on-line spectroscopy 1!!! Chemistry 1B Fall 2013 Chemistry 1B, Fall 2013 Lecture Spectroscopy Lectures Spectroscopy Fall 2013

Similar documents
Topics Spectroscopy. Fall 2016

Chemistry 1B-AL, Fall 2016 Topics Spectroscopy

Lectures Spectroscopy. Fall 2012

Lectures Spectroscopy. Fall 2012

Topics Spectroscopy. Fall 2016

Chemistry 1B. Fall Lectures Coordination Chemistry

Chemistry 1B. Fall Lectures Coordination Chemistry

Chemistry Instrumental Analysis Lecture 3. Chem 4631

Review Outline Chemistry 1B, Fall 2012

Assumed knowledge. Chemistry 2. Learning outcomes. Electronic spectroscopy of polyatomic molecules. Franck-Condon Principle (reprise)

Wavelength λ Velocity v. Electric Field Strength Amplitude A. Time t or Distance x time for 1 λ to pass fixed point. # of λ passing per s ν= 1 p

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics

Chemistry 213 Practical Spectroscopy

Topics Coordination Complexes Chemistry 1B-AL, Fall 2016

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE INSTR : FİLİZ ALSHANABLEH

Lecture 6: Physical Methods II. UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy

Chemistry 1B. Fall Topics Lectures Coordination Chemistry

Classification of spectroscopic methods

Ultraviolet-Visible and Infrared Spectrophotometry

Unit 11 Instrumentation. Mass, Infrared and NMR Spectroscopy

Topics Coordination Complexes Chemistry 1B-AL, Fall 2016

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Lecture 2 nmr Spectroscopy

Lecture 6: The Physics of Light, Part 1. Astronomy 111 Wednesday September 13, 2017

2008 Brooks/Cole 2. Frequency (Hz)

Fluorescence and Nuclear Magnetic Resonance (NMR) Spectroscopy

Optical Spectroscopy 1 1. Absorption spectroscopy (UV/vis)

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy

Lecture 3: Light absorbance

Chemistry 304B, Spring 1999 Lecture 5 1. UV Spectroscopy:

Light. Light (con t.) 2/28/11. Examples

February 8, 2018 Chemistry 328N

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

Atoms and Periodic Properties

Increasing energy. ( 10 4 cm -1 ) ( 10 2 cm -1 )

Modern Atomic Theory CHAPTER OUTLINE

Lecture 19: Building Atoms and Molecules

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions

General Chemistry I (2012) Lecture by B. H. Hong

Symmetric Stretch: allows molecule to move through space

( ) x10 8 m. The energy in a mole of 400 nm photons is calculated by: ' & sec( ) ( & % ) 6.022x10 23 photons' E = h! = hc & 6.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Electron Spin Resonance, Basic principle of NMR, Application of NMR in the study of Biomolecules, NMR imaging and in vivo NMR spectromicroscopy

Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure. Nuclear Magnetic Resonance (NMR)

Chapter 7: The Quantum-Mechanical Model of the Atom

CHEM J-5 June 2014

Ultraviolet-Visible and Infrared Spectrophotometry

Chapter 12 Mass Spectrometry and Infrared Spectroscopy

Chapter 4 Ultraviolet and visible spectroscopy Molecular Spectrophotometry

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

Ch 7 Quantum Theory of the Atom (light and atomic structure)

3) In CE separation is based on what two properties of the solutes? (3 pts)

Why Patterns for Charges of Common Cations and Anions? Electrons in Atoms

Worksheet 2.1. Chapter 2: Atomic structure glossary

Chapter 3. Electromagnetic Theory, Photons. and Light. Lecture 7

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation

Lesmahagow High School CfE Advanced Higher Chemistry. Unit 2 Organic Chemistry and Instrumental Analysis. Molecular Orbitals and Structure

Chapter 9. Covalent Bonding: Orbitals

Do Now: Bohr Diagram, Lewis Structures, Valence Electrons 1. What is the maximum number of electrons you can fit in each shell?

Covalent Bonding: Orbitals

Arrangement of Electrons. Chapter 4

Molecular Geometry and Bonding Theories. Chapter 9

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10)

Chapter 5 Light and Matter: Reading Messages from the Cosmos. How do we experience light? Colors of Light. How do light and matter interact?

I. Multiple Choice Questions (Type-I)

CHEM1901/ J-5 June 2013

Bohr Diagram, Lewis Structures, Valence Electrons Review 1. What is the maximum number of electrons you can fit in each energy level or shell?

CVB102 Lecture 1 - Chemical Structure and Reactivity. Contact Information: Dr. Bill Lot Electronic Structure of Atoms

Chapter 6 Electronic Structure of Atoms

Particle Behavior of Light 1. Calculate the energy of a photon, mole of photons 2. Find binding energy of an electron (know KE) 3. What is a quanta?

Chapters 31 Atomic Physics

Spectroscopy. a laboratory method of analyzing matter using electromagnetic radiation.

Electronic Spectra of Complexes

Calculate a rate given a species concentration change.

Review 6: Modern Atomic Theory. Copyright Cengage Learning. All rights reserved. 11 1

Spectroscopy. a laboratory method of analyzing matter using electromagnetic radiation

In this lecture we will understand how the molecular orbitals are formed from the interaction of atomic orbitals.

Lecture 14 Organic Chemistry 1

Photochemical principles

CHAPTER 4 10/11/2016. Properties of Light. Anatomy of a Wave. Components of a Wave. Components of a Wave

Chemistry 111 Dr. Kevin Moore

Chapter 9: Electrons and the Periodic Table

Classification of Electromagnetic Radiation

Lecture 19: Building Atoms and Molecules

ATOMIC STRUCTURE. Wavelength and Frequency

January 29, 2019 Chemistry 328N

CHAPTER 5 Electrons in Atoms

Outline Chapter 9 The Atom Photons Photons The Photoelectron Effect Photons Photons

Skoog Chapter 6 Introduction to Spectrometric Methods

ATOMIC PHYSICS. history/cosmology/tools/ tools-spectroscopy.htm CHAPTER 9 - FROM SPECTROSCOPY TO ATOMS

高等食品分析 (Advanced Food Analysis) I. SPECTROSCOPIC METHODS *Instrumental methods: 1. Spectroscopic methods (spectroscopy): a) Electromagnetic radiation

1. The most important aspects of the quantum theory.

Lecture 3 NMR Spectroscopy. January 26, 2016 Chemistry 328N

PHYS 172: Modern Mechanics Fall 2009

MRI Homework. i. (0.5 pt each) Consider the following arrangements of bar magnets in a strong magnetic field.

Chapter 31 Atomic Physics

Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002

Chapter 13 Spectroscopy

CHM 111 Unit 7 Sample Questions

Transcription:

Lecture 190 Spectroscopy Flipping the lecture discussion Flip teaching (or flipped classroom) is a form of blended learning in which students learn new content online by watching video lectures, usually at home, and what used to be homework (assigned problems) is now done in class with teacher offering more personalized guidance and interaction with students, instead of lecturing. This is also known as backwards classroom, reverse instruction, flipping the classroom and reverse teaching. [1 online spectroscopy 1!!! Chemistry 1B Fall 013 3 W 89 Lectures 190 Spectroscopy Fall 013 4 this week WebAssign W8 spectroscopy problems from sample final (conceptual) due Sunday November 4 next week WebAssign W9 kinetics calculations (last WebAssign) due Wednesday December 4 5 spectroscopic principles (Chem 1M/1N exps. #6 and #11) spectroscopic excitations ( E = h = hc/ ; = c ) (nm) (sec 1 ) radiation technique molecular excitation 6 7 1

Lecture 190 Spectroscopy spectroscopic excitations ( E = h = hc/ ; = c ) spectroscopic excitations: ESCA (nm) (sec 1 ) radiation technique molecular excitation (nm) (sec 1 ) radiation technique molecular excitation.3 10 18 xrays ESCA breaking of bonds (xray damage).3 10 18 xrays ESCA breaking of bonds (xray damage) 30 10 16 far uv vacuum UV excitation of electrons 15 300 10 near uv UVVIS excitation of and nonbonding (n) electrons 400700 48 10 14 visible 3000 10 13 infrared IR vibrational excitations (IR) decreases 3 10 6 10 11 microwave microwave ESR rotations of molecules and flipping unpaired electron spins in external magnetic field 3 10 9 10 8 radiowave NMR (MRI) flipping of nuclear spins in an external magnetic field 8 9 ESCA ESCA photoelectric effect for inner shells Electron Spectroscopy for Chemical Analysis xrays emitted photoelectron 0 characteristic of atom type involved in bonding p s 1s h absorbed O 1s s p 4 10 11 ESCA (and photoelectron effect) ESCA (binding is like work function for inner electrons) velocity of each electron measured Why O1s higher binding than C1s? emitted electrons from different levels binding ( ) 1 mv X ray electron http://upload.wikimedia.org/wikipedia/commons/thumb/f/f/system.gif/800pxsystem.gif h 1 binding ( ) h 1 mv X ray electron 13

Lecture 190 Spectroscopy spectroscopic excitations: ESCA vacuum UV (nm) (sec 1 ) radiation technique molecular excitation (nm) (sec 1 ) radiation technique molecular excitation.3 10 18 xrays ESCA breaking of bonds (xray damage).3 10 18 xrays ESCA breaking of bonds (xray damage) 30 10 16 far uv vacuum UV excitation of electrons 14 15 vacuum UV excitedstate orbitals in polyatomic molecules destructive interference leads to antibonding orbitals which are not usually occupied in the ground state of molecules but which may become occupied upon excitation of electrons by light types of antibonding orbitals: C 4 : * = sp 3 on C 1s on C 4 : * = sp on sp on * = p on p on 16 17 energies of orbitals in double bond * * [sp on sp on ] [p on p on ] [p on p on ] [sp on sp on ] 18 s s* and s * excitations are in the far UV regrion * * * (weak) * [sp on sp on ] [p on p on ] [p on p on ] [sp on sp on ] 19 3

Lecture 190 Spectroscopy vacuum UV spectroscopic excitations (UVVIS) (nm) (sec 1 ) radiation technique molecular excitation (nm) (sec 1 ) radiation technique molecular excitation.3 10 18 xrays ESCA breaking of bonds (xray damage).3 10 18 xrays ESCA breaking of bonds (xray damage) 30 10 far uv vacuum UV excitation of of electrons 16 30 10 16 far uv vacuum UV excitation of electrons 300 10 15 near uv 400700 48 10 14 visible UVVIS excitation of and nonbonding (n) electrons 0 1 near UV transitions * * * [sp on sp on ] [p on p on ] [p on p on ] [sp on sp on ] relative on lone pair nonbonding electrons * * { n * 347nm n: nonbonded e s (higher E than in some molecules; lower E than in others) 3 summary spectroscopic excitations (UVVIS) (nm) (sec 1 ) radiation technique molecular excitation uvvis.3 10 18 xrays ESCA breaking of bonds (xray damage) 30 10 16 far uv vacuum UV excitation of electrons 300 10 15 near uv 400700 48 10 14 visible UVVIS excitation of of and nonbonding (n) (n) electrons weak adapted from: http://www.chem.ucla.edu/~bacher/uvvis/uv_vis_tetracyclone.html.html 4 5 4

Lecture 190 Spectroscopy UVVIS spectrometers (Chem 1M/1N exps. #6 and #11) why do objects appear colored? why do objects appear colored?? low electronic absorptions in the visible region of electromagnetic spectrum result in the reflection (transmission) of wavelengths of the complementary color. LUMO electronic transition OMO LUMO OMO ighest Occupied Molecular Orbital Lowest Unoccupied Molecular Orbital 6 absorbs photon of hn =E LUMO E OMO 7 Br (g), I (g), NO closely spaced OMO and LUMO due to dorbital m.o.s or open shells (unpaired e s) transition metal complex ions octahedral complex t g e g (lonepair) n * * in molecules with conjugated pisystems END OF SPECTROSCOPY 1 AND onto more spectroscopy!!! rhodopsin, the molecule most important to seeing color 8 9 spectroscopic excitations (nm) (sec 1 ) radiation technique molecular excitation online spectroscopy!!! Chemistry 1B Fall 013.3 10 18 xrays ESCA breaking of bonds (xray damage) 30 10 16 far uv vacuum UV excitation of electrons 300 10 15 near uv UVVIS excitation of and nonbonding (n) electrons 400700 48 10 14 visible 3000 10 13 infrared IR vibrational excitations (IR) 30 31 5

10 Chemistry 1B, Fall 013 Lecture 190 Spectroscopy diatomic molecules (vibrating and rotating) vibrations new unit wave number 1 cm c cm 10 1 E hc c.9979 10 cm sec larger higher photon larger higher vibration 1 http://www.tau.ac.il/~phchlab/experiments_new/lif/theory.html 3 33 vibrational frequencies of homonuclear diatomic molecules and ions vibrational motion in molecules ( O) wave number larger higher photon vibrational frequency ( ) depends on mass of atoms (lighter ï higher ) strength of bond (tighter spring ï higher ) wave number 1 1 cm cm 1 E hc c.9979 10 cm sec Molecule Bond Order Vibrational frequency (cm 1 ) 1 4400 Li 1 351 C 1781 N 3 358 N.5 07 O 1580 O.5 1905 F 1 917 low mass vibrational frequency follows bond order greater b.o. î greater frequency ORIGINALLY FROM: http://www.gps.caltech.edu/~edwin/moleculetml/o_html/o_page.html b.o. 34 35 vibrational motions in molecules (benzene) IR spectrometer breathing (stretching) mode asymmetric stretching mode Chubby Checkers twisting mode American Bandstand http://chemistry.berkeley.edu/links/vibrations.html Movies provided courtesy: timro@hydrogen.cchem.berkeley.edu 36 37 6

Lecture 190 Spectroscopy infrared vibrational spectrocopy (fig. 14.60) photons at infrared wavelengths excite the vibrational motion of atoms in a molecule group frequencies different types of bonds require different photons for vibrational excitation a given bond type will have a similar absorption in various molecules Bond Characteristic Frequency (approximate) (nm) υ (cm 1 ) [E hcυ] ~ C C 10001400 100007140 C = C 1600 650 C C 100 4760 C O 1100 9090 C = O 1800 5880 C 800300 315 O 3600 770 38 note to excite bond vibration: E CC > E C=C > E CC 39 IR spectra spectroscopic excitations NO O (nm) (sec 1 ) radiation technique molecular excitation C ~300 cm 1.3 10 18 xrays ESCA breaking of bonds (xray damage) 30 10 16 far uv vacuum UV excitation of electrons NO C=O C=O ~1700 cm 1 300 10 15 near uv 400700 48 10 14 visible UVVIS excitation of and nonbonding (n) electrons 3000 10 13 infrared IR vibrational excitations (IR) O ~3600 cm 1 3 10 6 10 11 microwave microwave ESR rotations of molecules and flipping unpaired electron spins in external magnetic field 40 41 radiowave NMR (MRI) spectrometers (nm) (sec 1 ) radiation technique molecular excitation.3 10 18 xrays ESCA breaking of bonds (xray damage) 30 10 16 far uv vacuum UV excitation of electrons 300 10 15 near uv 400700 48 10 14 visible UVVIS excitation of and nonbonding (n) electrons 3000 10 13 infrared IR vibrational excitations (IR) 3 10 6 10 11 microwave microwave ESR rotations of molecules and flipping unpaired electron spins in external magnetic field 3 10 9 10 8 radiowave NMR (MRI) flipping of nuclear spins in an external magnetic field 4 43 7

Lecture 190 Spectroscopy NMR WY? protons (hydrogen nuclei), like electrons, behave as if they were tiny magnets identifying equivalent and nonequivalent protons to flip hydrogen atoms (nuclei) in different chemical environments requires slightly different energies (chemical shift) in an external magnetic field, spin up and spin down will have different energies (all equivalent, ClC 1 peak one chemical shift ) in NMR spectroscopy, photons in the radiowave region have the correct to cause a hydrogen nucleus to flip its spin (two environments, Cl C and C 3 peaks two chemical shifts ) 44 45 vocabulary: fluorescence not responsible for spinspin coupling (pp. 703704) will get plenty in ochem fluorescence emission of radiation (almost) directly from the excited state excited photon E in =h in ground ( out in ) ( out in ) photon Eout =h out 46 time ~ 10 1 to 10 9 sec (fluorescence stops soon after exciting light is turned off) 47 vocabulary: radiationless decay (nonradiative decay) phosphorescence radiationless decay transition from a higher to a lower state with a loss of in the form of heat rather than emission of a photon phosphorescence slow return to ground state by emission of photon from intermediate state excited photon excited radiationless decay photon E in =h in intermediate state photon E in =h in ground thermal ground ( out < in ) ( out > in ) E out =h out 48 time ~ 10 3 to 10 sec and longer (phosphorescence continues after exciting light is turned off) 49 8

Lecture 190 Spectroscopy chemiluminescence chemiluminescence: fireflies chemiluminescence light given off when chemical reaction leaves products in excited states and then the product fluoresces A B C* C light molecule C in excited state 50 51 chemiluminescence: fireflies chemiluminescence: light sticks http://www.sas.upenn.edu/~mtc/lightstick.html 5 53 bioluminescence Bioluminescence: Explanation for Glowing Seas Suggested END OF SPECTROSCOPY AND onto kinetics!!! According to the study, here is how the lightgenerating process in dinoflagellates may work: As dinoflagellates float, mechanical stimulation generated by the movement of surrounding water sends electrical impulses around an internal compartment within the organism, called a vacuolewhich holds an abundance of protons. These electrical impulses open socalled voltagesensitive proton channels that connect the vacuole to tiny pockets dotting the vacuole membrane, known as scintillons. Once opened, the voltagesensitive proton channels may funnel protons from the vacuole into the scintillons. Protons entering the scintillons then activate luciferase a protein, which produces flashes of light, that is stored in scintillons. Flashes of light produced by resulting luciferase activation would be most visible during blooms of dinoflagellates. http://www.sciencedaily.com/releases/011/10/11101919083.htm 55 54 9

Lecture 190 Spectroscopy colored transition metal complexes glazes end of lectures on spectroscopy Ni(N 3 ) 6 Br CoCl 6 O NiSO 4 6 O 56 http://woelen.scheikunde.net/science/chem/elem/metalsalts.jpg 57 dorbitals and ligand Interaction (octahedral field) absorption of visible light in octahedral transition metal complexes e g O Ni(N 3 ) 6 Cl [Ni(N 3 ) 6 ] (aq) Cl (aq) 3d Ni [Ar]3d 8 dorbitals pointing directly at axis are affected most by electrostatic interaction dorbitals not pointing directly at axis are least affected (stabilized) by electrostatic interaction 58 ibchem.com/ib/ibfiles/periodicity/per_ppt/crystal_field_theory.ppt [Ni(N 3 ) 6 ] 3d orbitals all have same in Ni (g) presence of 6N 3 cause splitting of the energies of the 3dorbitals into two levels in [Ni(N 3 ) 6 ] visible light causes electronic transitions between the two levels resulting in colored transition metal complexes t g 59 ß carotene; conjugated double bonds (figure 14.56, 14.57) rhodopsin (11cis retinal opsin) intradiscal (lumen) 11cis retinal opsin (protein) 60 interdiscal (cytoplasmic) 61 10

Lecture 190 Spectroscopy how do we see color??? AA! that s what its all about 6 63 signal amplification in visual excitation cascade cytoplasmic tail FROM: http://www.blackwellpublishing.com/matthews/rhodopsin.html Advanced (don t Fret) 64 65 1 photonî10 6 Na Visual transduction cascade, amplification 1 photon 1 Rh* ~00 T* 1 T* 1 PDE 1 PDET*GDP many cgmp many GMP closes 00 Na channels 10 6 Na ions 66 11