue University March 4, 2005 Michele Benzi Emory University Atlanta, GA Thanks to: NSF (MPS/Computational

More information

Inexactness and flexibility in linear Krylov solvers

Inexactness and flexibility in linear Krylov solvers Inexactness and flexibility in linear Krylov solvers Luc Giraud ENSEEIHT (N7) - IRIT, Toulouse Matrix Analysis and Applications CIRM Luminy - October 15-19, 2007 in honor of Gérard Meurant for his 60 th

More information

Large scale continuation using a block eigensolver

Large scale continuation using a block eigensolver Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Lecturas en Ciencias de la Computación ISSN 1316-6239 Large scale continuation using a block eigensolver Z. Castillo RT 2006-03

More information

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method Solution of eigenvalue problems Introduction motivation Projection methods for eigenvalue problems Subspace iteration, The symmetric Lanczos algorithm Nonsymmetric Lanczos procedure; Implicit restarts

More information

PRECONDITIONING TECHNIQUES FOR NEWTON S METHOD FOR THE INCOMPRESSIBLE NAVIER STOKES EQUATIONS

PRECONDITIONING TECHNIQUES FOR NEWTON S METHOD FOR THE INCOMPRESSIBLE NAVIER STOKES EQUATIONS BIT Numerical Mathematics 43: 961 974, 2003. 2003 Kluwer Academic Publishers. Printed in the Netherlands. 961 PRECONDITIONING TECHNIQUES FOR NEWTON S METHOD FOR THE INCOMPRESSIBLE NAVIER STOKES EQUATIONS

More information

UNIVERSITY OF MARYLAND PRECONDITIONERS FOR THE DISCRETE STEADY-STATE NAVIER-STOKES EQUATIONS CS-TR #4164 / UMIACS TR # JULY 2000

UNIVERSITY OF MARYLAND PRECONDITIONERS FOR THE DISCRETE STEADY-STATE NAVIER-STOKES EQUATIONS CS-TR #4164 / UMIACS TR # JULY 2000 UNIVERSITY OF MARYLAND INSTITUTE FOR ADVANCED COMPUTER STUDIES DEPARTMENT OF COMPUTER SCIENCE PERFORMANCE AND ANALYSIS OF SADDLE POINT PRECONDITIONERS FOR THE DISCRETE STEADY-STATE NAVIER-STOKES EQUATIONS

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. (2002) 90: 665 688 Digital Object Identifier (DOI) 10.1007/s002110100300 Numerische Mathematik Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes

More information

A HARMONIC RESTARTED ARNOLDI ALGORITHM FOR CALCULATING EIGENVALUES AND DETERMINING MULTIPLICITY

A HARMONIC RESTARTED ARNOLDI ALGORITHM FOR CALCULATING EIGENVALUES AND DETERMINING MULTIPLICITY A HARMONIC RESTARTED ARNOLDI ALGORITHM FOR CALCULATING EIGENVALUES AND DETERMINING MULTIPLICITY RONALD B. MORGAN AND MIN ZENG Abstract. A restarted Arnoldi algorithm is given that computes eigenvalues

More information

Structure preserving preconditioner for the incompressible Navier-Stokes equations

Structure preserving preconditioner for the incompressible Navier-Stokes equations Structure preserving preconditioner for the incompressible Navier-Stokes equations Fred W. Wubs and Jonas Thies Computational Mechanics & Numerical Mathematics University of Groningen, the Netherlands

More information

An advanced ILU preconditioner for the incompressible Navier-Stokes equations

An advanced ILU preconditioner for the incompressible Navier-Stokes equations An advanced ILU preconditioner for the incompressible Navier-Stokes equations M. ur Rehman C. Vuik A. Segal Delft Institute of Applied Mathematics, TU delft The Netherlands Computational Methods with Applications,

More information

RAYLEIGH QUOTIENT ITERATION AND SIMPLIFIED JACOBI-DAVIDSON WITH PRECONDITIONED ITERATIVE SOLVES FOR GENERALISED EIGENVALUE PROBLEMS

RAYLEIGH QUOTIENT ITERATION AND SIMPLIFIED JACOBI-DAVIDSON WITH PRECONDITIONED ITERATIVE SOLVES FOR GENERALISED EIGENVALUE PROBLEMS RAYLEIGH QUOTIENT ITERATION AND SIMPLIFIED JACOBI-DAVIDSON WITH PRECONDITIONED ITERATIVE SOLVES FOR GENERALISED EIGENVALUE PROBLEMS MELINA A. FREITAG, ALASTAIR SPENCE, AND EERO VAINIKKO Abstract. The computation

More information

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Tengfei Su Applied Mathematics and Scientific Computing Advisor: Howard Elman Department of Computer Science Sept. 29, 2015 Tengfei

More information

FEM and sparse linear system solving

FEM and sparse linear system solving FEM & sparse linear system solving, Lecture 9, Nov 19, 2017 1/36 Lecture 9, Nov 17, 2017: Krylov space methods http://people.inf.ethz.ch/arbenz/fem17 Peter Arbenz Computer Science Department, ETH Zürich

More information

4.8 Arnoldi Iteration, Krylov Subspaces and GMRES

4.8 Arnoldi Iteration, Krylov Subspaces and GMRES 48 Arnoldi Iteration, Krylov Subspaces and GMRES We start with the problem of using a similarity transformation to convert an n n matrix A to upper Hessenberg form H, ie, A = QHQ, (30) with an appropriate

More information

The solution of the discretized incompressible Navier-Stokes equations with iterative methods

The solution of the discretized incompressible Navier-Stokes equations with iterative methods The solution of the discretized incompressible Navier-Stokes equations with iterative methods Report 93-54 C. Vuik Technische Universiteit Delft Delft University of Technology Faculteit der Technische

More information

AMS Mathematics Subject Classification : 65F10,65F50. Key words and phrases: ILUS factorization, preconditioning, Schur complement, 1.

AMS Mathematics Subject Classification : 65F10,65F50. Key words and phrases: ILUS factorization, preconditioning, Schur complement, 1. J. Appl. Math. & Computing Vol. 15(2004), No. 1, pp. 299-312 BILUS: A BLOCK VERSION OF ILUS FACTORIZATION DAVOD KHOJASTEH SALKUYEH AND FAEZEH TOUTOUNIAN Abstract. ILUS factorization has many desirable

More information

ECS231 Handout Subspace projection methods for Solving Large-Scale Eigenvalue Problems. Part I: Review of basic theory of eigenvalue problems

ECS231 Handout Subspace projection methods for Solving Large-Scale Eigenvalue Problems. Part I: Review of basic theory of eigenvalue problems ECS231 Handout Subspace projection methods for Solving Large-Scale Eigenvalue Problems Part I: Review of basic theory of eigenvalue problems 1. Let A C n n. (a) A scalar λ is an eigenvalue of an n n A

More information

Chebyshev semi-iteration in Preconditioning

Chebyshev semi-iteration in Preconditioning Report no. 08/14 Chebyshev semi-iteration in Preconditioning Andrew J. Wathen Oxford University Computing Laboratory Tyrone Rees Oxford University Computing Laboratory Dedicated to Victor Pereyra on his

More information

Alternative correction equations in the Jacobi-Davidson method

Alternative correction equations in the Jacobi-Davidson method Chapter 2 Alternative correction equations in the Jacobi-Davidson method Menno Genseberger and Gerard Sleijpen Abstract The correction equation in the Jacobi-Davidson method is effective in a subspace

More information

ABSTRACT NUMERICAL SOLUTION OF EIGENVALUE PROBLEMS WITH SPECTRAL TRANSFORMATIONS

ABSTRACT NUMERICAL SOLUTION OF EIGENVALUE PROBLEMS WITH SPECTRAL TRANSFORMATIONS ABSTRACT Title of dissertation: NUMERICAL SOLUTION OF EIGENVALUE PROBLEMS WITH SPECTRAL TRANSFORMATIONS Fei Xue, Doctor of Philosophy, 2009 Dissertation directed by: Professor Howard C. Elman Department

More information

ON THE GENERALIZED DETERIORATED POSITIVE SEMI-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONER *

ON THE GENERALIZED DETERIORATED POSITIVE SEMI-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONER * Journal of Computational Mathematics Vol.xx, No.x, 2x, 6. http://www.global-sci.org/jcm doi:?? ON THE GENERALIZED DETERIORATED POSITIVE SEMI-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONER * Davod

More information

On the Modification of an Eigenvalue Problem that Preserves an Eigenspace

On the Modification of an Eigenvalue Problem that Preserves an Eigenspace Purdue University Purdue e-pubs Department of Computer Science Technical Reports Department of Computer Science 2009 On the Modification of an Eigenvalue Problem that Preserves an Eigenspace Maxim Maumov

More information

c 2009 Society for Industrial and Applied Mathematics

c 2009 Society for Industrial and Applied Mathematics SIAM J. MATRIX ANAL. APPL. Vol. 3, No., pp. c 29 Society for Industrial and Applied Mathematics THE ARNOLDI EIGENVALUE ITERATION WITH EXACT SHIFTS CAN FAIL MARK EMBREE Abstract. The restarted Arnoldi algorithm,

More information

7.4 The Saddle Point Stokes Problem

7.4 The Saddle Point Stokes Problem 346 CHAPTER 7. APPLIED FOURIER ANALYSIS 7.4 The Saddle Point Stokes Problem So far the matrix C has been diagonal no trouble to invert. This section jumps to a fluid flow problem that is still linear (simpler

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 16-02 The Induced Dimension Reduction method applied to convection-diffusion-reaction problems R. Astudillo and M. B. van Gijzen ISSN 1389-6520 Reports of the Delft

More information

The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method. V. Simoncini. Dipartimento di Matematica, Università di Bologna

The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method. V. Simoncini. Dipartimento di Matematica, Università di Bologna The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method V. Simoncini Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it 1 The

More information

c 2004 Society for Industrial and Applied Mathematics

c 2004 Society for Industrial and Applied Mathematics SIAM J. MATRIX ANAL. APPL. Vol. 6, No., pp. 377 389 c 004 Society for Industrial and Applied Mathematics SPECTRAL PROPERTIES OF THE HERMITIAN AND SKEW-HERMITIAN SPLITTING PRECONDITIONER FOR SADDLE POINT

More information

9.1 Preconditioned Krylov Subspace Methods

9.1 Preconditioned Krylov Subspace Methods Chapter 9 PRECONDITIONING 9.1 Preconditioned Krylov Subspace Methods 9.2 Preconditioned Conjugate Gradient 9.3 Preconditioned Generalized Minimal Residual 9.4 Relaxation Method Preconditioners 9.5 Incomplete

More information

Lecture 8: Fast Linear Solvers (Part 7)

Lecture 8: Fast Linear Solvers (Part 7) Lecture 8: Fast Linear Solvers (Part 7) 1 Modified Gram-Schmidt Process with Reorthogonalization Test Reorthogonalization If Av k 2 + δ v k+1 2 = Av k 2 to working precision. δ = 10 3 2 Householder Arnoldi

More information

Preconditioned GMRES Revisited

Preconditioned GMRES Revisited Preconditioned GMRES Revisited Roland Herzog Kirk Soodhalter UBC (visiting) RICAM Linz Preconditioning Conference 2017 Vancouver August 01, 2017 Preconditioned GMRES Revisited Vancouver 1 / 32 Table of

More information

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method Solution of eigenvalue problems Introduction motivation Projection methods for eigenvalue problems Subspace iteration, The symmetric Lanczos algorithm Nonsymmetric Lanczos procedure; Implicit restarts

More information

Course Notes: Week 1

Course Notes: Week 1 Course Notes: Week 1 Math 270C: Applied Numerical Linear Algebra 1 Lecture 1: Introduction (3/28/11) We will focus on iterative methods for solving linear systems of equations (and some discussion of eigenvalues

More information

20. A Dual-Primal FETI Method for solving Stokes/Navier-Stokes Equations

20. A Dual-Primal FETI Method for solving Stokes/Navier-Stokes Equations Fourteenth International Conference on Domain Decomposition Methods Editors: Ismael Herrera, David E. Keyes, Olof B. Widlund, Robert Yates c 23 DDM.org 2. A Dual-Primal FEI Method for solving Stokes/Navier-Stokes

More information

ABSTRACT. Professor G.W. Stewart

ABSTRACT. Professor G.W. Stewart ABSTRACT Title of dissertation: Residual Arnoldi Methods : Theory, Package, and Experiments Che-Rung Lee, Doctor of Philosophy, 2007 Dissertation directed by: Professor G.W. Stewart Department of Computer

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 9 Minimizing Residual CG

More information

Linear Solvers. Andrew Hazel

Linear Solvers. Andrew Hazel Linear Solvers Andrew Hazel Introduction Thus far we have talked about the formulation and discretisation of physical problems...... and stopped when we got to a discrete linear system of equations. Introduction

More information

A refined Lanczos method for computing eigenvalues and eigenvectors of unsymmetric matrices

A refined Lanczos method for computing eigenvalues and eigenvectors of unsymmetric matrices A refined Lanczos method for computing eigenvalues and eigenvectors of unsymmetric matrices Jean Christophe Tremblay and Tucker Carrington Chemistry Department Queen s University 23 août 2007 We want to

More information

A Jacobi Davidson-type projection method for nonlinear eigenvalue problems

A Jacobi Davidson-type projection method for nonlinear eigenvalue problems A Jacobi Davidson-type projection method for nonlinear eigenvalue problems Timo Betce and Heinrich Voss Technical University of Hamburg-Harburg, Department of Mathematics, Schwarzenbergstrasse 95, D-21073

More information

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland Matrix Algorithms Volume II: Eigensystems G. W. Stewart University of Maryland College Park, Maryland H1HJ1L Society for Industrial and Applied Mathematics Philadelphia CONTENTS Algorithms Preface xv xvii

More information

Adaptive preconditioners for nonlinear systems of equations

Adaptive preconditioners for nonlinear systems of equations Adaptive preconditioners for nonlinear systems of equations L. Loghin D. Ruiz A. Touhami CERFACS Technical Report TR/PA/04/42 Also ENSEEIHT-IRIT Technical Report RT/TLSE/04/02 Abstract The use of preconditioned

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 06-05 Solution of the incompressible Navier Stokes equations with preconditioned Krylov subspace methods M. ur Rehman, C. Vuik G. Segal ISSN 1389-6520 Reports of the

More information

Fast Solvers for Unsteady Incompressible Flow

Fast Solvers for Unsteady Incompressible Flow ICFD25 Workshop p. 1/39 Fast Solvers for Unsteady Incompressible Flow David Silvester University of Manchester http://www.maths.manchester.ac.uk/~djs/ ICFD25 Workshop p. 2/39 Outline Semi-Discrete Navier-Stokes

More information

ON THE ROLE OF COMMUTATOR ARGUMENTS IN THE DEVELOPMENT OF PARAMETER-ROBUST PRECONDITIONERS FOR STOKES CONTROL PROBLEMS

ON THE ROLE OF COMMUTATOR ARGUMENTS IN THE DEVELOPMENT OF PARAMETER-ROBUST PRECONDITIONERS FOR STOKES CONTROL PROBLEMS ON THE ROLE OF COUTATOR ARGUENTS IN THE DEVELOPENT OF PARAETER-ROBUST PRECONDITIONERS FOR STOKES CONTROL PROBLES JOHN W. PEARSON Abstract. The development of preconditioners for PDE-constrained optimization

More information

Krylov subspace projection methods

Krylov subspace projection methods I.1.(a) Krylov subspace projection methods Orthogonal projection technique : framework Let A be an n n complex matrix and K be an m-dimensional subspace of C n. An orthogonal projection technique seeks

More information

A Jacobi Davidson Method for Nonlinear Eigenproblems

A Jacobi Davidson Method for Nonlinear Eigenproblems A Jacobi Davidson Method for Nonlinear Eigenproblems Heinrich Voss Section of Mathematics, Hamburg University of Technology, D 21071 Hamburg voss @ tu-harburg.de http://www.tu-harburg.de/mat/hp/voss Abstract.

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 19: More on Arnoldi Iteration; Lanczos Iteration Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 17 Outline 1

More information

APPLIED NUMERICAL LINEAR ALGEBRA

APPLIED NUMERICAL LINEAR ALGEBRA APPLIED NUMERICAL LINEAR ALGEBRA James W. Demmel University of California Berkeley, California Society for Industrial and Applied Mathematics Philadelphia Contents Preface 1 Introduction 1 1.1 Basic Notation

More information

A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation

A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation Tao Zhao 1, Feng-Nan Hwang 2 and Xiao-Chuan Cai 3 Abstract In this paper, we develop an overlapping domain decomposition

More information

ABSTRACT OF DISSERTATION. Ping Zhang

ABSTRACT OF DISSERTATION. Ping Zhang ABSTRACT OF DISSERTATION Ping Zhang The Graduate School University of Kentucky 2009 Iterative Methods for Computing Eigenvalues and Exponentials of Large Matrices ABSTRACT OF DISSERTATION A dissertation

More information

1. Introduction. Consider the Navier Stokes equations ηu t ν 2 u + (u grad) u + grad p = f div u = 0 (1.1)

1. Introduction. Consider the Navier Stokes equations ηu t ν 2 u + (u grad) u + grad p = f div u = 0 (1.1) University of Maryland Department of Computer Science TR-C4930 University of Maryland Institute for Advanced Computer Studies TR-009-0 BOUNDARY CONDITIONS IN APPROXIMATE COMMUTATOR PRECONDITIONERS FOR

More information

An Asynchronous Algorithm on NetSolve Global Computing System

An Asynchronous Algorithm on NetSolve Global Computing System An Asynchronous Algorithm on NetSolve Global Computing System Nahid Emad S. A. Shahzadeh Fazeli Jack Dongarra March 30, 2004 Abstract The Explicitly Restarted Arnoldi Method (ERAM) allows to find a few

More information

Structured Krylov Subspace Methods for Eigenproblems with Spectral Symmetries

Structured Krylov Subspace Methods for Eigenproblems with Spectral Symmetries Structured Krylov Subspace Methods for Eigenproblems with Spectral Symmetries Fakultät für Mathematik TU Chemnitz, Germany Peter Benner benner@mathematik.tu-chemnitz.de joint work with Heike Faßbender

More information

Unsteady Incompressible Flow Simulation Using Galerkin Finite Elements with Spatial/Temporal Adaptation

Unsteady Incompressible Flow Simulation Using Galerkin Finite Elements with Spatial/Temporal Adaptation Unsteady Incompressible Flow Simulation Using Galerkin Finite Elements with Spatial/Temporal Adaptation Mohamed S. Ebeida Carnegie Mellon University, Pittsburgh, PA 15213 Roger L. Davis and Roland W. Freund

More information

RANA03-02 January Jacobi-Davidson methods and preconditioning with applications in pole-zero analysis

RANA03-02 January Jacobi-Davidson methods and preconditioning with applications in pole-zero analysis RANA03-02 January 2003 Jacobi-Davidson methods and preconditioning with applications in pole-zero analysis by J.Rommes, H.A. van der Vorst, EJ.W. ter Maten Reports on Applied and Numerical Analysis Department

More information

arxiv: v1 [math.na] 26 Dec 2013

arxiv: v1 [math.na] 26 Dec 2013 General constraint preconditioning iteration method for singular saddle-point problems Ai-Li Yang a,, Guo-Feng Zhang a, Yu-Jiang Wu a,b a School of Mathematics and Statistics, Lanzhou University, Lanzhou

More information

ECS130 Scientific Computing Handout E February 13, 2017

ECS130 Scientific Computing Handout E February 13, 2017 ECS130 Scientific Computing Handout E February 13, 2017 1. The Power Method (a) Pseudocode: Power Iteration Given an initial vector u 0, t i+1 = Au i u i+1 = t i+1 / t i+1 2 (approximate eigenvector) θ

More information

Journal of Computational and Applied Mathematics. Optimization of the parameterized Uzawa preconditioners for saddle point matrices

Journal of Computational and Applied Mathematics. Optimization of the parameterized Uzawa preconditioners for saddle point matrices Journal of Computational Applied Mathematics 6 (009) 136 154 Contents lists available at ScienceDirect Journal of Computational Applied Mathematics journal homepage: wwwelseviercom/locate/cam Optimization

More information

Convergence Behavior of Left Preconditioning Techniques for GMRES ECS 231: Large Scale Scientific Computing University of California, Davis Winter

Convergence Behavior of Left Preconditioning Techniques for GMRES ECS 231: Large Scale Scientific Computing University of California, Davis Winter Convergence Behavior of Left Preconditioning Techniques for GMRES ECS 231: Large Scale Scientific Computing University of California, Davis Winter Quarter 2013 March 20, 2013 Joshua Zorn jezorn@ucdavis.edu

More information

An Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems

An Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems An Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems H. Voss 1 Introduction In this paper we consider the nonlinear eigenvalue problem T (λ)x = 0 (1) where T (λ) R n n is a family of symmetric

More information

Algorithms that use the Arnoldi Basis

Algorithms that use the Arnoldi Basis AMSC 600 /CMSC 760 Advanced Linear Numerical Analysis Fall 2007 Arnoldi Methods Dianne P. O Leary c 2006, 2007 Algorithms that use the Arnoldi Basis Reference: Chapter 6 of Saad The Arnoldi Basis How to

More information

Iterative methods for symmetric eigenvalue problems

Iterative methods for symmetric eigenvalue problems s Iterative s for symmetric eigenvalue problems, PhD McMaster University School of Computational Engineering and Science February 11, 2008 s 1 The power and its variants Inverse power Rayleigh quotient

More information

MICHIEL E. HOCHSTENBACH

MICHIEL E. HOCHSTENBACH VARIATIONS ON HARMONIC RAYLEIGH RITZ FOR STANDARD AND GENERALIZED EIGENPROBLEMS MICHIEL E. HOCHSTENBACH Abstract. We present several variations on the harmonic Rayleigh Ritz method. First, we introduce

More information

Krylov Subspace Methods to Calculate PageRank

Krylov Subspace Methods to Calculate PageRank Krylov Subspace Methods to Calculate PageRank B. Vadala-Roth REU Final Presentation August 1st, 2013 How does Google Rank Web Pages? The Web The Graph (A) Ranks of Web pages v = v 1... Dominant Eigenvector

More information

Eigenvalue Problems Computation and Applications

Eigenvalue Problems Computation and Applications Eigenvalue ProblemsComputation and Applications p. 1/36 Eigenvalue Problems Computation and Applications Che-Rung Lee cherung@gmail.com National Tsing Hua University Eigenvalue ProblemsComputation and

More information

Block Iterative Eigensolvers for Sequences of Dense Correlated Eigenvalue Problems

Block Iterative Eigensolvers for Sequences of Dense Correlated Eigenvalue Problems Mitglied der Helmholtz-Gemeinschaft Block Iterative Eigensolvers for Sequences of Dense Correlated Eigenvalue Problems Birkbeck University, London, June the 29th 2012 Edoardo Di Napoli Motivation and Goals

More information