Merrily We Roll Along!

Similar documents
Rolling Along Linear Motion Lab

Merrily we roll along

Trial 1 Trial 2 Trial 3. From your results, how many seconds would it take the car to travel 1.50 meters? (3 significant digits)

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment

Driveway Races Acceleration

Session 12 Lab Based Questions

velocity = displacement time elapsed

Laboratorial Report 4

Purpose: Materials: WARNING! Section: Partner 2: Partner 1:

Position, Speed and Velocity Position is a variable that gives your location relative to an origin. The origin is the place where position equals 0.

Introductory Energy & Motion Lab P4-1350

Downhill Races Acceleration

Review Session 1. Page 1

LAB 2: INTRODUCTION TO MOTION

During the second part of the trip then we travelled at 50 km/hr for hour so x = v avg t =

F = ma W = mg v = D t

AP Physics Free Response Practice Kinematics

12.2 Acceleration. You will need a calculator today!

Projectile Motion (Photogates)

QuickCheck. A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65

ACCELERATION. 2. Tilt the Track. Place one block under the leg of the track where the motion sensor is located.

Preparation for Physics. Mathematical Graphs Equations of a Line

WORK, POWER, & ENERGY

Rolling marble lab. B. Pre-Lab Questions a) When an object is moving down a ramp, is its speed increasing, decreasing, or staying the same?

3.3 Acceleration An example of acceleration Definition of acceleration Acceleration Figure 3.16: Steeper hills

Purpose of the experiment

AP PHYSICS: Lab #4 Projectile Motion Lab

Chapter 2: 1-D Kinematics

Summative Practical: Motion down an Incline Plane

<This Sheet Intentionally Left Blank For Double-Sided Printing>

Hot Wheels of Glory (An Acceleration Lab)

WORK, POWER, & ENERGY

Conservation of Momentum

11.3 Acceleration The basketball constantly changes velocity as it rises and falls.

Circular Motion. I. Centripetal Impulse. The centripetal impulse was Sir Isaac Newton s favorite force.

Acceleration. Part I. Uniformly Accelerated Motion: Kinematics and Geometry

Stars Above, Earth Below By Tyler Nordgren Laboratory Exercise for Chapter 7

Freely Falling Object

Conceptual Physics 11 th Edition

Data and Error Analysis

Physics 3 Summer 1990 Lab 4 - Energy Losses on an Inclined Air Track. Figure 1

Graphing. C= d (1) Under constant acceleration, the relationship between the distance s an object moves and the time t it takes is given by

Focus Questions: 3-1: Describe how objects speed up and slow down 3-2: Describes how objects change direction

Formative Assessment: Uniform Acceleration

LAB 3: VELOCITY AND ACCELERATION

Gravity: How fast do objects fall? Student Advanced Version

11.3 Acceleration. What Is Acceleration? How are changes in velocity described?

PHYSICS LAB: CONSTANT MOTION

Unit 1: Mechanical Equilibrium

Lab: Vectors. You are required to finish this section before coming to the lab. It will be checked by one of the lab instructors when the lab begins.

Free-Fall Motion. All objects near the surface of the Earth experience a downward acceleration caused by gravity. The

Lesson 8: Work and Energy

Purpose: The purpose of this lab is to study the equilibrium of a body acted on by concurrent forces, and to practice the addition of vectors.

Newton s Laws of Motion Discovery

Partner s Name: EXPERIMENT MOTION PLOTS & FREE FALL ACCELERATION

SECTION 2. Objectives. Describe motion in terms changing velocity. Compare graphical representations of accelerated and nonaccelerated motions.

LAB 3: WORK AND ENERGY

General Physics I Lab. M7 Conservation of Angular Momentum

(UNIT I) Measuring Activity Name

Analyzing Motion: Enrichment

Physics #1 - Motion Notebook

LabQuest 14. Pendulum Periods

MSU Urban STEM Lesson Title Marble s At Work. Name Donna Calder. Grade Level: 4 8. Content Area Topic: Science(Energy)

Transport. Pupil Booklet

Educational Objectives Determine which variable affects the frequency of a simple pendulum.

PICKET FENCE FREE FALL

Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum

Materials: One of each of the following is needed: Cart Meter stick Pulley with clamp 70 cm string Motion Detector

Potential and Kinetic Energy: Roller Coasters Student Version

Motion Graphs Refer to the following information for the next four questions.

Worksheet At t = 0 a car has a speed of 30 m/s. At t = 6 s, its speed is 14 m/s. What is its average acceleration during this time interval?

Work and Energy. W F s)

STAAR Science Tutorial 21 TEK 6.8D: Graphing Motion

Motion in Two Dimensions: Centripetal Acceleration

LAB 3 - VELOCITY AND ACCELERATION

Gravity: How fast do objects fall? Teacher Advanced Version (Grade Level: 8 12)

Force and Motion 20 N. Force: Net Force on 2 kg mass = N. Net Force on 3 kg mass = = N. Motion: Mass Accel. of 2 kg mass = = kg m/s 2.

Free Response- Exam Review

Motion on a linear air track

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

Guiding Questions Activity 6. What are your ideas about gravity?

Acceleration. Part I. Uniformly Accelerated Motion. t 2. t 1

WORK, POWER, & ENERGY

LAB 4: FORCE AND MOTION

Projectile Motion. x = v ox t (1)

1.5 Acceleration Near Earth s Surface

PHOTOGATE TIMERS. Instruction Manual and Experiment Guide for the PASCO scientific Model ME-9206A and ME-9215A A 3/99

End-of-Chapter Exercises

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3)

LAB 2 - ONE DIMENSIONAL MOTION

Physics 1 Spring Understanding the Universe: Physics Through the Ages. Laboratory 1 Galileo's Inclined Planes and the Laws of Motion

Speed. Change of Distance (in meters) Change of Time (in seconds) Step 2: Formula. 100m in 10sec. 200m in 10sec T. 200m in 20sec.

Linear Motion with Constant Acceleration

Projectile Motion. Figure 1. The system of coordinates for the projectile motion.

PHYSICS LAB FREE FALL. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY

Velocity Time Graphs 12.2

SCIENCE 1206 Unit 3. Physical Science Motion

Motion in Two Dimensions Teacher s Guide

CONSERVATION OF MOMENTUM. Object: To study the law of conservation of momentum by analyzing collisions in two dimensions.

Physics Motion Math. (Read objectives on screen.)

Transcription:

Chapter 4: Linear Motion Accelerated Motion Merrily We Roll Along! Purpose To investigate the relationship between distance and time for a ball rolling down an incline Required Equipment/Supplies Experiment 2-meter ramp steel ball bearing or marble wood block stopwatch tape meterstick protractor overhead transparencies Optional Equipment/Supplies 3 photogates with timing system 6 ring stands with clamps Discussion Measurement of the motion of a freely falling object is difficult because the speed increases rapidly. In fact, it increases by nearly 0 m/s every second. The distance that the object falls becomes very large, very quickly. Galileo slowed down the motion by using inclined planes. The component of gravity acting along the direction of the inclined plane is less than the full force of gravity that acts straight down so the change of speed happens more slowly and is easier to measure. The less steep the incline, the smaller the acceleration. The physics of free fall can be understood by first considering the motion of a ball on an inclined plane. This experiment will require you to make many timing measurements using a stopwatch or, if available, a computer. If you use a stopwatch, develop good timing techniques so as to minimize errors due to reaction time. The computer-photogate system is a powerful stopwatch because it not only eliminates reaction time, but can be used in a variety of timing modes. Since the diameter of the ball can be measured directly, its speed can be found by dividing the diameter by the amount Chapter 4 Linear Motion 29

of time it takes to pass through the beam striking the light probe. Strictly speaking, since the ball s speed is increasing as it rolls through the light beam, it exits the beam slightly faster than it enters the beam. The width of the ball divided by the time the ball eclipses the light beam gives the average speed of the ball through the light beam, not the instantaneous speed. But once the ball has picked up speed partway down the incline, its percentage change in speed is small during the short time that it eclipses the light. Then its measured average speed is practically the same as its instantaneous speed. Procedure Set up ramp. Step : Set up a ramp with the angle of the incline at about 0 to the horizontal, as shown in Figure A. Tape Markers Indicating 6 Equal Segments Stopping Block Fig. A Divide ramp into equal parts. Step 2: Divide the ramp s length into six equal parts and mark the six positions on the board with pieces of tape. These positions will be your release points. Suppose your ramp is 200 cm long. Divide 200 cm by 6 to get 33.33 cm per section. Mark your release points every 33.33 cm from the bottom. Place a stopping block at the bottom of the ramp to allow you to hear when the ball reaches the bottom. 0 Distance Time Trial Trial 2 Trial 3 Average Graph data. Data Table A Time the ball down the incline. Step 3: Use either a stopwatch or a photogate to measure the time it takes the ball to roll down the ramp from each of the six points. (If you use the computer, position one photogate at the release point and the other at the bottom of the ramp.) Use a ruler or a pencil to hold the ball at its starting position, and then pull it away quickly parallel to the incline to release the ball uniformly. Do several practice runs with the help of your partners to minimize error. Make at least three timings from each position, and record each time and the average of the three times in Data Table A. Step 4: Graph your data, plotting distance (vertical axis) vs. average time (horizontal axis) on an overhead transparency. Use the same scales 30 Laboratory Manual (Experiment )

on the coordinate axes as the other groups in your class so that you can compare results. Step 5: Repeat Steps 2 4 with the incline set at an angle 5 steeper. Record your data in Data Table B. Graph your data as in Step 4. Change the tilt of the ramp and repeat. Distance Time Trial Trial 2 Trial 3 Average Data Table B. What is acceleration? 2. Does the ball accelerate down the ramp? Cite evidence to defend your answer. 3. What happens to the acceleration if the angle of the ramp is increased? Step 6: Remove the tape marks and place them at 0 cm, cm, cm, and 60 cm from the stopping block, as in Figure B. Set the incline of the ramp to be about 0. 60 cm t 4 t 3 t 2 cm 0 cm 0 cm t 0 cm Reposition the tape markers on ramp. Fig. B Chapter 4 Linear Motion 3

Time the ball down the ramp. Step 7: Measure the time it takes for the ball to roll down the ramp from each of the four release positions. Make at least three timings from each of the four positions and record each average of the three times in Column 2 of Data Table C. Column Column 2 Column 3 Column 4 Distance Rolling Time Trial Trial 2 Trial 3 Average Time Differences Between Successive Intervals Time in Natural Units 0 t = t 2 = t 2 t = t 3 = t 3 t 2 = Data Table C 60 t 4 = t 4 t 3 = Graph data. Study your data. Step 8: Graph your data, plotting distance (vertical axis) vs. time (horizontal axis) on an overhead transparency. Use the same coordinate axes as the other groups in your class so that you can compare results. Step 9: Look at the data in Column 2 a little more closely. Notice that the difference between t 2 and t is approximately the same as t itself. The difference between t 3 and t 2 is also nearly the same as t. What about the difference between t 4 and t 3? Record these three time intervals in Column 3 of Data Table C. Step 0: If your values in Column 3 are slightly different from one another, find their average by adding the four values and dividing by 4. Do as Galileo did in his famous experiments with inclined planes and call this average time interval one natural unit of time. Note that t is already listed as one natural unit in Column 4 of Table C. Do you see that t 2 will equal more or less two units in Column 4? Record this, and also t 3 and t 4 in natural units, rounded to the nearest integer. Column 4 now contains the rolling times as multiples of the natural unit of time. 4. What happens to the speed of the ball as it rolls down the ramp? Does it increase, decrease, or remain constant? What evidence can you cite to support your answer? Step : Overlay your transparency graph with other groups in your class and compare them. 5. Do balls of different mass have different accelerations? 32 Laboratory Manual (Experiment )

Step 2: Investigate more carefully the distances traveled by the rolling ball in Table D. Fill in the blanks of Columns 2 and 3 to see the pattern. Column Distance 0 Column 2 First Four Integers 2 3 Column 3 Squares of First Four Integers 4 9 60 Data Table D 6. What is the relation between the distances traveled and the squares of the first four integers? Step 3: You are now about to make a very big discovery so big, in fact, that Galileo is still famous for making it first! Compare the distances with the times in the fourth column of Data Table C. For example, t 2 is two natural time units and the distance rolled in time t 2 is 2 2, or 4, times as great as the distance rolled in time t. 7. Is the distance the ball rolls proportional to the square of the natural unit of time? The sizes of your experimental errors may help you appreciate Galileo s genius as an experimenter. Remember, there were no stopwatches 0 years ago! He used a water clock, in which the amount of water that drips through a small opening serves to measure the time. Galileo concluded that the distance d is proportional to the square of the time t. d ~ t 2 Step 4: Repeat Steps 6 0 with the incline set at an angle 5 steeper. Record your data in Data Table E. 8. What happens to the acceleration of the ball as the angle of the ramp is increased? Increase tilt of ramp. Chaper 4 Linear Motion 33

Column Column 2 Column 3 Column 4 Distance Rolling Time Trial Trial 2 Trial 3 Average Time Differences Between Successive Intervals Time in Natural Units 0 t = t 2 = t 2 t = t 3 = t 3 t 2 = Data Table E 60 t 4 = t 4 t 3 = 9. Instead of releasing the ball along the ramp, suppose you simply dropped it. It would fall about 5 meters during the first second. How far would it freely fall in 2 seconds? 5 seconds? 0 seconds? Going Further: Investigating the Speed of the Ball Down the Ramp Set up computer with photogates. Ball Photogates Photogates You can use the computer to investigate the speed the ball acquires rolling down the ramp. This can be accomplished several different ways using light probes. One way is to position three photogates 0 cm, cm, and cm from the release point on the ramp. The speed of the ball as it passes a photogate can be determined by measuring the time interval between when the front of the ball enters the light beam and the back of the ball leaves it. The distance traveled during this time interval is just the diameter of the ball. Measure the diameter of the ball. diameter of ball = With the incline set at an angle of about 0, measure the respective eclipse times for each photogate, and record your timings in Data Table F. To approximate the instantaneous speed of the ball at the three positions, divide the diameter of the ball by the eclipse time. Record the speeds in the table. Also record the average rolling time it took for the ball to travel each distance from the release point, from the information recorded in Data Table C. Make a plot of instantaneous speed (vertical axis) vs. rolling time (horizontal axis). Repeat with the ramp at an angle 5 steeper. Use the rolling times recorded in Data Table E. 34 Laboratory Manual (Experiment )

Total Distance Eclipse Time Instantaneous Speed (cm/s) Average Rolling Time 0 First Angle 0 Second Angle Data Table F 0. How do the slopes of the lines in your graphs of speed vs. time relate to the acceleration of the ball down the ramp?. When you determined the speed of the ball with the photogates, were you really determining instantaneous speed? Explain. 2. As the angle of the ramp increased, the acceleration of the ball increased. Do you think there is an upper limit to the acceleration of the ball down the ramp? What is it? Chapter 4 Linear Motion 35