IKW40N120T2 TrenchStop 2 nd Generation Series

Similar documents
TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

SKP15N60 SKW15N60. Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

TrenchStop Series I C

TrenchStop Series. P t o t 270 W

SGP20N60 SGW20N60. Fast IGBT in NPT-technology

SKP06N60 SKA06N60. Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

IGW25T120. TrenchStop Series

PG-TO I C. A Pulsed collector current, t p limited by T jmax I Cpuls 62 Turn off safe operating area V CE 600V, T j 150 C - 62

IGW15T120. TrenchStop Series

TrenchStop Series. Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

IKW50N60TA q. Low Loss DuoPack : IGBT in TRENCHSTOP TM and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

TRENCHSTOP Series. Low Loss IGBT: IGBT in TRENCHSTOP and Fieldstop technology. Maximum Ratings Parameter Symbol Value Unit.

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode

Soft Switching Series

Soft Switching Series I C I F I FSM

60 30 Pulsed collector current, t p limited by T jmax I Cpuls 90 Turn off safe operating area V CE 900V, T j 175 C - 90 Diode forward current

IGP03N120H2 IGW03N120H2

SGP30N60HS SGW30N60HS

SGB02N120. Fast IGBT in NPT-technology. Power Semiconductors 1 Rev. 2_3 Jan 07

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 40 Turn off safe operating area V CE 600V, T j 150 C - 40.

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 62 Turn off safe operating area V CE 600V, T j 150 C - 62.

I C P tot 138 W

SKP10N60 SKB10N60, SKW10N60

IGD06N60T q. IGBT in TRENCHSTOP and Fieldstop technology. TRENCHSTOP Series. IFAG IPC TD VLS 1 Rev. 2.2,

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 3.5 Turn off safe operating area V CE 1200V, T j 150 C - 3.

OptiMOS 3 Power-Transistor

IDP30E120. Fast Switching Diode. Product Summary V RRM 1200 V I F 30 A V F 1.65 V T jmax 150 C

CoolMOS Power Transistor

CoolMOS TM Power Transistor

OptiMOS 2 Power-Transistor

OptiMOS 3 Power-Transistor

CoolMOS Power Transistor

OptiMOS TM Power-Transistor

OptiMOS 2 Power-Transistor

OptiMOS (TM) 3 Power-Transistor

Silicon Carbide Schottky Diode IDH05G120C5. 5 th Generation thinq! 1200 V SiC Schottky Diode. Rev

CoolMOS TM Power Transistor

OptiMOS TM Power-Transistor

SGP30N60, SGB30N60, SGW30N60

CoolMOS Power Transistor

OptiMOS 3 Power-Transistor

OptiMOS (TM) 3 Power-Transistor

SIPMOS Small-Signal-Transistor

BSS123. Rev K/W. R thja

OptiMOS 2 Power-Transistor

SGP20N60, SGB20N60, SGW20N60

OptiMOS TM Power-MOSFET

CoolMOS Power Transistor

OptiMOS TM Power-MOSFET

CoolMOS TM Power Transistor

SIPMOS Small-Signal-Transistor

OptiMOS (TM) 3 Power-Transistor

OptiMOS TM P3 Power-Transistor

OptiMOS 2 Power-Transistor

OptiMOS TM Power-Transistor

CoolMOS Power Transistor

OptiMOS 2 Small-Signal-Transistor

CoolMOS TM Power Transistor

SIPMOS Small-Signal-Transistor

OptiMOS TM 3 Power-Transistor

OptiMOS 3 Power-MOSFET

OptiMOS 3 Power-Transistor

CoolMOS TM Power Transistor

OptiMOS TM Power-MOSFET

OptiMOS P2 Small-Signal-Transistor

SPP08P06P H. SIPMOS Power-Transistor V DS -60 V I D T C = 25 C T C = 100 C. I D puls E AS I D = -8.8 A, V DD = -25 V, R GS = 25 W

Dual N-Channel OptiMOS MOSFET

2 nd Generation thinq! TM SiC Schottky Diode

OptiMOS TM 3 Power-Transistor


CoolMOS TM Power Transistor

OptiMOS -5 Power-Transistor

OptiMOS 3 Power-Transistor

OptiMOS -5 Power-Transistor

OptiMOS 3 Power-MOSFET

OptiMOS 2 Power-Transistor

OptiMOS 2 + OptiMOS -P 2 Small Signal Transistor

OptiMOS 3 Power-Transistor

OptiMOS TM Power-MOSFET

OptiMOS 2 Power-Transistor

Product Summary Drain source voltage. Lead free Yes I D. I D puls -320 E AS. P tot 340 W

Data Sheet BUY25CS54A-01

OptiMOS -T Power-Transistor

OptiMOS -5 Power-Transistor

OptiMOS TM -T2 Power-Transistor

OptiMOS Power-Transistor

OptiMOS -T2 Power-Transistor

OptiMOS 3 M-Series Power-MOSFET

Rev Maximum Ratings, at T j = 25 C, unless otherwise specified Parameter Symbol Value Unit Continuous drain current I D.

OptiMOS Small-Signal-Transistor

OptiMOS -T Power-Transistor Product Summary

OptiMOS 2 Small-Signal-Transistor

OptiMOS Small-Signal-Transistor

Silicon Carbide Schottky Diode IDM05G120C5. 5 th Generation thinq! 1200 V SiC Schottky Diode. Rev

Transcription:

Low Loss DuoPack : IGBT in 2 nd generation TrenchStop with soft, fast recovery antiparallel Emitter Controlled Diode Best in class TO247 Short circuit withstand time 10 s Designed for : Frequency Converters Uninterrupted Power Supply TrenchStop 2 nd generation for 1200 V applications offers : very tight parameter distribution high ruggedness, temperature stable behavior Easy paralleling capability due to positive temperature coefficient in V CE(sat) Low EMI Low Gate Charge Very soft, fast recovery antiparallel Emitter Controlled HEDiode Qualified according to JEDEC 1 for target applications Pbfree lead plating; RoHS compliant Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type V CE I C V CE(sat),Tj=25 C T j,max Marking Code Package IKW40N120T2 1200V 4 1.75V 175 C K40T1202 PGTO2473 Maximum Ratings Parameter Symbol Value Unit Collectoremitter voltage V CE 1200 V DC collector current (T j =150 C) T C = 25 C T C = 110 C Pulsed collector current, t p limited by T jmax I C p u l s 160 Turn off safe operating area V CE 1200V, T j 175 C DC Diode forward current (T j =150 C) T C = 25 C T C = 110 C I C 75 2 40 160 Diode pulsed current, t p limited by T jmax I F p u l s 160 Gateemitter voltage V GE 20 V Short circuit withstand time 3) V GE = 15V, V CC 600V, T j,start 175 C Power dissipation T C = 25 C I F 75 2 40 t SC 10 s P t o t 480 W Operating junction temperature T j 40...+175 C Storage temperature T s t g 55...+150 Soldering temperature, 1.6mm (0.063 in.) from case for 10s Wavesoldering only, temperature on leads only 260 G PGTO2473 A C E 1 JSTD020 and JESD022 2 Limited by bond wire 3) Allowed number of short circuits: <1000; time between short circuits: >1s. IFAG IPC TD VLS 1 Rev. 2.4 23.09.2014

Thermal Resistance Parameter Symbol Conditions Max. Value Unit Characteristic IGBT thermal resistance, junction case Diode thermal resistance, junction case Thermal resistance, junction ambient R t h J C 0.31 K/W R t h J C D 0.53 R t h J A 40 Electrical Characteristic, at T j = 25 C, unless otherwise specified Parameter Symbol Conditions Static Characteristic Value min. typ. max. Collectoremitter breakdown voltage V ( B R ) C E S V GE =0V, I C =500µA 1200 V Collectoremitter saturation voltage V C E ( s a t ) V GE = 15V, I C =4 T j =25 C T j =150 C T j =175 C Diode forward voltage V F V GE =0V, I F =4 T j =25 C T j =150 C T j =175 C Gateemitter threshold voltage V G E ( t h ) I C =1.5mA,V CE =V GE 5.2 5.8 6.4 Zero gate voltage collector current I C E S V CE =1200V, V GE =0V T j =25 C T j =150 C T j =175 C Gateemitter leakage current I G E S V CE =0V,V GE =20V 200 na Transconductance g fs V CE =20V, I C =4 21 S 1.75 2.25 2.3 1.75 1.80 1.80 2.2 2.2 0.4 4.0 20 Unit ma IFAG IPC TD VLS 2 Rev. 2.4 23.09.2014

Dynamic Characteristic Input capacitance C i s s V CE =25V, 2360 pf Output capacitance C o s s V GE =0V, 230 Reverse transfer capacitance C r s s f=1mhz 125 Gate charge Q G a t e V CC =960V, I C =4 Internal emitter inductance measured 5mm (0.197 in.) from case V GE =15V Short circuit collector current 1) I C ( S C ) V GE =15V,t SC 10 s V CC = 600V, T j, s t a r t = 25 C T j. s t a r t = 175 C 192 nc L E 13 nh 220 156 A Switching Characteristic, Inductive Load, at T j =25 C Parameter Symbol Conditions IGBT Characteristic Value min. typ. max. Turnon delay time t d ( o n ) T j =25 C, 33 ns Rise time t V CC =600V,I C =4, r 28 V GE =0/15V, Turnoff delay time t d ( o f f ) R G =12, 314 Fall time t L 2) f =80nH, 94 Turnon energy E C 2) =67pF on 3.2 mj Energy losses include Turnoff energy E o f f tail and diode reverse 2.05 Total switching energy E ts recovery. 5.25 AntiParallel Diode Characteristic Diode reverse recovery time t rr T j =25 C, Diode reverse recovery charge Q rr V R =600V, I F =4, 3.3 µc Diode peak reverse recovery current I r r m di F /dt=95/ s 23 A Diode peak rate of fall of reverse recovery current during t b Unit 285 ns di rr /dt 350 A/ s 1) Allowed number of short circuits: <1000; time between short circuits: >1s. 2) Leakage inductance L and Stray capacity C due to dynamic test circuit in Figure E. IFAG IPC TD VLS 3 Rev. 2.4 23.09.2014

Switching Characteristic, Inductive Load, at T j =175 C Parameter Symbol Conditions IGBT Characteristic Value min. typ. max. Turnon delay time t d ( o n ) T j =175 C 32 ns Rise time t V CC =600V,I C =4, r 28 V GE =0/15V, Turnoff delay time t d ( o f f ) R G = 12, 405 Fall time t L 1) f =180nH, 195 Turnon energy E C 1) =67pF on 4.5 mj Energy losses include Turnoff energy E o f f tail and diode reverse 3.8 Total switching energy E ts recovery. 8.3 AntiParallel Diode Characteristic Diode reverse recovery time t rr T j =175 C Diode reverse recovery charge Q rr V R =600V, I F =4, 6.6 µc Diode peak reverse recovery current I r r m di F /dt=95/ s 31 A Diode peak rate of fall of reverse recovery current during t b Unit 480 ns di rr /dt 200 A/ s 1) Leakage inductance L and Stray capacity C due to dynamic test circuit in Figure E. IFAG IPC TD VLS 4 Rev. 2.4 23.09.2014

16 10 t p =3µs 14 T C =80 C 10µs 12 10 8 6 4 2 I c I c T C =110 C 1 1A 50µs 150µs 500µs 20ms DC 10Hz 100Hz 1kHz 10kHz 100kHz 0.1A 1V 10V 100V 1000V Figure 1. f, SWITCHING FREQUENCY V CE, COLLECTOREMITTER VOLTAGE Collector current as a function of switching frequency (T j 175 C, D = 0.5, V CE = 600V, V GE = 0/+15V, R G = 12 ) Figure 2. Safe operating area (D = 0, T C = 25 C, T j 175 C;V GE =15V) 7 400W 6 P tot, POWER DISSIPATION 300W 200W 5 4 3 2 100W 1 0W 25 C 50 C 75 C 100 C 125 C 150 C 25 C 75 C 125 C Figure 3. T C, CASE TEMPERATURE Maximum power dissipation as a function of case temperature (T j 175 C) Figure 4. T C, CASE TEMPERATURE Maximum collector current as a function of case temperature (V GE 15V, T j 175 C) IFAG IPC TD VLS 5 Rev. 2.4 23.09.2014

15 15 125A 20V V GE =17V 125A 20V V GE =17V 10 75A 5 15V 13V 11V 9V 7V 10 75A 5 15V 13V 11V 9V 7V 25A 25A 0V 1V 2V 3V 4V 5V Figure 5. V CE, COLLECTOREMITTER VOLTAGE Typical output characteristic (T j = 25 C) 0V 1V 2V 3V 4V 5V Figure 6. V CE, COLLECTOREMITTER VOLTAGE Typical output characteristic (T j = 175 C) 14 12 10 8 6 4 2 =175 C 25 C 0V 2V 4V 6V 8V 10V 12V VCE(sat), COLLECTOREMITTER SATURATION VOLTAGE 3.5V 3.0V 2.5V 2.0V 1.5V 1.0V 0.5V I C =8 I C =4 I C =2 I C =8A 0.0V 50 C 0 C 50 C 100 C 150 C Figure 7. V GE, GATEEMITTER VOLTAGE Typical transfer characteristic (V CE =20V) Figure 8., JUNCTION TEMPERATURE Typical collectoremitter saturation voltage as a function of junction temperature (V GE = 15V) IFAG IPC TD VLS 6 Rev. 2.4 23.09.2014

1000ns t d(off) 1000 ns t d(off) t, SWITCHING TIMES 100ns 10ns t f t d(on) t r t, SWITCHING TIMES 100 ns t f t d(on) 10 ns t r 1ns Figure 9. 2 4 6 Typical switching times as a function of collector current (inductive load, =175 C, V CE =600V, V GE =0/15V, R G =12Ω, R G, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, =175 C, V CE =600V, V GE =0/15V, I C =4, t, SWITCHING TIMES VGE(th), GATEEMITTER THRESHOLD VOLTAGE, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, V CE =600V, V GE =0/15V, I C =4, R G =12Ω,, JUNCTION TEMPERATURE Figure 12. Gateemitter threshold voltage as a function of junction temperature (I C = 1.5mA) IFAG IPC TD VLS 7 Rev. 2.4 23.09.2014

20.0mJ ) E on and E ts include losses due to diode recovery ) E on and E ts include losses due to diode recovery E ts E, SWITCHING ENERGY LOSSES 15.0mJ 10.0mJ 5.0mJ E ts E on E off E, SWITCHING ENERGY LOSSES 10.0 mj 7.5 mj 5.0 mj 2.5 mj E on E off 0.0mJ 2 4 6 Figure 13. Typical switching energy losses as a function of collector current (inductive load, =175 C, V CE =600V, V GE =0/15V, R G =12Ω, 0.0 mj R G, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, =175 C, V CE =600V, V GE =0/15V, I C =4, 7.5mJ ) E on and E ts include losses due to diode recovery E ts 10.0mJ ) E on and E ts include losses due to diode recovery E, SWITCHING ENERGY LOSSES 5.0mJ 2.5mJ E off E on E, SWITCHING ENERGY LOSSES 7.5mJ 5.0mJ 2.5mJ E ts E on E off 0.0mJ 0 C 50 C 100 C 150 C 0.0mJ 400V 500V 600V 700V, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, V CE =600V, V GE =0/15V, I C =4, R G =12Ω, V CE, COLLECTOREMITTER VOLTAGE Figure 16. Typical switching energy losses as a function of collector emitter voltage (inductive load, =175 C, V GE =0/15V, I C =4, R G =12Ω, IFAG IPC TD VLS 8 Rev. 2.4 23.09.2014

15V C iss V GE, GATEEMITTER VOLTAGE 10V 5V 240V 960V c, CAPACITANCE 1nF C oss 100pF C rss 0V 0nC 50nC 100nC 150nC Q GE, GATE CHARGE Figure 17. Typical gate charge (I C =40 A) 0V 10V 20V V CE, COLLECTOREMITTER VOLTAGE Figure 18. Typical capacitance as a function of collectoremitter voltage (V GE =0V, f = 1 MHz) t SC, SHORT CIRCUIT WITHSTAND TIME 15µs 10µs 5µs I C(sc), SHORT CIRCUIT COLLECTOR CURRENT 30 20 10 0µs 12V 14V 16V 18V V GE, GATEEMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gateemitter voltage (V CE =600V, start at 175 C) 12V 14V 16V 18V V GE, GATEEMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gateemitter voltage (V CE 600V, T j,start = 175 C) IFAG IPC TD VLS 9 Rev. 2.4 23.09.2014

V CE, COLLECTOREMITTER VOLTAGE 600V 400V 200V V CE 6 4 2 6 4 2 I C 600V 400V 200V I C 0V 0us 0.4us 0.8us 1.2us V CE 0us 0.4us 0.8us 1.2us 0V t, TIME t, TIME Figure 21. Typical turn on behavior (V GE =0/15V, R G =12Ω, T j = 175 C, Figure 22. Typical turn off behavior (V GE =15/0V, R G =12Ω, T j = 175 C, Z thjc, TRANSIENT THERMAL IMPEDANCE 10 1 K/W 10 2 K/W D=0.5 0.2 0.1 0.05 0.02 0.01 single pulse R, ( K / W ), ( s ) 0.064 3.6710 4 0.074 3.9210 3 0.162 1.9210 2 0.010 3.4010 1 R 1 R 2 Z thjc, TRANSIENT THERMAL IMPEDANCE R, ( K / W ), ( s ) 0.112 2.8010 4 0.163 3.2710 3 0.234 1.7110 2 0.015 2.6810 1 R 1 R 2 C 1= 1/R 1 C 2= 2/R 2 10 3 K/W 10µs 100µs 1ms 10ms 100ms t P, PULSE WIDTH Figure 23. IGBT transient thermal impedance (D = t p / T) C 1= 1/R 1 C 2= 2/R 2 t P, PULSE WIDTH Figure 24. Diode transient thermal impedance as a function of pulse width (D=t P /T) IFAG IPC TD VLS 10 Rev. 2.4 23.09.2014

OF REVERSE RECOVERY CURRENT IKW40N120T2 t rr, REVERSE RECOVERY TIME 600ns 500ns 400ns 300ns 200ns 100ns =175 C =25 C Q rr, REVERSE RECOVERY CHARGE 8µC 6µC 4µC 2µC =175 C =25 C 0ns 40/µs 80/µs 120/µs 160/µs di F /dt, DIODE CURRENT SLOPE Figure 23. Typical reverse recovery time as a function of diode current slope (V R =600V, I F =4, 0µC 40/µs 80/µs 120/µs 160/µs di F /dt, DIODE CURRENT SLOPE Figure 24. Typical reverse recovery charge as a function of diode current slope (V R =600V, I F =4, I rr, REVERSE RECOVERY CURRENT 4 35A 3 25A 2 15A 1 5A =175 C =25 C di rr /dt, DIODE PEAK RATE OF FALL 100/µs 80/µs 60/µs 40/µs 20/µs =25 C =175 C 40/µs 80/µs 120/µs 160/µs di F /dt, DIODE CURRENT SLOPE Figure 25. Typical reverse recovery current as a function of diode current slope (V R =600V, I F =4, /µs 40/µs 80/µs 120/µs 160/µs di F /dt, DIODE CURRENT SLOPE Figure 26. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (V R =600V, I F =4, IFAG IPC TD VLS 11 Rev. 2.4 23.09.2014

15 2.5V I F, FORWARD CURRENT 125A 10 75A 5 = 25 C 175 C V F, FORWARD VOLTAGE 2.0V 1.5V 1.0V I F =8 4 2 8A 25A 0.5V 0V 1V 2V 3V 0.0V 0 C 50 C 100 C 150 C V F, FORWARD VOLTAGE Figure 27. Typical diode forward current as a function of forward voltage, JUNCTION TEMPERATURE Figure 28. Typical diode forward voltage as a function of junction temperature IFAG IPC TD VLS 12 Rev. 2.4 23.09.2014

IFAG IPC TD VLS 13 Rev. 2.4 23.09.2014

i,v di F /dt t =t + t r r S F Q =Q + Q r r S F t r r I F t S t F Q S Q F 10% I r r m t I r r m di 90% I r r m r r /dt V R Figure C. Definition of diodes switching characteristics T (t) j 1 r1 2 r 2 r n n p(t) r r 1 2 n r Figure A. Definition of switching times T C Figure D. Thermal equivalent circuit Figure B. Definition of switching losses Figure E. Dynamic test circuit. IFAG IPC TD VLS 14 Rev. 2.4 23.09.2014

Published by Infineon Technologies AG 81726 Munich, Germany 2014 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of noninfringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. The Infineon Technologies component described in this Data Sheet may be used in lifesupport devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that lifesupport, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. IFAG IPC TD VLS 15 Rev. 2.4 23.09.2014