A quantum dimer model for the pseudogap metal

Similar documents
Emergent gauge fields and the high temperature superconductors

Emergent light and the high temperature superconductors

Perimeter Institute January 19, Subir Sachdev

From the pseudogap to the strange metal

The underdoped cuprates as fractionalized Fermi liquids (FL*)

Topological order in quantum matter

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals

Quantum disordering magnetic order in insulators, metals, and superconductors

Z 2 topological order near the Neel state on the square lattice

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds

Topological order in the pseudogap metal

Topological order in quantum matter

Topological order in insulators and metals

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal

Quantum criticality of Fermi surfaces

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Quantum phase transitions and Fermi surface reconstruction

Small and large Fermi surfaces in metals with local moments

Subir Sachdev Research Accomplishments

Quantum phase transitions in Mott insulators and d-wave superconductors

Metals without quasiparticles

arxiv: v1 [cond-mat.str-el] 18 Sep 2014

The Hubbard model in cold atoms and in the high-tc cuprates

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 )

Quantum Phase Transitions

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 )

Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Subir Sachdev. Talk online: sachdev.physics.harvard.edu

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions

Topology, quantum entanglement, and criticality in the high temperature superconductors

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates

Quantum phase transitions and the Luttinger theorem.

Electronic quasiparticles and competing orders in the cuprate superconductors

Theory of the Nernst effect near the superfluid-insulator transition

Which Spin Liquid Is It?

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions

A New look at the Pseudogap Phase in the Cuprates.

Emergent gauge fields and the high temperature superconductors

Let There Be Topological Superconductors

Quantum Melting of Stripes

Lecture 2: Deconfined quantum criticality

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Deconfined Quantum Critical Points

Dual vortex theory of doped antiferromagnets

General relativity and the cuprates

Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability

3. Quantum matter without quasiparticles

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

Saturday, April 3, 2010

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005.

Order and quantum phase transitions in the cuprate superconductors

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity

Tuning order in cuprate superconductors

Quantum spin liquids and the Mott transition. T. Senthil (MIT)

Quantum criticality and high temperature superconductivity

Quantum Choreography: Exotica inside Crystals

Vortices in the cuprate superconductors

Understanding correlated electron systems by a classification of Mott insulators

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

Origin and Implica.ons of Glassy Charge Order in Underdoped Cuprates

The phase diagrams of the high temperature superconductors

arxiv: v3 [cond-mat.str-el] 15 Nov 2010

Understanding correlated electron systems by a classification of Mott insulators

Phenomenology of High Tc Cuprates II. Pseudogap in Underdoped Cuprates

Mean field theories of quantum spin glasses

Quantum criticality of Fermi surfaces in two dimensions

Quantum theory of vortices and quasiparticles in d-wave superconductors

Polaronic Effects in the Lightly Doped Cuprates. Kyle M. Shen Stanford University

Quantum entanglement and the phases of matter

The quantum criticality of metals in two dimensions: antiferromagnetism, d-wave superconductivity and bond order

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

Spin liquids on the triangular lattice

Quantum transitions of d-wave superconductors in a magnetic field

2D Bose and Non-Fermi Liquid Metals

Quantum Criticality and Black Holes

SU(N) magnets: from a theoretical abstraction to reality

Ultra-quantum metals. Subir Sachdev February 5, 2018 Simons Foundation, New York HARVARD

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors

Quantum phase transitions in condensed matter physics, with connections to string theory

Quantum criticality in condensed matter

arxiv: v1 [cond-mat.str-el] 17 Feb 2012

Order and quantum phase transitions in the cuprate superconductors

Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr 2 CuO 3 Splitting the electron

Quantum entanglement and the phases of matter

Exotic phases of the Kondo lattice, and holography

Quantum criticality and the phase diagram of the cuprates

!"#$%& IIT Kanpur. !"#$%&. Kanpur, How spins become pairs: Composite and magnetic pairing in the 115 Heavy Fermion Superconductors

Tuning order in the cuprate superconductors

Quantum mechanics without particles

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

Entanglement, holography, and strange metals

Valence Bonds in Random Quantum Magnets

Condensed Matter Physics in the City London, June 20, 2012

Quantum oscillations in insulators with neutral Fermi surfaces

Transcription:

A quantum dimer model for the pseudogap metal College de France, Paris March 27, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD

Andrea Allais Matthias Punk Debanjan Chowdhury (Innsbruck) Alexandra Thomson

Antiferromagnet with p holes per square

Antiferromagnet with p holes per square But relative to the band insulator, there are 1+ p holes per square

Strange metal

M. Platé, J. D. F. Mottershead, I. S. Elfimov, D. C. Peets, Ruixing Liang, D. A. Bonn, W. N. Hardy, S. Chiuzbaian, M. Falub, M. Shi, L. Patthey, and A. Damascelli, Phys. Rev. Lett. 95, 077001 (2005) Strange metal Fermi liquid: Area enclosed by Fermi surface =1+p

Kyle M. Shen, F. Ronning, D. H. Lu, F. Baumberger, N. J. C. Ingle, W. S. Lee, W. Meevasana, Y. Kohsaka, M. Azuma, M. Takano, H. Takagi, Z.-X. Shen, Science 307, 901 (2005) Pseudogap Strange metal Fermi arcs at low p

Y. Kohsaka et al., Science 315, 1380 (2007) Strange metal

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075128(2010). K. Fujita, M. H Hamidian, S. D. Edkins, Chung Koo Kim, Y. Kohsaka, M. Azuma, M. Takano, H. Takagi, H. Eisaki, S. Uchida, A. Allais, M. J. Lawler, E.-A. Kim, S. Sachdev, and J. C. Davis, PNAS 111, E3026(2014) Strange metal Q =( /2, 0)

How do we understand the Strange metal Fermi arc spectrum, and what is its relationship to the density wave (DW) order at lower T?

Is the higher temperature pseudogap (with ``Fermi arc'' spectra) described by (A) Thermal fluctuations of the low temperature orders (superconductivity, density wave, antiferromagnetism ) OR (B) A new type of metal, which can be stable (in principle) as a quantum ground state

Is the higher temperature pseudogap (with ``Fermi arc'' spectra) described by (A) Thermal fluctuations of the low temperature orders (superconductivity, density wave, antiferromagnetism ) OR (B) A new type of metal, which can be stable (in principle) as a quantum ground state

Reasons for working with option (B) Pseudogap appears already at high temperatures where there are no observed density wave correlations, and no pairing fluctuations. Transport properties of metal in the pseudogap look like those of a Fermi liquid with fermionic carrier density p: this includes conductivity, Hall resistance, magnetoresistance, and optical conductivity. Ando PRL (2004); Chan PRL (2013); Mirzaei PNAS (2013) No room for antinodal Fermi surfaces in high field, low T specific heat. Suppressed paramagnetic susceptibility at high fields and low T

Reasons for working with option (B) Pseudogap appears already at high temperatures where there are no observed density wave correlations, and no pairing fluctuations. Transport properties of metal in the pseudogap look like those of a Fermi liquid with fermionic carrier density p: this includes conductivity, Hall resistance, magnetoresistance, and optical conductivity. Ando PRL (2004); Chan PRL (2013); Mirzaei PNAS (2013) No room for antinodal Fermi surfaces in high field, low T specific heat. Suppressed paramagnetic susceptibility at high fields and low T

Reasons for working with option (B) Pseudogap appears already at high temperatures where there are no observed density wave correlations, and no pairing fluctuations. Transport properties of metal in the pseudogap look like those of a Fermi liquid with fermionic carrier density p: this includes conductivity, Hall resistance, magnetoresistance, and optical conductivity. Ando PRL (2004); Chan PRL (2013); Mirzaei PNAS (2013) No room for antinodal Fermi surfaces in high field, low T specific heat. Suppressed paramagnetic susceptibility at high fields and low T

Reasons for working with option (B) Pseudogap appears already at high temperatures where there are no observed density wave correlations, and no pairing fluctuations. Transport properties of metal in the pseudogap look like those of a Fermi liquid with fermionic carrier density p: this includes conductivity, Hall resistance, magnetoresistance, and optical conductivity. Ando PRL (2004); Chan PRL (2013); Mirzaei PNAS (2013) No room for antinodal Fermi surfaces in high field, low T specific heat. Suppressed paramagnetic susceptibility at high fields and low T

Can we have a metal with no broken translational symmetry, and with long-lived electron-like quasiparticles on a Fermi surface of size p? The Luttinger theorem for a Fermi liquid requires a Fermi surface of size 1+p.

Can we have a metal with no broken translational symmetry, and with long-lived electron-like quasiparticles on a Fermi surface of size p? The Luttinger theorem for a Fermi liquid requires a Fermi surface of size 1+p. Answer: Yes. There can be a Fermi surface of size p, but it must be accompanied by topological order. At T=0, such a metal must be separated from a Fermi liquid (with a Fermi surface of size 1+p) by a quantum phase transition

Topological argument Put metal on a torus, adiabatically insert flux = h/e through hole, and measure change in momentum. In a FL, we can assume the only low energy excitations are quasiparticles near the Fermi surface, and this leads to a non-perturbative proof of the Luttinger relation on the area enclosed by the Fermi surface. M. Oshikawa, Phys. Rev. Lett. 84, 3370 (2000)

Topological argument Violations of the Luttinger relation are possible in a fractionalized Fermi liquid (FL*) because there are topological low energy excitations associated with a flux of the emergent gauge field in the hole of the torus. T. Senthil, M. Vojta, and S. Sachdev, Phys. Rev. B 69, 035111 (2004)

Antiferromagnet with p holes per square Note: relative to the fully-filled band insulator, there are 1+p holes per square

Spin liquid with emergent gauge field and p holons" (gauge-charged, spinless, charge +e quasiparticles) per square = Baskaran, Zou, Anderson, Fradkin, Kivelson

Spin liquid with emergent gauge field and p holons" (gauge-charged, spinless, charge +e quasiparticles) per square = Baskaran, Zou, Anderson, Fradkin, Kivelson

Spin liquid with emergent gauge field and p holons" (gauge-charged, spinless, charge +e quasiparticles) per square = Baskaran, Zou, Anderson, Fradkin, Kivelson

Spin liquid with emergent gauge field and p holons" (gauge-charged, spinless, charge +e quasiparticles) per square = Baskaran, Zou, Anderson, Fradkin, Kivelson

Spin liquid with emergent gauge field and p holons" (gauge-charged, spinless, charge +e quasiparticles) per square = Baskaran, Zou, Anderson, Fradkin, Kivelson

Spin liquid with emergent gauge field and p holons" (gauge-charged, spinless, charge +e quasiparticles) per square = Baskaran, Zou, Anderson, Fradkin, Kivelson

Spin liquid with emergent gauge field and p holons" (gauge-charged, spinless, charge +e quasiparticles) per square = Baskaran, Zou, Anderson, Fradkin, Kivelson

Spin liquid with emergent gauge field and p holons" (gauge-charged, spinless, charge +e quasiparticles) per square = Baskaran, Zou, Anderson, Fradkin, Kivelson

Spin liquid. Place on a torus;

Spin liquid. Place on a torus; to obtain topological states nearly degenerate with the ground state: change sign of every singlet bond across red line

Spin liquid. Place on a torus; -1-1 -1-1 = to obtain topological states nearly degenerate with the ground state: change sign of every singlet bond across red line

Spin liquid. These topological states are needed to allow for Fermi surfaces of total size p (and not 1+p)

Spin liquid with emergent gauge field and p holons" (gauge-charged, spinless, charge +e quasiparticles) per square = Baskaran, Zou, Anderson, Fradkin, Kivelson

Gauge-charged, spin S=1/2, neutral spinon excitations Spin liquid with emergent gauge field and p holons" (gauge-charged, spinless, charge +e quasiparticles) per square = Baskaran, Zou, Anderson, Fradkin, Kivelson

Gauge-charged, spin S=1/2, neutral spinon excitations Spin liquid with emergent gauge field and p holons" (gauge-charged, spinless, charge +e quasiparticles) per square = Baskaran, Zou, Anderson, Fradkin, Kivelson

Gauge-charged, spin S=1/2, neutral spinon excitations Spin liquid with emergent gauge field and p holons" (gauge-charged, spinless, charge +e quasiparticles) per square = Baskaran, Zou, Anderson, Fradkin, Kivelson

Gauge-charged, spin S=1/2, neutral spinon excitations Spin liquid with emergent gauge field and p holons" (gauge-charged, spinless, charge +e quasiparticles) per square = Baskaran, Zou, Anderson, Fradkin, Kivelson

Nearest-neighbor hopping leads to attraction between holon and spinon, which can pay for the energy needed to create the spinon Spin liquid with emergent gauge field and p holons" (gauge-charged, spinless, charge +e quasiparticles) per square = R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Phys. Rev. B 75, 235122 (2007)

Nearest-neighbor hopping leads to attraction between holon and spinon, which can pay for the energy needed to create the spinon Spin liquid with emergent gauge field and p holons" (gauge-charged, spinless, charge +e quasiparticles) per square = R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Phys. Rev. B 75, 235122 (2007)

Spinon-holon bound state resides on a bonding orbital between two sites Spin liquid with emergent gauge field and p holons" (gauge-charged, spinless, charge +e quasiparticles) per square = R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Phys. Rev. B 75, 235122 (2007)

T. Senthil, S. S., M. Vojta Phys. Rev. Lett. 90, 216403 (2003) R. K. Kaul, A. Kolezhuk, M. Levin, S. S., and T. Senthil, Phys. Rev. B 75, 235122 (2007) E. G. Moon and S. S. Phys. Rev. B 83, 224508 (2011); M. Punk, A. Allais, and S. S., arxiv:1501.00978. Fractionalized Fermi liquid (FL*) = Emergent gauge field and gauge-neutral, spin S=1/2, charge +e fermions of density p

T. Senthil, S. S., M. Vojta Phys. Rev. Lett. 90, 216403 (2003) R. K. Kaul, A. Kolezhuk, M. Levin, S. S., and T. Senthil, Phys. Rev. B 75, 235122 (2007) E. G. Moon and S. S. Phys. Rev. B 83, 224508 (2011); M. Punk, A. Allais, and S. S., arxiv:1501.00978. Fractionalized Fermi liquid (FL*) = Emergent gauge field and gauge-neutral, spin S=1/2, charge +e fermions of density p

T. Senthil, S. S., M. Vojta Phys. Rev. Lett. 90, 216403 (2003) R. K. Kaul, A. Kolezhuk, M. Levin, S. S., and T. Senthil, Phys. Rev. B 75, 235122 (2007) E. G. Moon and S. S. Phys. Rev. B 83, 224508 (2011); M. Punk, A. Allais, and S. S., arxiv:1501.00978. Fractionalized Fermi liquid (FL*) = Emergent gauge field and gauge-neutral, spin S=1/2, charge +e fermions of density p

T. Senthil, S. S., M. Vojta Phys. Rev. Lett. 90, 216403 (2003) R. K. Kaul, A. Kolezhuk, M. Levin, S. S., and T. Senthil, Phys. Rev. B 75, 235122 (2007) E. G. Moon and S. S. Phys. Rev. B 83, 224508 (2011); M. Punk, A. Allais, and S. S., arxiv:1501.00978. Fractionalized Fermi liquid (FL*) = Emergent gauge field and gauge-neutral, spin S=1/2, charge +e fermions of density p

T. Senthil, S. S., M. Vojta Phys. Rev. Lett. 90, 216403 (2003) R. K. Kaul, A. Kolezhuk, M. Levin, S. S., and T. Senthil, Phys. Rev. B 75, 235122 (2007) E. G. Moon and S. S. Phys. Rev. B 83, 224508 (2011); M. Punk, A. Allais, and S. S., arxiv:1501.00978. Fractionalized Fermi liquid (FL*) = Emergent gauge field and gauge-neutral, spin S=1/2, charge +e fermions of density p

T. Senthil, S. S., M. Vojta Phys. Rev. Lett. 90, 216403 (2003) R. K. Kaul, A. Kolezhuk, M. Levin, S. S., and T. Senthil, Phys. Rev. B 75, 235122 (2007) E. G. Moon and S. S. Phys. Rev. B 83, 224508 (2011); M. Punk, A. Allais, and S. S., arxiv:1501.00978. Fractionalized Fermi liquid (FL*) = Emergent gauge field and gauge-neutral, spin S=1/2, charge +e fermions of density p

T. Senthil, S. S., M. Vojta Phys. Rev. Lett. 90, 216403 (2003) R. K. Kaul, A. Kolezhuk, M. Levin, S. S., and T. Senthil, Phys. Rev. B 75, 235122 (2007) E. G. Moon and S. S. Phys. Rev. B 83, 224508 (2011); M. Punk, A. Allais, and S. S., arxiv:1501.00978. Fractionalized Fermi liquid (FL*) = Emergent gauge field and gauge-neutral, spin S=1/2, charge +e fermions of density p

T. Senthil, S. S., M. Vojta Phys. Rev. Lett. 90, 216403 (2003) R. K. Kaul, A. Kolezhuk, M. Levin, S. S., and T. Senthil, Phys. Rev. B 75, 235122 (2007) E. G. Moon and S. S. Phys. Rev. B 83, 224508 (2011); M. Punk, A. Allais, and S. S., arxiv:1501.00978. Fractionalized Fermi liquid (FL*) = Emergent gauge field and gauge-neutral, spin S=1/2, charge +e fermions of density p

T. Senthil, S. S., M. Vojta Phys. Rev. Lett. 90, 216403 (2003) R. K. Kaul, A. Kolezhuk, M. Levin, S. S., and T. Senthil, Phys. Rev. B 75, 235122 (2007) E. G. Moon and S. S. Phys. Rev. B 83, 224508 (2011); M. Punk, A. Allais, and S. S., arxiv:1501.00978. Fractionalized Fermi liquid (FL*) = Note: electron-like quasiparticle can only be a dimer because of spin-liquid background; it is not possible to have it on a single site

T. Senthil, S. S., M. Vojta Phys. Rev. Lett. 90, 216403 (2003) R. K. Kaul, A. Kolezhuk, M. Levin, S. S., and T. Senthil, Phys. Rev. B 75, 235122 (2007) E. G. Moon and S. S. Phys. Rev. B 83, 224508 (2011); M. Punk, A. Allais, and S. S., arxiv:1501.00978. Fractionalized Fermi liquid (FL*) = Realizes a metal with a Fermi surface of area p and topological order

The high T pseudogap: A quantum dimer model for a metal with topological order

Quantum dimer model with bosonic and fermionic dimers M. Punk, A. Allais, and S. Sachdev, arxiv:1501.00978

Early discussion of a fermionic hole on a dimer PHYSICAL REVIEW B VOLUME 38, NUMBER 16 1 DECEMBER 1988 Quasiparticles in the copper-oxygen planes of high-t, superconductors: An exact solution for a ferromagnetic background V. J. Emery Brookhaven National Laboratory, Upton, New York 11973 G. Reiter Physics Department, University of Houston, Houston, Texas 77204 5504- (Received 22 July 1988) A model for a mobile hole in the copper oxide planes of high-temperature superconductors is solved exactly. The hole moves on the oxygen atoms through a lattice of spins localized on the copper atoms. In order to obtain a solvable problem, it is assumed that the copper atoms provide a ferromagnetic background. The resulting quasiparticles have both charge and spin in contrast to the Cu-0 singlets occurring in proposed effective single-band Hubbard models derived from the Cu-0 network. Thus these two models of high-temperature superconductors may have different low-energy physics. ZRC states "(ER) propose that the correct basis to describe the result is composed of a hole on a single 0 atom coupled to its two neighboring Cu atoms, i.e., basis states of the form 6 'i [2) f t J) ) 1 J f& ) J J t&]. " This is incorrect ZRC that a

Quantum dimer model with bosonic and fermionic dimers, J V ), t 1 t 2, Connection to the t-t 0 -t 00 -J model: t 1 = (t + t 0 )/2 t 2 =(t t 0 )/2 t 3 = (t + t 0 + t 00 )/4 t 3, M. Punk, A. Allais, and S. Sachdev, arxiv:1501.00978

Quantum dimer model with bosonic and fermionic dimers Dispersion and quasiparticle residue of a single fermionic dimer for J = V = 1, and hopping parameters obtained from the t-j model for the cuprates, t 1 = 1.05, t 2 =1.95 and t 3 = 0.6, on a 8 8 lattice. M. Punk, A. Allais, and S. Sachdev, arxiv:1501.00978

Quantum dimer model with bosonic and fermionic dimers "(k) Z(k) k y k y k x k x Dispersion and quasiparticle residue for J = V = 1, and hopping parameters t 1 = 1, t 2 = 1 and t 3 = 1, on a 8 8 lattice. M. Punk, A. Allais, and S. Sachdev, arxiv:1501.00978

Quantum dimer model with bosonic and fermionic dimers Dimer nature of charge carriers makes them nematogens : the metallic state is likely to have nematic order/ correlations M. Punk, A. Allais, and S. Sachdev, arxiv:1501.00978

The high T pseudogap: Doping deconfined quantum critical points in frustrated antiferromagnets

Deconfined criticality g U(1) FL* d-bdw confinement + U(1) SL VBS + confinement hni =0 Holon metal g c hni =0 AFM-Metal with hole pockets Néel 0 hni 6=0 x

Deconfined criticality g U(1) FL* d-bdw confinement + U(1) SL VBS + confinement hni =0 Holon metal g c hni =0 AFM-Metal with hole pockets Néel 0 hni 6=0 p x

Deconfined criticality g U(1) FL* d-bdw confinement + U(1) SL VBS + confinement hni =0 Holon metal g c hni =0 AFM-Metal with hole pockets Néel 0 hni 6=0 p x R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Phys. Rev. B 75, 235122 (2007)

Deconfined criticality g U(1) FL* d-bdw confinement Holons and spinons bind to form electronlike quasiparticles of density p + U(1) SL VBS + confinement hni =0 Holon metal g c hni =0 AFM-Metal with hole pockets Néel 0 hni 6=0 R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Phys. Rev. B 75, 235122 (2007) Y. Qi and S. Sachdev, Phys. Rev. B 81, 115129 (2010) D. Chowdhury and S. Sachdev, Phys. Rev. B 90, 245136 (2014). p x

Deconfined criticality g U(1) FL* d-bdw confinement Holons and spinons bind to form electronlike quasiparticles of density p + U(1) SL VBS + confinement hni =0 Holon metal g c hni =0 AFM-Metal with hole pockets Stripe physics of La materials Néel 0 hni 6=0 p x D. Chowdhury and S. Sachdev, Phys. Rev. B 90, 245136 (2014) A. Thomson and S. Sachdev, arxiv:1410.3483

D. Chowdhury and S. Sachdev, Phys. Rev. B 90, 245136 (2014) Deconfined criticality g U(1) FL* d-bdw confinement Holons and spinons bind to form electronlike quasiparticles of density p + Pseudogap of non-la materials U(1) SL VBS + confinement hni =0 Holon metal g c hni =0 AFM-Metal with hole pockets Néel 0 hni 6=0 p x

2 Electron spectral function of FL* 0 0 2 Semi-phenomenological theory of a FL* state with hole pockets of volume p, along with a background spin liquid with an emergent U(1) gauge field. Note that the quasiparticle excitations around the Fermi surface do not carry U(1) gauge charges. Y. Qi and S. Sachdev, Phys. Rev. B 81, 115129 (2010) M. Punk, A. Allais, and S. Sachdev, arxiv:1501.00978

Kyle M. Shen, F. Ronning, D. H. Lu, F. Baumberger, N. J. C. Ingle, W. S. Lee, W. Meevasana, Y. Kohsaka, M. Azuma, M. Takano, H. Takagi, Z.-X. Shen, Science 307, 901 (2005) Strange metal Fermi arcs at low p

Y. Qi and S. Sachdev, Phys. Rev. B 81, 115129 (2010) M. Punk, A. Allais, and S. Sachdev, arxiv:1501.00978 Strange metal FL*.

Y. Qi and S. Sachdev, Phys. Rev. B 81, 115129 (2010) M. Punk, A. Allais, and S. Sachdev, arxiv:1501.00978 Strange metal FL*. Expts to detect hole pockets?

Strange metal Q =( /2, 0)

Connecting high and low T Density wave instabilities

Pairing glue for d-wave superconductivity from antiferromagnetic fluctuations ~' Antiferromagnetic paramagnon Leads to D c k c k E = " (cos k x cos k y ) V. J. Emery, J. Phys. (Paris) Colloq. 44, C3-977 (1983) D.J. Scalapino, E. Loh, and J.E. Hirsch, Phys. Rev. B 34, 8190 (1986) K. Miyake, S. Schmitt-Rink, and C. M. Varma, Phys. Rev. B 34, 6554 (1986) P. Monthoux, A.V. Balatsky, and D. Pines, Phys. Rev. Lett. 67, 3448 (1991)

Same glue can lead to d-wave particle-hole pairing ~' Antiferromagnetic paramagnon M. A. Metlitski and S. Sachdev, Phys. Rev. B 85, 075127 (2010) T. Holder and W. Metzner, Phys. Rev. B 85, 165130 (2012) M. Bejas, A. Greco, and H. Yamase, Phys. Rev. B 86, 224509 (2012) S. Sachdev and R. La Placa, Phys. Rev. Lett. 111, 027202 (2013) K. B. Efetov, H. Meier, and C. Pépin, Nat. Phys. 9, 442 (2013) J. D. Sau and S. Sachdev, Phys. Rev. B 89, 075129 (2014) Y. Wang and A. V. Chubukov, Phys. Rev. B 90, 035149 (2014)

Same glue can lead to d-wave particle-hole pairing ~' Antiferromagnetic paramagnon Leads to D c k+q/2, c k Q/2, P s +P s 0(cos k x +cos k y )+P d (cos k x cos k y ) with P d dominant. E = S. Sachdev and R. La Placa, Phys. Rev. Lett. 111, 027202 (2013)

Density wave Q instability of large Fermi surface leads to an incorrect Q diagonal wavevector D c k Q/2, c k+q/2, E = P d (cos k x cos k y ) M. A. Metlitski and S. Sachdev, Phys. Rev. B 85, 075127 (2010)

Fermi surface of FL* Y. Qi and S. Sachdev, Phys. Rev. B 81, 115129 (2010)

Density wave instability of FL* leads to the observed wavevector and form-factor D. Chowdhury and S. Sachdev, Physical Review B 90, 245136 (2014).

Strange metal Q =( /2, 0)

Strange metal Q =( /2, 0)

Quantum critical point near optimal p Higgs transition in a metal, not directly involving any broken symmetry

Hertz-Millis criticality of AFM order (A) AFM order with small ncreasing Fermi pockets SDW Conventional Fermi liquids 1/g (B) Fermi liquid with large Fermi surface s

Hertz-Millis criticality of AFM order (A) AFM order with small ncreasing Fermi pockets SDW Conventional Fermi liquids 1/g (B) Fermi liquid with large Fermi surface M s (C) U(1) ACL with small holon pockets (D) SU(2) ACL with large Fermi surface Non-Fermi liquids S. Sachdev, M. A. Metlitski, Y. Qi, and C. Xu, Phys. Rev. B 80, 155129 (2009) D. Chowdhury and S. Sachdev, Phys. Rev. B 91, 115123 (2015).

Hertz-Millis criticality of AFM order (A) AFM order with small ncreasing Fermi pockets SDW Conventional Fermi liquids 1/g (B) Fermi liquid with large Fermi surface M s (C) U(1) ACL with small holon pockets Higgs criticality with no order parameter Non-Fermi liquids (D) SU(2) ACL with large Fermi surface S. Sachdev, M. A. Metlitski, Y. Qi, and C. Xu, Phys. Rev. B 80, 155129 (2009) D. Chowdhury and S. Sachdev, Phys. Rev. B 91, 115123 (2015).

SU(2) gauge theory for underlying quantum critical point T T * U(1) ACL T ** U(1) FL* SU(2) ACL FL AF d-bdw SC x Higgs QCP D. Chowdhury and S. Sachdev, Phys. Rev. B 91, 115123 (2015).

Conclusions 1. Predicted d-form factor density wave order observed in the non-la hole-doped cuprate superconductors. 2. The electron becomes a dimer in the pseudogap metal: proposed a quantum dimer model. 3. Can we experimentally detect possible topological order in the pseudogap metal? (topological order is directly linked to Fermi surface size)

Strange metal Q =( /2, 0)