Cautious Data Driven Fault Detection and Isolation applied to the Wind Turbine Benchmark

Similar documents
Data Driven Fault Detection and Isolation of a Wind Turbine Benchmark

Robust Fault Detection With Statistical Uncertainty in Identified Parameters

arxiv: v1 [cs.sy] 8 May 2015

A New Subspace Identification Method for Open and Closed Loop Data

Handling parametric and non-parametric additive faults in LTV Systems

Structured LPV Control of Wind Turbines

FAULT DETECTION AND FAULT TOLERANT APPROACHES WITH AIRCRAFT APPLICATION. Andrés Marcos

Fault Detection and Isolation of the Wind Turbine Benchmark: an Estimation-based Approach

Control Systems Lab - SC4070 Control techniques

Online monitoring of MPC disturbance models using closed-loop data

OBSERVER-based fault diagnosis techniques have been

EL1820 Modeling of Dynamical Systems

A COMPARISON OF TWO METHODS FOR STOCHASTIC FAULT DETECTION: THE PARITY SPACE APPROACH AND PRINCIPAL COMPONENTS ANALYSIS

EECE Adaptive Control

Integral action in state feedback control

Modeling and Analysis of Dynamic Systems

Exam. 135 minutes, 15 minutes reading time

Onboard Engine FDI in Autonomous Aircraft Using Stochastic Nonlinear Modelling of Flight Signal Dependencies

Fault detection of a benchmark wind turbine using interval analysis

Unknown input observer based scheme for detecting faults in a wind turbine converter Odgaard, Peter Fogh; Stoustrup, Jakob

Wind Turbine Fault Detection Using Counter-Based Residual Thresholding

Pole placement control: state space and polynomial approaches Lecture 2

Fault Tolerant Control of Wind Turbines using Unknown Input Observers

MODEL-BASED fault detection and isolation

Predictive Control of Gyroscopic-Force Actuators for Mechanical Vibration Damping

Model-based Fault Diagnosis Techniques Design Schemes, Algorithms, and Tools

Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08

Numerical atmospheric turbulence models and LQG control for adaptive optics system

DESIGNING A KALMAN FILTER WHEN NO NOISE COVARIANCE INFORMATION IS AVAILABLE. Robert Bos,1 Xavier Bombois Paul M. J. Van den Hof

VARIANCE COMPUTATION OF MODAL PARAMETER ES- TIMATES FROM UPC SUBSPACE IDENTIFICATION

Perturbation of system dynamics and the covariance completion problem

Department of Mechanical Engineering, The Hague University, Delft, The Netherlands PhD candidate Eindhoven University of Technology

Active Fault Diagnosis for Uncertain Systems

ENGR352 Problem Set 02

Subspace-based Identification

KALMAN FILTERS FOR NON-UNIFORMLY SAMPLED MULTIRATE SYSTEMS

6.435, System Identification

INTEGRATED ARCHITECTURE OF ACTUATOR FAULT DIAGNOSIS AND ACCOMMODATION

Adaptive Dual Control

Linear-Quadratic-Gaussian Controllers!

Optimal input design for nonlinear dynamical systems: a graph-theory approach

AFAULT diagnosis procedure is typically divided into three

Control Design. Lecture 9: State Feedback and Observers. Two Classes of Control Problems. State Feedback: Problem Formulation

Comparison of four state observer design algorithms for MIMO system

D(s) G(s) A control system design definition

IMPROVING LOCAL WEATHER FORECASTS FOR AGRICULTURAL APPLICATIONS

Model Identification and Attitude Control Scheme for a Micromechanical Flying Insect

Control Systems Lab - SC4070 System Identification and Linearization

NONLINEAR INTEGRAL MINIMUM VARIANCE-LIKE CONTROL WITH APPLICATION TO AN AIRCRAFT SYSTEM

Track-Following Control Design and Implementation for Hard Disk Drives with Missing Samples

Parameter Estimation in a Moving Horizon Perspective

Module 08 Observability and State Estimator Design of Dynamical LTI Systems

REGLERTEKNIK AUTOMATIC CONTROL LINKÖPING

Orthogonal projection based subspace identification against colored noise

SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL

Control For Hard Disk Drives With An Irregular Sampling Rate

Uncertainty and Robustness for SISO Systems

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Frequency Response-Design Method

MAE 142 Homework #5 Due Friday, March 13, 2009

State Observers and the Kalman filter

EL2520 Control Theory and Practice

EL1820 Modeling of Dynamical Systems

Moving Horizon Estimation (MHE)

Outline. 1 Full information estimation. 2 Moving horizon estimation - zero prior weighting. 3 Moving horizon estimation - nonzero prior weighting

Intelligent Fault Diagnosis Techniques Applied to an Offshore Wind Turbine System **

Identifying structural parameters of an idling Offshore Wind Turbine using Operational Modal Analysis

Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities.

Fault Detection of Wind Turbines with Uncertain Parameters Tabatabaeipour, Seyed Mojtaba; Odgaard, Peter Fogh; Bak, Thomas; Stoustrup, Jakob

Identification of a Chemical Process for Fault Detection Application

Introduction to System Identification and Adaptive Control

Stochastic dynamical modeling:

Robust Model Predictive Control

Detection and Estimation of Multiple Fault Profiles Using Generalized Likelihood Ratio Tests: A Case Study

Application of Modified Multi Model Predictive Control Algorithm to Fluid Catalytic Cracking Unit

f-domain expression for the limit model Combine: 5.12 Approximate Modelling What can be said about H(q, θ) G(q, θ ) H(q, θ ) with

A Physically-Based Fault Detection and Isolation Method and Its Uses in Robot Manipulators

DIAGNOSIS OF DISCRETE-TIME SINGULARLY PERTURBED SYSTEMS BASED ON SLOW SUBSYSTEM

Unknown Input Observer Based Detection of Sensor Faults in a Wind Turbine

FAULT DETECTION OF A CONTROL VALVE USING STRUCTURED PARITY EQUATIONS

Subspace-based damage detection on steel frame structure under changing excitation

I. D. Landau, A. Karimi: A Course on Adaptive Control Adaptive Control. Part 9: Adaptive Control with Multiple Models and Switching

Exam in Automatic Control II Reglerteknik II 5hp (1RT495)

On Identification of Cascade Systems 1

Reduction of the rotor blade root bending moment and increase of the rotational-speed strength of a 5 MW IPC wind turbine based on a stochastic

SENSITIVITY ANALYSIS OF MULTIPLE FAULT TEST AND RELIABILITY MEASURES IN INTEGRATED GPS/INS SYSTEMS

MTNS 06, Kyoto (July, 2006) Shinji Hara The University of Tokyo, Japan

FDI and FTC of Wind Turbines using the Interval Observer Approach and Virtual Actuators/Sensors

Worksheet n 6: LQG control. The case of open-cavity flow

Parametric Output Error Based Identification and Fault Detection in Structures Under Earthquake Excitation

with Application to Autonomous Vehicles

CS 532: 3D Computer Vision 6 th Set of Notes

Control System Design

Closed Loop Identification (L26)

Every real system has uncertainties, which include system parametric uncertainties, unmodeled dynamics

Données, SHM et analyse statistique

Technical work in WP2 and WP5

Module 03 Linear Systems Theory: Necessary Background

System Identification by Nuclear Norm Minimization

Plug and Play Process Control Applied to a District Heating System Knudsen, Torben; Trangbæk, Klaus; Kallesøe, Carsten Skovmose

AERT 2013 [CA'NTI 19] ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES

Transcription:

Driven Fault Detection and Isolation applied to the Wind Turbine Benchmark Prof. Michel Verhaegen Delft Center for Systems and Control Delft University of Technology the Netherlands November 28, 2011 Prof. Michel Verhaegen 2011-11 1 / 36

Table of contents 1 windturbines 2 From Subspace to Fault Detection Need for a Cautious design in an IDE context Basics of closed-loop Subspace Identification 3 Prof. Michel Verhaegen 2011-11 2 / 36

Outline 1 windturbines 2 From Subspace to Fault Detection Need for a Cautious design in an IDE context Basics of closed-loop Subspace Identification 3 Prof. Michel Verhaegen 2011-11 3 / 36

Standard WT Approach Geometrical, Material cst, Atmospheric Data,... Windturbine Package "Dynamic" Mathematical Model Prof. Michel Verhaegen 2011-11 4 / 36

Standard WT Approach Geometrical, Material cst, Atmospheric Data,... Windturbine Package "Dynamic" Mathematical Model Features Multi-physics modeling environments (Aero-, Mech-, Ele-, Pneu-, Hydro, Marit-, Embed-, etc.) Prof. Michel Verhaegen 2011-11 4 / 36

Standard WT Approach Geometrical, Material cst, Atmospheric Data,... Windturbine Package "Dynamic" Mathematical Model Features Multi-physics modeling environments (Aero-, Mech-, Ele-, Pneu-, Hydro, Marit-, Embed-, etc.) Complexity Major (proprietary) data bases of validated subcomponents... And control design features. Prof. Michel Verhaegen 2011-11 4 / 36

Getting real-life... Alternative Feedback Control Design Methods Glueing together single loop feedback controllers designed for linearized FP a models Prof. Michel Verhaegen 2011-11 5 / 36

Getting real-life... Alternative Feedback Control Design Methods Glueing together single loop feedback controllers designed for linearized FP a models time consuming Robust Multivariable control based on linearized FP models (making use of Coleman transform ) a First Principles Prof. Michel Verhaegen 2011-11 5 / 36

Getting real-life... Alternative Feedback Control Design Methods Glueing together single loop feedback controllers designed for linearized FP a models time consuming Robust Multivariable control based on linearized FP models (making use of Coleman transform ) a First Principles Standing questions Commissioning still needs to be done! How to get the model uncertainty? How to get realistic disturbance models? How to (re-)configure the controller? Prof. Michel Verhaegen 2011-11 5 / 36

Getting real-life... Alternative Feedback Control Design Methods Glueing together single loop feedback controllers designed for linearized FP a models time consuming Robust Multivariable control based on linearized FP models (making use of Coleman transform ) a First Principles Standing questions Commissioning still needs to be done! How to get the model uncertainty? How to get realistic disturbance models? How to (re-)configure the controller? as a starting point! Prof. Michel Verhaegen 2011-11 5 / 36

The Classical Data Driven design cycle measure past I/Os scheme identify x(k +1) = Ax(k)+Bu(k)+Ke(k) y(k) = Cx(k) + Du(k) + e(k) fault alarm Prof. Michel Verhaegen 2011-11 6 / 36

with the Classical Data Driven Design Cycle 10 3 10 2 P ss threshold test statistics 0 100 200 300 400 500 600 samples Prof. Michel Verhaegen 2011-11 7 / 36

with the Classical Data Driven Design Cycle 10 3 10 2 P ss threshold test statistics due to fault? or model uncertainty? 0 100 200 300 400 500 600 samples Prof. Michel Verhaegen 2011-11 7 / 36

Streamlining Data Driven Synthesis measure past I/Os scheme SS (?) models with uncertainty identify x(k +1) = Ax(k)+Bu(k)+Ke(k) y(k) = Cx(k) + Du(k) + e(k) fault alarm Prof. Michel Verhaegen 2011-11 8 / 36

Outline 1 windturbines 2 From Subspace to Fault Detection Need for a Cautious design in an IDE context Basics of closed-loop Subspace Identification 3 Prof. Michel Verhaegen 2011-11 9 / 36

Fault Detection using Identified model? e(k) u(k) d + ˆr(k) = y(k) y(k) ˆd u(k) ˆd = Y t,1,n U t,1,n Prof. Michel Verhaegen 2011-11 10 / 36

Fault Detection using Identified model? u(k) d Distribution of ˆd e(k) ˆd = d ˆd + ˆr(k) = y(k) y(k) ˆd u(k) ˆd = Y t,1,n U t,1,n 0.012 0.01 0.008 var( ˆd) = = E t,1,n U t,1,n σ 2 e U t,1,n U T t,1,n /N 0.006 0.004 0.002 0 2500 2000 1500 1000 500 0 500 1000 1500 2000 2500 (a) Prof. Michel Verhaegen 2011-11 10 / 36

Why & What is Cautious Fault Detection? var(ˆr(k)) = var( ˆd u(k))+var(e(k)) = u 2 (k) var( ˆd)+σ 2 e = { u 2 (k) σ 2 e U t,1,n U T t,1,n /N }+σ 2 e Prof. Michel Verhaegen 2011-11 11 / 36

Why & What is Cautious Fault Detection? var(ˆr(k)) = var( ˆd u(k))+var(e(k)) = u 2 (k) var( ˆd)+σ 2 e = { 0.18 0.16 0.14 0.12 0.1 0.08 0.18 0.16 0.14 0.12 0.1 0.08 u 2 (k) σ 2 e U t,1,n U T t,1,n /N }+σ 2 e 0.06 0.06 0.04 0.04 0.02 0.02 0 0 2 4 6 8 10 12 (b) dist. of ˆr 2 (k)/var(ˆr(k)) 0 0 2 4 6 8 10 12 (c) dist. of ˆr 2 (k)/σ 2 e Prof. Michel Verhaegen 2011-11 11 / 36

Data Driven Fault Detection for LTI SSM e(k) Σ : { x(k +1) = Ax(k)+Bu(k)+Ke(k) y(k) = Cx(k)+Du(k)+e(k) u(k) Σ y(k) Prof. Michel Verhaegen 2011-11 12 / 36

Data Driven Fault Detection for LTI SSM u(k) e(k) Σ Σ : { x(k +1) = Ax(k)+Bu(k)+Ke(k) y(k) = Cx(k)+Du(k)+e(k) y(k) Data Driven Fault Detection Identification Problem Given i/o data sequences{u(k),y(k)} N k=1 from the nominal (fault-free) system, determine a fault detection filter: ( ) r(k) = F u(k),y(k) and its test statistic. Prof. Michel Verhaegen 2011-11 12 / 36

Data equation for SI Consider Σ represented in innovation form: ˆx(k+1) = (A KC) ˆx(k)+(B KD) y(k) Φ = Cˆx(k)+Du(k)+e(k) B u(k)+ky(k) with the innovation signal e(k) zero-mean white noise with covariance matrix R e. Further, let z(t) T = [ u(t) T y(t) T], then we can write the state ˆx(t) as: ˆx(t) = Φ pˆx(t p)+ [ Φ p 1 [ B,K] Φ p 2 [ B,K] [ B,K] ] L p z(t) z(t+1). z(t+l 1) } {{ } Z t,l,1 Prof. Michel Verhaegen 2011-11 13 / 36

Data equation for SI Consider Σ represented in innovation form: ˆx(k+1) = (A KC) ˆx(k)+(B KD) y(k) Φ = Cˆx(k)+Du(k)+e(k) B u(k)+ky(k) with the innovation signal e(k) zero-mean white noise with covariance matrix R e. Further, let z(t) T = [ u(t) T y(t) T], then we can write the state ˆx(t) as: z(t p) ˆx(t) = Φ pˆx(t p)+ [ Φ p 1 [ B,K] Φ p 2 [ B,K] [ B,K] ] z(t p+1). L p } z(t 1) {{ } Z t p,p,1 Prof. Michel Verhaegen 2011-11 13 / 36

Data equation for PBSID (Chiuso 2007) Assuming Φ p = 0: Y t,l,1 = [I L (CΦ p )] ˆx(t p)+ CΦ p 1 [ B,K] CΦ p 2 [ B,K] C[ B,K] 0 CΦ p 1 [ B,K] CΦ[ B,K] Z t p,p,1 +... 0 0 CΦ L 1 [ B,K] [D,0] C[ B,K] H L,p z [D,0] Z t,l,1 +E t,l,1.. CΦ L 2 [ B,K] CΦ L 3 [ B,K] [D,0] Tz L Prof. Michel Verhaegen 2011-11 14 / 36

Data equation for PBSID (Chiuso 2007) Assuming Φ p 0: Y t,l,n [I L (CΦ p )] X t p,l,n + CΦ p 1 [ B,K] CΦ p 2 [ B,K] C[ B,K] CΦ p [ B,K] CΦ p 1 [ B,K] CΦ[ B,K]... CΦ p 1+L [ B,K] CΦ L 1 [ B,K] [D,0] C[ B,K] =O L L p H L,p z Z t p,p,n [D,0] Z t,l,n +E t,l,n.. CΦ L 2 [ B,K] CΦ L 3 [ B,K] [D,0] Tz L Prof. Michel Verhaegen 2011-11 14 / 36

Parameter identification errors in closed-loop identification Biased LS estimates Denote Ξ = [ CΦ p 1 [ B K ] C[ B K ] D ]. ] Zt p,p,n ˆΞ = Y t,1,n [ U t,1,n Z i ˆΣ e = Cov (Y t,1,n ˆΞ Z ) i Prof. Michel Verhaegen 2011-11 15 / 36

Parameter identification errors in closed-loop identification Biased LS estimates Denote Ξ = [ CΦ p 1 [ B K ] C[ B K ] D ]. ] Zt p,p,n ˆΞ = Y t,1,n [ U t,1,n Z i ˆΣ e = Cov (Y t,1,n ˆΞ Z ) i vec(ˆξ) ˆΘ contains the following errors. ˆΘ Θ = δθ+σ 1/2 ˆΘ ΣˆΘ = (Z i Z T i ) 1 ˆΣ e ǫ ǫ (0,I) Prof. Michel Verhaegen 2011-11 15 / 36

Identifying a parity relation from data (DD-PSA) Recall the data equation: Y t,l,n = [I L (CΦ p )] X t p,l,n + H L,p z Z t p,p,n +Tz L Z t,l,n +E t,l,n LS estimates past I/Os Work with an (accurate) approximation: O L X t,1,n [I L (CΦ p )] X t p,l,n + Z t p,p,n = r psa k,l = (U HZ) T [ ] UHZ UHZ (P ) T (I T L y LS estimates HL,p z LS estimates Z t p,p,n, past I/Os [ ] ] SHZ 0 V T [ HZ 0 SHZ (VHZ. )T )y k,l T L u LS estimates u k,l. Prof. Michel Verhaegen 2011-11 16 / 36

Identifying a parity relation from data (DD-PSA) Recall the data equation: Y t,l,n = [I L (CΦ p )] X t p,l,n + H L,p z Z t p,p,n +Tz L Z t,l,n +E t,l,n LS estimates past I/Os Get an estimate of the left null space of O L : O L X t,1,n [I L (CΦ p )] X t p,l,n + H L,p z Z t p,p,n = r psa k,l = (U HZ )T [ UHZ U HZ (P ) T (I ] T L y LS estimates HL,p z LS estimates Z t p,p,n, past I/Os [ ] SHZ 0 V T [ HZ 0 SHZ )y k,l T L u LS estimates (V HZ )T u k,l. ]. Prof. Michel Verhaegen 2011-11 16 / 36

Identifying a parity relation from data (DD-PSA) Recall the data equation: Y t,l,n = [I L (CΦ p )] X t p,l,n + H L,p z Z t p,p,n +Tz L Z t,l,n +E t,l,n LS estimates past I/Os Define the residual and its statistic? O L X t,1,n [I L (CΦ p )] X t p,l,n + H L,p z LS estimates H L,p z Z t p,p,n = r psa k,l = (U HZ )T [ UHZ U HZ (P ) T (I ] T L y LS estimates Z t p,p,n, past I/Os [ ] SHZ 0 V T [ HZ 0 SHZ )y k,l T L u LS estimates (V HZ )T u k,l. ]. Prof. Michel Verhaegen 2011-11 16 / 36

Disadvantages DD-PSA Approximation in the SVD AND annihilate what is known! Hz L,p Z t p,p,n = [ S HZ 0 U HZ UHZ] 0 S [ HZ V T HZ 0 (UHZ )T O L 0. (V HZ )T ]. Prof. Michel Verhaegen 2011-11 17 / 36

Disadvantages DD-PSA Approximation in the SVD AND annihilate what is known! Hz L,p Z t p,p,n = [ S HZ 0 U HZ UHZ] 0 S [ HZ V T HZ 0 (UHZ )T O L 0. Uncertainty in the residual generator (V HZ )T r psa k,l = (U HZ }{{ )T (I Ty L )y } k,l T L u u k,l. stochastic LS estimate LS estimate Nonlinear dependence of the stochastic uncertainties in r psa on the parametric errors in H L,p z, T L y, T L u. ]. k,l Prof. Michel Verhaegen 2011-11 17 / 36

Identifying a parity relation from data (FICSI) - nominal Recall the data equation: Y t,l,n = [I L (CΦ p )] X t p,l,n + H L,p z Z t p,p,n +Tz L Z t,l,n +E t,l,n LS estimates past I/Os Work directly! with an (accurate) approximation: Y t,l,n Hz L,p Z t p,p,n + Tz L Z t,l,n +E t,l,n LS estimates past I/Os LS estimates r ficsi k,l = (I T L y LS estimates r ficsi k,l { )y k,l T L u LS estimates N(0,Σ L e ), fault free, N ( ϕ f,σ L e), faulty. u k,l H L,P z LS estimates z k L,p Σ L e = I L Σ e is the innovation covariance. ϕ f depends on additive faults. Prof. Michel Verhaegen 2011-11 18 / 36

Identifying a parity relation from data (FICSI) - nominal Recall the data equation: Y t,l,n = [I L (CΦ p )] X t p,l,n + H L,p z Z t p,p,n +Tz L Z t,l,n +E t,l,n LS estimates past I/Os Work directly! with an (accurate) approximation: Y t,l,n Hz L,p Z t p,p,n + Tz L Z t,l,n +E t,l,n LS estimates past I/Os LS estimates r ficsi k,l = (I T L y LS estimates r ficsi k,l { )y k,l T L u LS estimates N(0,Σ L e ), fault free, N ( ϕ f,σ L e), faulty. u k,l H L,P z LS estimates z k L,p Σ L e = I L Σ e is the innovation covariance. ϕ f depends on additive faults. Prof. Michel Verhaegen 2011-11 18 / 36

Identifying a parity relation from data (FICSI) - nominal Recall the data equation: Y t,l,n = [I L (CΦ p )] X t p,l,n + H L,p z Z t p,p,n +Tz L Z t,l,n +E t,l,n LS estimates past I/Os Define the residual and its statistic Y t,l,n Hz L,p Z t p,p,n + Tz L Z t,l,n +E t,l,n LS estimates past I/Os LS estimates r ficsi k,l = (I T L y LS estimates { r k,l )y k,l T L u LS estimates N(0,Σ L e ), fault free, N ( ϕ f,σ L e), faulty. u k,l H L,P z LS estimates z k L,p Σ L e = I L Σ e is the innovation covariance. ϕ f depends on additive faults. Prof. Michel Verhaegen 2011-11 18 / 36

Cautious FICSI FICSI Scalar Example ˆr k,l = y k,l ˆT L y y k,l ˆT L u u k,l ĤL,P z z k L,p ˆr(k) = y(k) ˆdu(k) ˆΞ = Y t,1,nz i ˆd = Yt,1,NU t,1,n [ ] T Cov(ˆr k,l ) Z p (Z iz i/n T ) 1 Z p ˆΣ e Cov(ˆr(k)) = { u 2 (k)ˆσ e }+ 2 ˆσ 2 U t,1,n U t,1,n T /N e Remark: The residualˆr k,l has a bias! Prof. Michel Verhaegen 2011-11 19 / 36

of VTOL inputs: collective pitch, longitudinal cyclic pitch; outputs: horizontal velocity, vertical velocity, pitch rate, and sum of vertical velocity, pitch rate, and pitch angle. discretized for T s = 0.5 seconds, process and measurement noise, w(k), v(k): zero mean white noise, with Q w = 0.25 I 4 and Q v = 2 I 2. Prof. Michel Verhaegen 2011-11 20 / 36

Design of experiments Identification experiment closed-loop [ experiment with] N = 2000,p = 20, and 0 0 0.5 0 u(k) = y(k)+η(k), with η(k) 0 0 0.1 0.1 [ ] 1 0 zero-mean white and Q η =. 0 1 Prof. Michel Verhaegen 2011-11 21 / 36

Design of experiments Identification experiment closed-loop [ experiment with] N = 2000,p = 20, and 0 0 0.5 0 u(k) = y(k)+η(k), with η(k) 0 0 0.1 0.1 [ ] 1 0 zero-mean white and Q η =. 0 1 design and experiment p = 15,L = 10,FAR = 0.003, LQG tracking control to follow a vertical velocity of 50, biased collective pitch control: 6 4 2 0 0 100 200 300 400 500 600 Prof. Michel Verhaegen 2011-11 21 / 36

Comparison of four methods P ss. the classic model-based PSA, with (A,B,C,D,K) identified by the PBSID-OPT method of Chiuso, 2007, P mp. the DD-PSA F no. the nominal data-driven FICSI method, F rb. the cautious data-driven FICSI method. Prof. Michel Verhaegen 2011-11 22 / 36

P ss the classic model-based PSA 10 3 10 2 P ss threshold test statistics 0 100 200 300 400 500 600 samples Prof. Michel Verhaegen 2011-11 23 / 36

P mp the data-driven PSA 10 4 P mp threshold test statistics 10 3 10 2 10 1 0 100 200 300 400 500 600 samples Prof. Michel Verhaegen 2011-11 24 / 36

F rb v.s. F no FICSI 10 4 threshold F rb F no test statistics 10 3 10 2 10 1 0 100 200 300 400 500 600 samples Prof. Michel Verhaegen 2011-11 25 / 36

Related Publication 1 J. Dong, M. Verhaegen and F. Gustafsson: Data Driven Fault Detection with Robustness to Uncertain Parameters Identified in Closed Loop, CDC 2010. Prof. Michel Verhaegen 2011-11 26 / 36

Outline 1 windturbines 2 From Subspace to Fault Detection Need for a Cautious design in an IDE context Basics of closed-loop Subspace Identification 3 Prof. Michel Verhaegen 2011-11 27 / 36

The setting Sensor/Actuator Fault Isolation with dual sensor/actuator configuration No voting is possible. We want to make use of/demonstrate the possibilities of FICSI. Single transducer failure at a particular time instant. Prof. Michel Verhaegen 2011-11 28 / 36

The wind turbine model Three-bladed, horizontal-axal, and variable-speed wind turbine with a full converter, running in closed loop. 1 1 [Odgaard et al., 2009]. Prof. Michel Verhaegen 2011-11 29 / 36

Fault Scenarios and requirements # fault duration 1 β 1,m1 fixed to 5 o 2000 2100 sec 3 β 3,m1 fixed to 10 o 2600 2700 sec 4 ω r,m1 fixed to 1.4rad/s 1500 1600 sec Requirements time of detection no longer than 10 sampling instants no missed detections mean time between false detection no larger than 10 5 sampling instants Prof. Michel Verhaegen 2011-11 30 / 36

The Isolation 2 dual sensor case Consider an LTI system with 2 pairs of (identical) sensors for measuring the outputs of the system. Isolation Strategy Let the read-out of the first pair of sensors be denoted by S 1 1,S 2 1, and for the second pair by S 1 2,S 2 2, then we determine the fault detection filter: r ij(k) = F ij(u(k), [ S i 1(k) S j 2 (k)] ) Failing Sensor S1 1 S1 2 S2 1 S2 2 F 11 F 12 F 21 F 22 Prof. Michel Verhaegen 2011-11 31 / 36

Disturbances and measurement noise The turbine is disturbed by unknown wind speed V w. wind speed [m/s] 30 25 20 15 10 5 0 0 0.5 1 1.5 2 2.5 Time [sec] x 10 5 The variance of the measurement noise in the sensors, denoted as σ 2, is respectively defined as: σ 2 β 1,m1 = σ 2 β 1,m2 = σ 2 β 2,m1 = σ 2 β 2,m2 = σ 2 β 3,m1 = σ 2 β 3,m2 = 0.2, σ 2 ω g,m1 = σ 2 ω g,m2 = 0.05, σ 2 ω r,m1 = σ 2 ω r,m2 = 0.0251. Prof. Michel Verhaegen 2011-11 32 / 36

Design of the identification experiments Experimental Conditions Wind speed profile set to the mean of the real measured wind data, i.e. D v wind 12.3 in the SimuLink model, BenchMark.mdl. No extra excitation signals were added to this model. We only used the data from the first 200 seconds, i.e. N = 2 10 4. The horizons of the Fault Detection filters were chosen as p = 60,L = 50 and the FAR was set to 0.001. We only selected three output channels for the identification, i.e. β 1,m1,ω r,m1,ω g,m1. The two input channels are β r,τ g. Prof. Michel Verhaegen 2011-11 33 / 36

Example: test statistics of filter F 3 Prof. Michel Verhaegen 2011-11 34 / 36

Related Publication 1 J. Dong, M. Verhaegen: Data Driven Fault Detection and Isolation of a Wind Turbine Benchmark, IFAC 2011. Prof. Michel Verhaegen 2011-11 35 / 36

TAK FOR OPMRKSOMHEDEN Prof. Michel Verhaegen 2011-11 36 / 36