Part II => PROTEINS and ENZYMES. 2.5 Enzyme Properties 2.5a Enzyme Nomenclature 2.5b Transition State Theory

Similar documents
What is an enzyme? Lecture 12: Enzymes & Kinetics I Introduction to Enzymes and Kinetics. Margaret A. Daugherty Fall 2004 KEY FEATURES OF ENZYMES

What is an enzyme? Lecture 12: Enzymes & Kinetics I Introduction to Enzymes and Kinetics. Margaret A. Daugherty Fall General Properties

Basic Concepts of Enzyme Action. Enzymes. Rate Enhancement 9/17/2015. Stryer Short Course Chapter 6

Enzymes and kinetics. Eva Samcová and Petr Tůma

Chapter 8 Metabolism: Energy, Enzymes, and Regulation

Enzymes I. Dr. Mamoun Ahram Summer semester,

Catalysis. Instructor: Dr. Tsung-Lin Li Genomics Research Center Academia Sinica

Lecture 7: Enzymes and Energetics

Biologic catalysts 1. Shared properties with chemical catalysts a. Enzymes are neither consumed nor produced during the course of a reaction. b.

C. Incorrect! Catalysts themselves are not altered or consumed during the reaction.

BIOCHEMISTRY. František Vácha. JKU, Linz.

Enzymes. Dr.Anupam Porwal Assistant Professor Dept. Of Biotechnology

Chapter 8: Energy and Metabolism

PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER

Enzymes and Protein Structure

Biological Chemistry and Metabolic Pathways

Chapter 6: Outline-2. Chapter 6: Outline Properties of Enzymes. Introduction. Activation Energy, E act. Activation Energy-2

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison

CHAPTER 15 Metabolism: Basic Concepts and Design

I. Flow of Energy in Living Things II. Laws of Thermodynamics & Free Energy III. Activation Energy IV. Enzymes V. Reaction Coupling VI.

Biochemistry 3300 Problems (and Solutions) Metabolism I

Department of Chemistry and Biochemistry University of Lethbridge. Biochemistry II. Bioenergetics

Pyruvate is reduced to lactate in anaerobic metabolism in muscle cells

Unit 3. Enzymes. Catalysis and enzyme kinetics.

ENZYMES 1: OVERVIEW AND MECHANISM OF ACTION

Principles of Bioenergetics. Lehninger 3 rd ed. Chapter 14

Exam 4 April 15, 2005 CHEM 3511 Print Name: KEY Signature

ENZYMES. by: Dr. Hadi Mozafari

Chapters 5-6 Enzymes. Catalyst: A substance that speeds up the rate of a chemical reaction but is not itself consumed.

(kilo ) or heat energy (kilo ) C. Organisms carry out conversions between potential energy and kinetic energy 1. Potential energy is energy;

Chapter 6- An Introduction to Metabolism*

Chemistry 1506: Allied Health Chemistry 2. Section 10: Enzymes. Biochemical Catalysts. Outline

C a h p a t p e t r e r 6 E z n y z m y e m s

Objectives INTRODUCTION TO METABOLISM. Metabolism. Catabolic Pathways. Anabolic Pathways 3/6/2011. How to Read a Chemical Equation

2054, Chap. 8, page 1

An Introduction to Metabolism

Chapter 15: Enyzmatic Catalysis

Biochemistry 462a - Enzyme Kinetics Reading - Chapter 8 Practice problems - Chapter 8: (not yet assigned); Enzymes extra problems

Chapter 5. Energy Flow in the Life of a Cell

Advanced Cell Biology. Lecture 7

Chapter 8 Notes. An Introduction to Metabolism

I. Enzymes as Catalysts Chapter 4

Photosynthetic autotrophs use the energy of sunlight to convert low-g CO 2 and H 2 O into energy-rich complex sugar molecules.

Introduction and. Properties of Enzymes

Outline. Metabolism: Energy and Enzymes. Forms of Energy. Chapter 6

Flow of Energy. Flow of Energy. Energy and Metabolism. Chapter 6

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 3

Chapter 13 Principles of Bioenergetics

Chemistry 5.07SC Biological Chemistry I Fall Semester, 2013

Chapter 6: Energy and Metabolism

General Biology. The Energy of Life The living cell is a miniature factory where thousands of reactions occur; it converts energy in many ways

Metabolism and enzymes

Metabolism and Enzymes

Enzyme Enzymes are proteins that act as biological catalysts. Enzymes accelerate, or catalyze, chemical reactions. The molecules at the beginning of

C a h p a t p e t r e r 6 E z n y z m y e m s

A. Reaction Mechanisms and Catalysis (1) proximity effect (2) acid-base catalysts (3) electrostatic (4) functional groups (5) structural flexibility

An Introduction to Metabolism

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

2013 W. H. Freeman and Company. 6 Enzymes

An Introduction to Metabolism. Chapter 8

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

Chapter 8: An Introduction to Metabolism

Welcome to Class 8! Introductory Biochemistry! Announcements / Reminders! Midterm TA led Review Sessions!

METABOLISM CHAPTER 04 BIO 211: ANATOMY & PHYSIOLOGY I. Dr. Lawrence G. Altman Some illustrations are courtesy of McGraw-Hill.

CELL METABOLISM OVERVIEW Keep the big picture in mind as we discuss the particulars!

f) Adding an enzyme does not change the Gibbs free energy. It only increases the rate of the reaction by lowering the activation energy.

2. The study of is the study of behavior (capture, storage, usage) of energy in living systems.

An Introduction to Metabolism

Energy and Cellular Metabolism

CHAPTER 8. An Introduction to Metabolism

Lecture Series 9 Cellular Pathways That Harvest Chemical Energy

Basic Concepts of Metabolism. Stages of Catabolism. Key intermediates 10/12/2015. Chapter 15, Stryer Short Course

The products have more enthalpy and are more ordered than the reactants.

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October

Cellular Respiration: Harvesting Chemical Energy

Introduction to Enzymes

ATP ATP. The energy needs of life. Living economy. Where do we get the energy from? 9/11/2015. Making energy! Organisms are endergonic systems

Cellular Respiration: Harvesting Chemical Energy. 9.1 Catabolic pathways yield energy by oxidizing organic fuels

Chapter 8: An Introduction to Metabolism

An Introduction to Metabolism

number Done by Corrected by Doctor Nafeth Abu Tarboush

Lectures by Kathleen Fitzpatrick

4 Examples of enzymes

Overview of Kinetics

2. In regards to the fluid mosaic model, which of the following is TRUE?

Chapter 6. Ground Rules Of Metabolism

Energy Transformation, Cellular Energy & Enzymes (Outline)

An Introduction to Metabolism

An Introduction to Metabolism

All organisms require a constant expenditure of energy to maintain the living state - "LIFE".

Ch 4: Cellular Metabolism, Part 1

Enzymes and Enzyme Kinetics I. Dr.Nabil Bashir

Lecture 15: Enzymes & Kinetics. Mechanisms ROLE OF THE TRANSITION STATE. H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl. Margaret A. Daugherty.

Chapter 8: An Introduction to Metabolism

An Introduction to Metabolism

An Introduction to Metabolism

Energy, Enzymes, and Metabolism. Energy, Enzymes, and Metabolism. A. Energy and Energy Conversions. A. Energy and Energy Conversions

Enzymes Enzyme Mechanism

Biochemistry Enzyme kinetics

Transcription:

Part II => PROTEINS and ENZYMES 2.5 Enzyme Properties 2.5a Enzyme Nomenclature 2.5b Transition State Theory

Section 2.5a: Enzyme Nomenclature

Synopsis 2.5a - Enzymes are biological catalysts they are almost exclusively proteins though some RNAs (ribozymes) also serve as biological catalysts (eg mrna translation) - Enzymes differ from chemical catalysts in reaction rate, reaction conditions, reaction specificity, and regulatory control - The unique physical and chemical properties of the active site limit an enzyme s activity to specific substrates and reactions - Enzymes may also require cofactors for their catalytic activity

Differences Between Enzymes and Catalysts Enzymes differ from ordinary chemical catalysts in the following ways: (1) Higher Reaction Rates: Enzymes catalyze biological reactions at rates that are typically several orders of magnitude greater than their chemical counterparts (2) Milder Reaction Conditions: Enzymatically-catalyzed reactions occur under relatively mild temperatures (typically between 0-50 C), close to neutral ph (typically between 6-8), and around atmospheric pressure (~1 atm) in contrast, chemical catalysts require elevated temperatures and pressures and extremes of ph (3) Greater Reaction Specificity: Enzymes display a remarkable degree of substrate specificity compared to their chemical counterparts (4) Greater Regulatory Control: Catalytic activities of many enzymes are tightly regulated by allosteric modulators, covalent modifications and feedback loops

Enzyme Classification: Six Major Classes Class Catalysis Example Oxidoreductase Reduction-oxidation (redox) reactions Alcohol dehydrogenase reduction of acetaldehyde to ethanol (fermentation) Transferase Intermolecular transfer of functional groups Hexokinase phosphorylation of glucose to glucose-6-phosphate (glycolysis) Isomerase Intramolecular group rearrangement Phosphoglucose isomerase isomerization of glucose-6-phosphate to fructose-6-phosphate (glycolysis) Hydrolase Bond cleavage with H 2 O VHR phosphatase dephosphorylation of ERK kinases (cellular signaling) Lyase Group elimination to generate double bonds Enolase dehydration of phosphoglycerate to phosphoenol pyruvate (glycolysis) Ligase Bond formation to generate larger molecules DNA ligase joining together of singlestranded DNA strands (DNA replication/repair)

Catalytic Power of Enzymes - Enzymatically-catalyzed reactions are typically 10 6 to 10 12 times faster than their uncatalyzed counterparts due to their high specificity - Enzyme specificity is largely defined by the shape/chemistry (geometric specificity) and chirality/asymmetry (stereospecificity) of interacting surfaces of both the enzyme and substrate

Enzyme Specificity: Geometric Specificity Geometric specificity is concerned with the shape and the amino acid functional groups lining the interacting surfaces of both the enzyme and substrate: - Substrate binding cleft within the enzyme active site is geometrically complementary to the shape of the substrate - Functional groups lining the active site or substrate binding pocket within the enzyme are electronically complementary to those on the surface of the substrate - Such complementation of shape and functional groups results in the optimization of intermolecular forces such as van der Waals and ionic interactions between the enzyme and the substrate h hydrophobic sidechain -/+ acidic/basic sidechain ---- hydrogen bonding between + and - polarized pairs

Enzyme Specificity: Stereospecificity Stereospecificity is concerned with chirality or asymmetry (eg spatial orientation) of substrates due to the fact that enzymes (composed of L- amino acids) themselves are chiral or harbor asymmetric active sites: - Enzymes can only accommodate the substrate in an asymmetric manner - Thus, enzymes catalyze not only chiral but also prochiral (can become chiral in a single step!) substrates in a highly stereospecific manner eg citrate binds to the enzyme active site asymmetrically via three-point attachment - This is due to the fact that while the two CH 2 COO - groups on citrate are chemicallyequivalent, they occupy two distinct spatial positions relative to OH and COO - groups only one of these two CH 2 COO - groups can therefore undergo catalysis! Citrate (prochiral)

Enzyme Promiscuity - While enzyme stereospecificity is difficult to compromise, many enzymes are highly promiscuous with respect to the geometric requirements eg chymotrypsin - Chymotrypsin can catalyze hydrolysis of both the peptide/amide bond and the chemically-related ester bond

Enzyme Cofactors: Classification - Many enzymes require small non-protein helper molecules called cofactors - Such cofactors can be divided into TWO major categories: (1) Metal ions (2) Coenzymes - Proteins/enzymes that require cofactors for their action can also be classified according to whether they lack (apoprotein/apoenzyme) or harbor (holoprotein/holoenzyme) their cognate cofactor(s)

Enzyme Cofactors: Metal Ions OH OPO 3 2- OH Hexokinase Mg 2+ ATP ADP OH Glucose Glucose-6-phosphate Phosphorylation of glucose to glucose-6-phosphate by hexokinase using Mg 2+ as a metal-ion-cofactor - Metals ions such as Cu 2+, Fe 2+, Fe 3+, Mg 2+, Mn 2+, Mo 2+, Ni 2+ and Zn 2+ are commonly employed as cofactors in biology - With rare exceptions, all protein kinases require a divalent metal ion as a cofactor with Mg 2+ being the most common! - Metal ions are usually tightly and permanently bound to enzymes via the coordinate covalent bonding and are only released upon their denaturation - Such metal ions are also referred to as trace elements an essential component of dietary intake

Enzyme Cofactors: Coenzymes Coenzymes are usually organic or organonometallic compounds that are further subdivided into two categories: (1) Cosubstrates they bind to enzymes only TRANSIENTLY they step on and off, or dissociate and re-associate, during each catalytic cycle (2) Prosthetic groups they are PERMANENTLY attached (non-covalently or covalently) to enzymes so as to constitute an integral component of the host protein they never dissociate off the enzyme and only do so under harsh treatments such as protein denaturation But, be aware that: (a) Designations such as cofactors, coenzymes and prosthetic groups are loosely applied in the literature rigid boundaries mentioned above are rarely exercised (b) Many coenzymes can serve as a cosubstrate in one enzyme but as a prosthetic group in another!

Enzyme Cofactors: Cosubstrates NAD/NADP Oxidation of ethanol to acetaldehyde by alcohol dehydrogenase (ADH) using NAD as a cosubstarte NADH dissociates from the enzyme for regeneration in an independent reaction! Cosubstrates include organic and organometallic compounds such as: NAD Nicotinamide adenine dinucleotide NADP Nicotinamide adenine dinucleotide phosphate CoA Coenzyme A

Succinate Enzyme Cofactors: Prosthetic Groups Fumarate Succinate dehydrogenase (SDH) SDH-FAD SDH-FADH 2 Coenzyme Q (QH2) Coenzyme Q (Q) Dehydrogenation of succinate to fumarate by SDH FAD is covalently attached to SDH and does not dissociate off during the catalytic cycle but rather it is regenerated in situ via the action of a bulk pool of coenzyme Q AMP Prosthetic groups include organic and organometallic compounds such as: FAD Flavin adenine dinucleotide FMN Flavin mononucleotide LPA Lipoic acid (Lipoamide) TPP Thiamine pyrophosphate

Exercise 2.5a - What properties distinguish enzymes from other catalysts? - Describe how different enzymes are classified and named. - What factors influence an enzyme s substrate specificity? - Why are cofactors required for some enzymatic reactions? - What is the relationship between cofactors, coenzymes, cosubstrates, and prosthetic groups?

Section 2.5b: Transition State Theory

Synopsis 2.5b - A chemical reaction proceeds through a maximum potential energy barrier along the reaction coordinate ie it requires activation energy or the free energy of activation ( G ǂ ) - The molecular structure corresponding to this maximum potential energy point is referred to as the transition state in the physical sense, the transition state can be envisioned as a transient pseudointermediate in the reaction with the maximum potential energy - Transition state (TS) theory postulates that enzymes catalyze biological reactions by virtue of their ability to lower G ǂ of the transition state but without affecting the overall free energy change ( G) associated with a reaction - In particular, the TS theory is concerned with the overall reaction rates (kinetics) and energies (thermodynamics) associated with the transition state(s) in a chemical reaction - TS theory thus offers a powerful tool to understand how enzymes work in qualitative terms

TS theory Reaction Profile - Consider the following reaction proceeding via a transient intermediate X: A + B <=> X ǂ <=> P + Q - A plot of free energy (G) versus reaction coordinate a time variable for the above reaction yields the so-called reaction profile or reaction coordinate diagram - Intermediate X is called the transition state if it lies @ the highest point (maximum G) on the reaction profile - In symbolic terms, the transition state and parameters associated with it are indicated by the double dagger (ǂ) notation expressed as a superscript - Thus, X ǂ represents the physical intermediate that equates to the transition state and G ǂ is the free energy associated with it what does G ǂ mean?! Reaction Profile

TS theory Meaning of G ǂ - G ǂ is the difference between the free energies of ground states (reactants A and B) and the transition state X ǂ it is the socalled free energy of activation - In lay terms, G ǂ is the minimum thermal energy that the reactants must possess in order to overcome the thermodynamic barrier for the reaction to proceed it is the spark needed to ignite the fuel! - Thus, lower the G ǂ the greater the likelihood that a biological reaction will ensue or simply put, reaction will proceed faster (it will occur over seconds rather than days or weeks!) - But, how do we lower G ǂ? This is where our catalytic workhorses step in enzymes speed up biological reactions by simply lowering G ǂ Reaction Profile

TS theory Arrhenius Equation - The dependence of the rate of a reaction (k) on temperature is given by the simplified Arrhenius equation (cf the more complex Eyring equation): k = A.exp(- G ǂ /RT) where A = Pre-exponential factor (s -1 ) R = Universal molar gas constant (cal/mol/k) T = Absolute temperature (K) G ǂ = Free energy of activation (cal/mol) - While the Arrhenius equation assumes quasiequilibrium (a crude approximation to true thermodynamic equilibrium!) between X ǂ and the reactants, it nonetheless reaffirms the notion that lowering G ǂ will make the reaction go faster - This is indeed the basis of all catalysts chemical and biological alike in that they speed up reactions by simply lowering the free energy of the transition state or G ǂ - Thus, greater the reduction in G ǂ ( G ǂ cat) the faster the reaction will proceed but without affecting the overall free energy change ( G) Reaction Profile (Uncatalyzed vs Catalyzed)

Exercise 2.5b - Sketch and label various parts for reaction profiles with and without a catalyst - What is ΔG? - What is the relationship between ΔG and ΔG? Which of these parameters are altered by enzymes?