CHAPTER 4 GENERAL MOTION OF A PARTICLE IN THREE DIMENSIONS

Similar documents
Motion in Two Dimensions Sections Covered in the Text: Chapters 6 & 7, except 7.5 & 7.6

Problem Set: Fall #1 - Solutions

KINEMATICS PREVIOUS EAMCET BITS ENGINEERING PAPER

Firing an Ideal Projectile

PHYS 1114, Lecture 9, February 6 Contents:

Motion in Two Dimension (Projectile Motion)

Physics 111. Lecture 7 (Walker: 4.2-5) 2D Motion Examples Projectile Motion

v( t) g 2 v 0 sin θ ( ) ( ) g t ( ) = 0

Dynamics 4600:203 Homework 03 Due: February 08, 2008 Name:

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K.

1 CHAPTER 7 PROJECTILES. 7.1 No Air Resistance

MATHEMATICS 200 December 2013 Final Exam Solutions

Projectiles 6D. 1 At maximum height, h, the vertical component of velocity, vy = 0, a = g, s h, v 0 R( ) sin. v u 2as sin 2. U h. as required.

Energizing Math with Engineering Applications

the equations for the motion of the particle are written as

CHAPTER 3 Applications of Differentiation

MATH section 3.1 Maximum and Minimum Values Page 1 of 7

CHAPTER 3 Applications of Differentiation

Math 2413 Exam 2 Litong Name Test No

Parametric Equations

Geodesics as gravity

Chapter 8 More About the Trigonometric Functions

Mathematics Extension 1 Time allowed: 2 hours (plus 5 minutes reading time)

Linear Motion. Miroslav Mihaylov. February 13, 2014

Get Solution of These Packages & Learn by Video Tutorials on PROJECTILE MOTION

Review Test 2. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. D) ds dt = 4t3 sec 2 t -

(c) cos Arctan ( 3) ( ) PRECALCULUS ADVANCED REVIEW FOR FINAL FIRST SEMESTER

ONLINE: MATHEMATICS EXTENSION 2 Topic 6 MECHANICS 6.3 HARMONIC MOTION

Ground Rules. PC1221 Fundamentals of Physics I. Position and Displacement. Average Velocity. Lectures 7 and 8 Motion in Two Dimensions

2 nd ORDER O.D.E.s SUBSTITUTIONS

BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE. MTH06 Review Sheet y 6 2x + 5 y.

Problem Set 2 Solutions

Basics Concepts and Ideas First Order Differential Equations. Dr. Omar R. Daoud

1.571 Structural Analysis and Control Prof. Connor Section 2: Linear Formulation for a General Planar Member. x X


11 PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS

PROJECTILE MOTION. ( ) g y 0. Equations ( ) General time of flight (TOF) General range. Angle for maximum range ("optimum angle")

Methods of Integration

(C) 7 s. (C) 13 s. (C) 10 m

OSCILLATIONS

This Week. Next Week

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) = 2t + 1; D) = 2 - t;

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

(a) 1m s -2 (b) 2 m s -2 (c) zero (d) -1 m s -2

CHAPTER 3 Applications of Differentiation

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. D) D: (-, 0) (0, )

Scalars distance speed mass time volume temperature work and energy

PES 1110 Fall 2013, Spendier Lecture 5/Page 1

I. Degrees and Radians minutes equal 1 degree seconds equal 1 minute. 3. Also, 3600 seconds equal 1 degree. 3.

One-Dimensional Wave Propagation (without distortion or attenuation)

Physics 101 Lecture 2 Vectors Dr. Ali ÖVGÜN

BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE. MTH06 Review Sheet y 6 2x + 5 y.

Review Sheet for Exam 1 SOLUTIONS

+ 4 Ex: y = v = (1, 4) x = 1 Focus: (h, k + ) = (1, 6) L.R. = 8 units We can have parabolas that open sideways too (inverses) x = a (y k) 2 + h

REVIEW: Going from ONE to TWO Dimensions with Kinematics. Review of one dimension, constant acceleration kinematics. v x (t) = v x0 + a x t

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. Physics 8.01x Fall Term 2001 EXAM 1 SOLUTIONS

EVERYDAY EXAMPLES OF ENGINEERING CONCEPTS

z 0 > 0 z = 0 h; (x, 0)

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 16

Phys101 First Major-111 Zero Version Monday, October 17, 2011 Page: 1

University of Alabama Department of Physics and Astronomy. PH 125 / LeClair Fall Exam III Solution

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) 2

PSI AP Physics C Kinematics 2D. Multiple Choice Questions

Review for Test 2 Calculus I

Projectile Motion. Equipment: Ballistic Gun Apparatus Projectiles Table Clamps 2-meter Stick Carbon Paper, Scratch Paper, Masking Tape Plumb Bob

Sample Paper-05 Mathematics Class XII. Time allowed: 3 hours Answers Maximum Marks: 100. Section A. Section B

ME 101: Engineering Mechanics

Review Exercises for Chapter 2

2.2 Differentiation and Integration of Vector-Valued Functions

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

PhysicsAndMathsTutor.com

Chapter 4 MOTION IN TWO AND THREE DIMENSIONS

WORKSHEET 1 SOLUTION Chapter 2 Differentiation

Exact Differential Equations. The general solution of the equation is f x, y C. If f has continuous second partials, then M y 2 f

PreCalculus First Semester Exam Review

Phys 221. Chapter 3. Vectors A. Dzyubenko Brooks/Cole

Mathematics Extension 1

Exercise. Accelerated Math : Monday, May 6, 2013, 7:40 PM Mr. J. Ziarno Ziarno-1st James Ziarno

MATH 150/GRACEY PRACTICE FINAL. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

= C. on q 1 to the left. Using Coulomb s law, on q 2 to the right, and the charge q 2 exerts a force F 2 on 1 ( )

Phys207: Lecture 04. Today s Agenda 3-D Kinematics Independence of x and y components Baseball projectile Shoot the monkey Uniform circular motion

7.2 Maximization of the Range of a Rocket

Fundamentals of Applied Electromagnetics. Chapter 2 - Vector Analysis

FUNDAMENTAL TRIGONOMETRIC INDENTITIES 1 = cos. sec θ 1 = sec. = cosθ. Odd Functions sin( t) = sint. csc( t) = csct tan( t) = tant

10. The dimensional formula for c) 6% d) 7%

Lecture 5: 3-D Rotation Matrices.

Experiment 3 The Simple Pendulum

Homework # 2. SOLUTION - We start writing Newton s second law for x and y components: F x = 0, (1) F y = mg (2) x (t) = 0 v x (t) = v 0x (3)

Mark Scheme (Results) Summer 2009

Mathematics Extension 2

APPM 1360 Final Exam Spring 2016

Chapter 8. Complex Numbers, Polar Equations, and Parametric Equations. Section 8.1: Complex Numbers. 26. { ± 6i}

Prince Sultan University Physics Department First Semester 2012 /2013. PHY 105 First Major Exam Allowed Time: 60 min

VARIATIONAL PRINCIPLES

SOLUTIONS TO CONCEPTS CHAPTER 2

FP2 Mark Schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002)

Physics 11 Fall 2012 Practice Problems 2 - Solutions

C. Non-linear Difference and Differential Equations: Linearization and Phase Diagram Technique

PHYS 124 Section A01 Final Examination Autumn 2006

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26.

Transcription:

CHAPTER 4 GENERAL MOTION OF A PARTICLE IN THREE DIMENSIONS --------------------------------------------------------------------------------------------------------- Note to instructors there is a tpo in equation 4..4. The rane of the projectile is v sin R NOT v sin... --------------------------------------------------------------------------------------------------------- 4. (a) ˆ V ˆ V F V i j kˆ V z F c( iz ˆ + ˆjz + k ˆ ) (b) F V iˆ ˆjβ kˆ γz + β+ γz (c) F V ce iˆ + ˆjβ + kˆ γ (d) V V V F V eˆ ˆ ˆ r eθ eφ r r θ rsinθ φ n F eˆ cnr r 4. (a) (b) (c) (d) iˆ ˆj kˆ F z z iˆ ˆj kˆ F z kˆ ( ) z iˆ ˆj kˆ F kˆ ( ) z z conservative conservative conservative

eˆ ˆ ˆ r eθr eφrsinθ θ θ φ F r sin r kr n conservative 4. (a) (b) iˆ ˆj kˆ F k z c c c z ( c ) iˆ ˆj kˆ F z z cz ˆ c ˆ ˆ cz z i j k + + + c c also cz z + implies that c as it must 4.4 (a) constant V,, z + mv at the oriin E + m v E at (,,) E + β + γ + mv mv

(b) v ( + ) (c) v m β + γ m β γ + + V m F m V m β V mz γ z z v v + β + γ m v v m + β + γ 4.5 (a) F i ˆ + ˆj on the path : dr id ˆ + ˆjd (,) F dr F d + F d d + d, on the path alon the -ais: and on the line : (,) F dr F (,) d+ F d F is conservative. dr id ˆ dr ˆjd (b) F i ˆ ˆj on the path : (,) F dr F d + F d d d, and, with F dr d d,, on the -ais: and, with on the line : on the -ais,, (,) F dr F d d (,) F dr F dr F d d,,

and, with, (,) on this path F dr + (,) F is not conservative. F dr d, 4.6 From Eample.., V ( z) V z m re r z ( + ) z mre + re From Appendi D, V z V z e + + + z z mre + + re re mz mre + mz + r With mr e an additive constant, z V ( z ) mz re F V kˆ V( z ) z ˆ z km + z re re ˆ z F km re m F, m F dz z mz m dz re h z zdz dz v z re h v h z re rv e z h r eh+ e z mz m re 4

re z h r rev e r r v h r e e z From Appendi D, ( ) r r v v h + + 4r + e ( hz r), e + + + 8 4 e e z z v z v z h + re From Eample.., h And with ( ) +, e v v r e v v h + r e 4.7 For a point on the rim measured from the center of the wheel: r ib ˆ cosθ ˆjbsin θ vt θ ωt, so r îv sinθ ˆ jvcosθ b v iˆv sinθ ˆjv cosθ Relative to the round, For a particle of mud leavin the rim: bsinθ and v v cosθ So v v t v cosθ t and b sinθ vt cosθ t At maimum heiht, v : v cosθ t vcosθ vcosθ hbsinθ v cosθ v h bsinθ + Maimum h occurs for cos θ dh b cosθ dθ v cosθ sin θ 5

b sinθ v 4 v b cos θ sin θ 4 v b v b b v hma + + v v v Measured from the round, b v h ma b+ + v 4 b The mud leaves the wheel at θ sin v 4.8 Rcosφ and ( cos ) R cosφ so t v cos Rsinφ v t v t vt t v t t and ( sin ) Rcosφ Rcosφ Rsinφ ( v sin) vcos vcos R cos φ sinφ tancosφ v cos v cos v cos φ ( tan cosφ sinφ) ( sincosφ cossin ) R cos φ cos φ From Appendi B, sin ( θ + φ) sinθ cosφ + cosθsinφ v cos R sin cos φ ( φ ) dr v φ φ) d cos φ + R is a maimum for sin sin cos cos( Implies that cos ( φ) ( φ) From appendi B, so cos( φ) R cos sin sin cos θ + φ cosθ cosφ sinθ sinφ π π φ φ + 4 v π φ π φ cos + sin cos φ 4 4 ma φ 6

4.9 π φ π π φ π φ Now sin cos cos 4 + 4 4 v π φ Rma cos + cos φ 4 Aain usin Appendi B, cos θ cos θ sin θ cos θ v π v Rma cos φ π + cos φ + cos + φ + cos φ Usin cos π + θ sin θ, v Rma sinφ sin φ R ma v ( + sinφ ) (a) Here we note that the projectile is launched downhill towards the taret, which is located a distance h below the cannon alon a line at an anle φ below the horizon. is the anle of projection that ields maimum rane, R ma. We can use the results from problem 4.8 for this problem. We simpl have to replace the anle φ in the above φ result with the anle -φ, to account for the downhill h slope. Thus, we et for the downhill rane R ma v cos sin ( + ϕ) R cos ϕ The maimum rane and the anle is are obtained from the problem above aain b v ( + sinϕ ) π replacin φ with the anle -φ Rma and ϕ. cos ϕ h v ( + sinϕ ) v We can now calculate Rma sinϕ cos ϕ sinϕ h h Solvin for sinϕ sin ϕ + v v π But, from the above sinϕ sin cos sin h h Thus sin + v v 7

h h + h + v sin csc v v Finall h csc + v (b) h h h Solvin for R ma Rma sinϕ sin csc Substitutin for csc and solvin v h Rma + v 4. We can aain use the results of problem 4.8. The maimum slope rane from problem 4.8 is iven b v h Rma + sinϕ sinϕ Solvin for sinϕ h h sinϕ v v Thus cosϕ ma Rma cosϕ h sinϕ We can calculate cosϕ from the above relation for sinϕ h h v v cosϕ ( sin ϕ) Insertin the results for sinϕ and cosϕ into the above cosϕ v h ma h sinϕ v 4. We can simplif this problems somewhat b notin that the trajector is smmetric about a vertical line that passes throuh the hihest point of the trajector. Thus we have the followin picture 8

z z ma v h h δ R We have reversed the trajector so that h ( 9.8 ft), and, the heiht and rane within which Micke can catch the ball represent the startin point of the trajector. h (.8 ft) is the heiht of the ball when Micke strikes it at home plate. δ is the distance behind home plate where the ball would be hpotheticall launched at some anle to achieve the total rane R. (8 ft) is the distance the ball actuall would travel from home plate if not cauht b Micke. (Note, because of the smmetr, v is the speed of the ball when it strikes the round also at the same anle at which was launched. We will calculate the value of assumin a time-reversed trajector!) v sin v sincos () The rane of the ball R () The maimum heiht R ma tan R z v cos () The heiht at h tan v cos tan From () and insertin this into () ives v cos R R R R zma tan tan tan 4 4 4zma Thus, R and insertin this epression and the first previousl derived into () tan (4) h tan ( tan ) 4z ma Let u tan and we obtain the followin quadratic 4 + 4 u zmau zmah and solvin for u u z ma ± h zma and lettin h ε z ma, we et 9

u z ε h ma ( ε ) or u z z.475.9z.9zm a Thus, tan.8 9.4 Now solve for usin a relation identical to (4) h ma ma ma tan tan 4z ma. This result is the correct one Aain we obtain a quadratic epression for u tan which we solve as before. This time, thouh, the first result for u is the correct one to use u z ε h and we obtain ma h.9 ft tan 4. The and z positions of the ball vs. time are vt cos θ z vtcos θ sinθ t Since v v cos θ v The ho rizontal rane is R dr The maimum rane occurs @ dθ cos θ sin θ dr v cos θcos θ cos θ sin θ sin θ dθ Thus, cos θ cos θ cos θ sin θ sin θ Usin the identities: cos θ + cos θ and sin θ sinθ cosθ We et : + cosθ cos θ sinθ sinθ cosθ cos θ cos ( ) ( ) + θ )( cos θ cosθ ) or ( cos Thus cosθ, cosθ ( ± ) 6 π Onl the positive root applies for the θ -rane: θ cosθ ( + ).7676 θ 9 5 6 v 5ms Thus (b) for Rma 55.4 m @ θ 9 5 θ

dz (a) The maimum heiht occurs at dt vcos θsinθ T or at vcos θsinθ T v or H cos θ sin θ maimum at fied θ dh The maimum possible heiht occurs @ d dh v cos θsinθcosθ cos θsin θsin θ d Usin the above trionometric identities, we et ( + cosθ ) sin cos sin sin sin ( cos θ θ θ θ θ θ) sinθ + cosθ cosθ or There are -roots: sinθ, cosθ, cosθ The first two roots ive minimum heihts; the last ives the maimum Thus, Hma 8.9m @ θ cos 7 4. The trajector of the shell is iven b Eq. 4.. with r replacin z z r r where r s vco θ z vsinθ r r Thus, r z rtanθ sec θ v sec θ + tan θ Since We have: r r tan θ tan r θ + z+ v v (r,z) are taret coordinates. The above equation ields two possible roots: 4 tanθ v v zv r ± r The roots are onl real if 4 v zv r The critical surface is therefore: 4 v zv r 4.4 If the velocit vector, of manitude s, makes an anle θ with the z-ais, and its

projection on the -plane make an anle φ with the -ais: s sinθ cosφ, and F F sinθ cosφ m s sinθ sinφ, and F F sinθ sinφ m z scosθ, and Fz m+ Fr cosθ mz Since F ( r cs c + + z ), the differential equations of motion are not separable. m cs z sinθ cosφ cs d d ds d m m ms cs dt ds dt ds s θ d c c ds γds, where γ m m ln ln ln γ s e γ s φ Similarl e γ s r r z γma ma 4.5 From eqn 4..6, ln γ + + γ γ γ u u From Appendi D: ln ( u) u for u < γ ma γma γ ma γ ma 4 ln + terms in γ z ma ma m a ma ma + γ γ γ + terms in γ z ma + ma γ γ 9 z ma ± + 4γ 6γ γ 6 ma z γ ± + 4γ 4γ Since ma >, the + sin is used. From Appendi D: 6γz 8γz 6γz + + + γ 8 terms in z 8γ z ma + + + terms in γ 4γ 4γ

For z 8z ma γ + z v sin and z v sin : v sin 4v sin sin ma γ + 4.6 Acos( ωt+ ), Aω sin ( ωt+ ) from, from A, Acosωt Bcos( ωt+ β ), ωbsin ( ωt+ β) kb k + m with k 4A, ω A and ω : m B 6 + ( A 9ω A ) 5A ω B 5A Then 4A 5Acos β and ω A 5ωAsin β 4 β 5 5 5Acos ωt6.9 cos sin 6.9 Since maimum and displacements are ± A and ± 5A, respectivel, the motion takes place entirel with in a rectanle of dime nsion A and A. β 6.9 6.9 AB cos From eqn 4.4.5, tan ψ A B 4 ( A)( 5A) cos( 6.9 ) tan ψ 5 A 5A 4 ψ tan 9. 4.7 V m F k π m k A cos t A cos( t + ) m + π

V m 4π m ( π β ) Bcos t+ V mz 9π mz z z Ccos π t+ γ π Since z at t, β γ π Acos πt Asinπt Aπ cosπt Since + + and z v z, v Aπ v A π v sinπt π Bsin π t, Bπ cos π t v π B v B π v sin π t π z Csin π t, z Cπ cosπ t v z Cπ v C π v z sin π t π Since ω π, t min ω π, and ω π the ball does retrace its path. z π π n n π n ω ω ω The minimum time occurs at n, n, n. z 4

t min π π AB cos 4.8 Equation 4.4.5 is tan ψ A B Transformin the coordinate aes z to the new aes z b a rotation about the z-ais throuh an anle ψ iven, from Section.8: cosψ + sinψ, sinψ + cosψ or, cosψ sinψ, and sinψ + cosψ cos From eqn. 4.4.: + sin A AB B Substitutin: cos ψ cosψ sinψ + sin ψ A cos cosψ sinψ + ( cos ψ sin ψ) cosψ sin AB ψ + ( sin ψ + cosψ sinψ + cos ψ) sin B For to be a major or minor ais of the ellipse, the coefficient of must vanish. cos ψ sin ψ cos cos sin ( cos sin ) ψ ψ ψ ψ + A AB B From Appendi B, cosψ sinψ sin ψ and cos ψ sin ψ cos ψ sinψ cos cosψ sinψ + A AB B tan ψ cos B A AB AB cos tan ψ A B 4.9 Shown below is a face-centered cubic lattice. Each atom in the lattice is centered within a cube on whose 6 faces lies another adjacent atom. Thus each atom is surrounded b 6 nearest neihbors at a distance d. We nelect the influence of atoms that lie at further distances. Thus, the potential ener of the central atom can be approimated as 6 V cr i i d 5

r d + + z z + + ( + + + ) + r d d z d d d n From Appendi D, ( + ) + n+ n( n ) + 4. z r d + + + + d d + + z + + z + + terms in d d d d 4 + ( + + ) + + r d z d d 4 d r d + ( + + z ) + + d d d ( ) + + + + + + r d z d d z + + z d + + r d d r d ( + + z ) + + d d d r + r d ( + + z ) + ( + ) d d Similarl: r + r4 d + + z + + d d r 5 r6 d ( z ) z + + + + + d d 6 V cd + + z + + + + z d d d ( ) 6cd + cd + + z V A+ B + + z d + terms in d 6

îv z ˆkB ĵe qb m F qe qb qe qb + m F q( E+ v B) v B ( i ˆ+ ˆj + kz ˆ ) kb ˆ ib ˆ ˆjB F iqb ˆ + ˆjq EB m F qb qb m qe qb qb ee eb eb + m m m m m m ee eb + ω + ω, ω m m ee Acos + ω + ( ωt+ θ ) ω m Aω sin ( ωt+ θ ), so θ ee, so A ω m ω + ee a( cosωt), a ω m ω + qb + ω ωa( cosωt) m ωa + ωa ωt ( ) cos ( ω ) sin a t+ a ωt asinωt+ bt, b ωa mz F z z zt + z 4. b mv + mqh m v b h b mv h Fr mcosθ + R b 7

h cosθ b h mv m m R m h b h h b b b b b the particle leaves the side of the sphere when R b h, i.e., b above the central plane 4. mv mh + at the bottom of the loop, h b h b v so mv mb, v b mv Fr m+ R b mv R m + m + m m b 4. From the equation for the ener as a function of s in Eample 4.6., m E ms + 4A s, s is underoin harmonic motion with: " k" ω m 4A A Since s 4Asinφ, φ increases b π radians durin the time interval: π A T π ω For ccloidal motion, and z are functions of φ so the undero a complete ccle ever time φ chanes b π. Therefore, the period for the ccloidal motion is one-half the period for s. A T T π ------------------------------------------------------------------------------------------------------ 8