CTP Approach to Leptogenesis

Similar documents
Recent progress in leptogenesis

TTK Coherent quantum Boltzmann equations from cqpa Matti Herranen a, Kimmo Kainulainen b;c and Pyry Matti Rahkila b;c a Institut f ur Theoretisc

On the double-counting problem in Boltzmann equations and real-intermediate state subtraction

Effects of Reheating on Leptogenesis

Leptogenesis via varying Weinberg operator

Leptogenesis from GeV-Scale Sterile Neutrinos

A biased review of Leptogenesis. Lotfi Boubekeur ICTP

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays.

Leptogenesis. Alejandro Ibarra Technische Universität München. Warsaw February 2010

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008

Matter vs Anti-matter

Kadanoff-Baym Equations and Baryogenesis

Leptogenesis with Composite Neutrinos

Overview of mass hierarchy, CP violation and leptogenesis.

Towards a quantum treatment of leptogenesis

Status Report on Electroweak Baryogenesis

Cosmological Family Asymmetry and CP violation

Dynamical CP violation in the Early Universe

Leptogenesis from a First-Order Lepton- Number Breaking Phase Transition

Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model

arxiv: v2 [hep-ph] 25 Aug 2009

Electromagnetic Leptogenesis at TeV scale. Sudhanwa Patra

Falsifying High-Scale Leptogenesis at the LHC

Baryogenesis. David Morrissey. SLAC Summer Institute, July 26, 2011

The Origin of Matter

Electroweak baryogenesis in the two Higgs doublet model

arxiv: v1 [hep-ph] 2 Jun 2015

Interplay of flavour and CP symmetries

Leptogenesis with Majorana neutrinos

Leptogenesis in Higgs triplet model

SOME COMMENTS ON CP-VIOLATION AND LEPTOGENESIS

Leptogenesis via Higgs Condensate Relaxation

Testing leptogenesis at the LHC

Electroweak Baryogenesis in the LHC era

The Matter-Antimatter Asymmetry and New Interactions

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004

Neutrino theory of everything? dark matter, baryogenesis and neutrino masses

Nonrenormalizability of nonequilibrium quantum field theory in the classical approximation

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter?

Testing the low scale seesaw and leptogenesis

Kinetic approach to electroweak baryogenesis. Tomislav Prokopec

Creating Matter-Antimatter Asymmetry from Dark Matter Annihilations in Scotogenic Scenarios

Leptogenesis via the Relaxation of Higgs and other Scalar Fields

The first one second of the early universe and physics beyond the Standard Model

Electroweak Baryogenesis A Status Report

Thermal Quantum Field Theory in Real and Imaginary Time. Daniele Teresi

QUANTUM KINETIC THEORY WITH NONLOCAL COHERENCE BY MATTI HERRANEN

Falsifying highscale Baryogenesis

Lepton Number Violation and the Baryon Asymmetry of the Universe

Neutrino masses. Universe

Quantum transport and electroweak baryogenesis

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23,

Phase transitions in cosmology

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad.

Natural Nightmares for the LHC

Neutrino masses, muon g-2, dark matter, lithium probelm, and leptogenesis at TeV-scale SI2009 AT FUJI-YOSHIDA

Lepton Number Violation

A model of the basic interactions between elementary particles is defined by the following three ingredients:

The Standard Model of particle physics and beyond

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY

Neutrino Mass Models

ELECTRIC DIPOLE MOMENT OF THE ELECTRON AND ITS COSMOLOGICAL IMPLICATIONS

Self-consistent Conserving Approximations and Renormalization in Quantum Field Theory at Finite Temperature

12 Best Reasons to Like CP Violation

Time evolution of particle number asymmetry in an expanding universe

Puzzles of Neutrinos and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Hong-Jian He

Neutrino Mass Seesaw, Baryogenesis and LHC

Equilibration in ϕ 4 theory in 3+1 dimensions

Light Stop Bound State Production at the LHC. Yeo Woong Yoon (KIAS) In collaboration with P. Ko, Chul Kim at Yonsei U.

Electroweak baryogenesis in light of the Higgs discovery

Baryogenesis and Particle Antiparticle Oscillations

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik

Electroweak phase transition with two Higgs doublets near the alignment limit

Hidden Sector Baryogenesis. Jason Kumar (Texas A&M University) w/ Bhaskar Dutta (hep-th/ ) and w/ B.D and Louis Leblond (hepth/ )

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Leptogenesis: Improving predictions for experimental searches

Non-local 1/m b corrections to B X s γ

arxiv:hep-ph/ v6 3 Apr 2001

Symmetric WIMP Dark Matter and Baryogenesis

Electroweak Baryogenesis in Non-Standard Cosmology

A Brief History of Modern Physics

arxiv:hep-ph/ v1 20 Mar 2002

Leptogenesis and the Flavour Structure of the Seesaw

arxiv:hep-ph/ v1 26 Jul 2006

Dark Matter and Gauged Baryon Number

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential)

Electroweak baryogenesis in the MSSM and nmssm

Cosmology at Colliders: Possible LHC searches for RPV baryogenesis

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Electroweak phase transition in the early universe and Baryogenesis

Higgs Physics and Cosmology

The Origin of Matter. Koichi Funakubo Dept. Physics Saga University. NASA Hubble Space Telescope NGC 4911

Theory of CP Violation

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis

Astroparticle Physics and the LC

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY

Transcription:

CTP Approach to Leptogenesis Matti Herranen a in collaboration with Martin Beneke a Björn Garbrecht a Pedro Schwaller b Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University a Institut für Theoretische Physik, Universität Zürich b 5. Kosmologietag, Bielefeld, 06.05.2010 M. Herranen (RWTH Aachen) Bielefeld, 06.05.2010 1 / 22

Outline Introduction Standard Approach to Leptogenesis Closed Time Path (CTP) Approach to Leptogenesis Conclusions and outlook M. Herranen (RWTH Aachen) Bielefeld, 06.05.2010 2 / 22

Why baryogenesis? to explain the excess of matter over antimatter in the universe: [WMAP 2003] n B = ( 6.1 +0.3 ) 0.2 10 10 n γ Challenge: Inflation washes out any initial baryon number. Some dynamical mechanism = baryogenesis is needed M. Herranen (RWTH Aachen) Bielefeld, 06.05.2010 3 / 22

Leptogenesis [Fukugita, Yanagida (1986)] The Standard Model is extended by adding heavy right-handed Majorana neutrinos N i, i = 1, 2,... (eg. see-saw models) L h β (l βφ) e Rβ Y αk(l α φ ) N k 1 2 N jm j N c j + h.c. M. Herranen (RWTH Aachen) Bielefeld, 06.05.2010 4 / 22

Leptogenesis [Fukugita, Yanagida (1986)] The Standard Model is extended by adding heavy right-handed Majorana neutrinos N i, i = 1, 2,... (eg. see-saw models) L h β (l βφ) e Rβ Y αk(l α φ ) N k 1 2 N jm j N c j + h.c. Key element: out-of-equilibrium L- and CP-violating Yukawa decays of the heavy Majorana neutrinos ε 1 Γ(N1 lφ) Γ(N1 lφ ) Γ(N 1 lφ) + Γ(N 1 lφ ) 1 X M 1 Im ([Y Y] 2 1j) 8π M j [Y Y] 11 j M. Herranen (RWTH Aachen) Bielefeld, 06.05.2010 4 / 22

Baryogenesis via Leptogenesis The Sakharov conditions (1967) must be fulfilled: Baryon number B violation C violation CP violation Out of equilibrium M. Herranen (RWTH Aachen) Bielefeld, 06.05.2010 5 / 22

Baryogenesis via Leptogenesis The Sakharov conditions (1967) must be fulfilled: Baryon number B violation B L broken by neutrino Majorana masses B + L broken by the electroweak Sphalerons C violation Left-chiral electroweak interactions CP violation Yukawa interactions between the charged leptons l α and the Majorana neutrinos N i Out of equilibrium Expansion of the Universe - decreasing temperature T Heavy neutrino decays become out of equilibrium when M 1 T M. Herranen (RWTH Aachen) Bielefeld, 06.05.2010 5 / 22

2. Standard Approach to Leptogenesis M. Herranen (RWTH Aachen) Bielefeld, 06.05.2010 6 / 22

Boltzmann Equations for Leptogenesis (n l n l ) + 3H(n l n l ) t d 3 k = (2π) 3 2 d 3 p d 3 q k 2 + Mi 2 (2π) 3 2 p (2π) 3 2 q (2π)4 δ 4 (k p q) { M N1 lφ 2 f Ni (k) M N1 lφ 2 f Ni (k) } M lφ N1 2 f l (p)f φ (q) + M lφ N1 2 f l(p)f φ (q) d 3 k d 3 l d 3 p d 3 q + (2π) 3 2 k (2π) 3 2 l (2π) 3 2 p (2π) 3 2 q (2π)4 δ 4 (k + l p q) { } M lφ lφ 2 f l(k))f φ (l) M lφ lφ 2 f l (k))f φ (l) Expressed in terms of vacuum matrix elements M α β M. Herranen (RWTH Aachen) Bielefeld, 06.05.2010 7 / 22

Vacuum Matrix Elements and RIS Subtraction Naive multiplication suggests asymmetry even in equilibrium: Γ lφ lφ 1 + 2ε The on-shell intermediate states of 2 2 processes are already accounted for by the 1 2 Real Intermediate State subtraction is needed M. Herranen (RWTH Aachen) Bielefeld, 06.05.2010 8 / 22

4. CTP Approach to Leptogenesis 1 1 related / complementary aspects in: Buchmüller, Fredenhagen (2000); De Simone, Riotto (2007); Garny, Hohenegger, Kartavtsev, Lindner (2009 & 2010); Anisimov, Buchmüller, Drewes, Mendizabal (2010) M. Herranen (RWTH Aachen) Bielefeld, 06.05.2010 9 / 22

Closed Time Path (CTP) Formalism a.k.a. Schwinger-Keldysh Formalism [Schwinger (1961); Keldysh (1964); Calzetta, Hu (1988)] In the heuristic Boltzmann equations, matrix elements are computed within the usual in-out framework: out S in time-ordered correlators: T[ψ(x) ψ(y)] In leptogenesis we want to calculate expectation values, e.g. charge density: j 0 (x) = ψ(x)γ 0 ψ(x), in a finite density medium M. Herranen (RWTH Aachen) Bielefeld, 06.05.2010 10 / 22

Closed Time Path (CTP) Formalism a.k.a. Schwinger-Keldysh Formalism [Schwinger (1961); Keldysh (1964); Calzetta, Hu (1988)] In the heuristic Boltzmann equations, matrix elements are computed within the usual in-out framework: out S in time-ordered correlators: T[ψ(x) ψ(y)] In leptogenesis we want to calculate expectation values, e.g. charge density: j 0 (x) = ψ(x)γ 0 ψ(x), in a finite density medium In-In generating functional on a Closed Time Path: Im t Path-ordered correlators: Re t ig C (x, y) = T C [ψ(x) ψ(y)] M. Herranen (RWTH Aachen) Bielefeld, 06.05.2010 10 / 22

Four propagators with respect to real time variable: ig + (u, v) = ig < (u, v) = ψ(v)ψ(u) ig + (u, v) = ig > (u, v) = ψ(u) ψ(v) ig ++ (u, v) = ig T (u, v) = T(ψ(u) ψ(v)) ig (u, v) = ig T (u, v) = T(ψ(u) ψ(v)) Free propagators in momentum space: ig < (p) = 2πδ(p 2 m 2 )(p/ + m) ˆϑ(p 0)f (p) ϑ( p 0)(1 f ( p)) ig > (p) = 2πδ(p 2 m 2 )(p/ + m) ˆ ϑ(p 0)(1 f (p)) + ϑ( p 0) f ( p) ig T i(p/ + m) (p) = p 2 m 2 + iε 2πδ(p2 m 2 )(p/ + m) ˆϑ(p 0)f (p) + ϑ( p 0) f ( p) ig T i(p/ + m) (p) = p 2 m 2 iε 2πδ(p2 m 2 )(p/ + m) ˆϑ(p 0)f (p) + ϑ( p 0) f ( p) f (p) and f (p) are the distribution functions of particles and antiparticles M. Herranen (RWTH Aachen) Bielefeld, 06.05.2010 11 / 22

Kadanoff-Baym Equations Schwinger-Dyson equations for (CTP) propagators: G G 0 = + Σ The Kadanoff-Baym equations are the <, > components: (i / m)g <,> Σ H G <,> Σ <,> G H = 1 ( Σ > G < Σ < G >) 2 M. Herranen (RWTH Aachen) Bielefeld, 06.05.2010 12 / 22

Kadanoff-Baym Equations Schwinger-Dyson equations for (CTP) propagators: G G 0 = + Σ The Kadanoff-Baym equations are the <, > components: (i / m)g <,> Σ H G <,> Σ <,> G H = 1 ( Σ > G < Σ < G >) 2 Approximations: Wigner transformation: G(k, x) = d 4 r e ik r G(x + r 2, x r 2 ), and gradient expansion to the lowest order (also in finite width Γ) The propagators are reduced to the free theory form Kinetic equations describe the evolution of f (p, t) and f (p, t): d dt γ 0iG <,> (k) = [ iσ > (k)ig < (k) iσ < (k)ig > (k) ] M. Herranen (RWTH Aachen) Bielefeld, 06.05.2010 12 / 22

Tree-Level Collision Terms in (Unflavoured) Leptogenesis The leading order self energies: l: N: iσ ab l (k) = Y i 2 d 4 k (2π) 4 d 4 k (2π) 4 (2π)4 δ (4) (k k k )P R ig ab Ni(k )P L i ba φ ( k ) d iσ ab 4 k d 4 k { Nij(k) = g w (2π) 4 (2π) 4 (2π)4 δ (4) (k k k ) Y i Yj P L ig ab l (k )P R i ab φ (k ) + Y i Y j C [ P L ig ba l ( k )P R ] T C i ba φ ( k ) } M. Herranen (RWTH Aachen) Bielefeld, 06.05.2010 13 / 22

Kinetic Equation for Lepton Asymmetry d dt (n l n l ) = d dt = d 4 k (2π) 4 γ 0iG <,> (k) d 4 k [ iσ > (2π) 4 (k)ig < (k) iσ < (k)ig > (k) ] = Y i 2 d 3 k d 3 k (2π) 3 2 k 2 (2π) 3 2 d 3 k k 2 + Mi 2 (2π) 3 2 k { (2π) 4 δ 4 (k k k ) 2k k (1 f Ni (k )) [f l (k)f φ (k ) f l (k) f φ (k )] } f Ni (k ) [(1 f l (k))(1 + f φ (k )) (1 f l (k))(1 + f φ (k ))] Washout contribution M. Herranen (RWTH Aachen) Bielefeld, 06.05.2010 14 / 22

KMS Relations [Kubo (1957); Martin, Schwinger (1959)] A useful symmetry for correlators in thermal equilibrium: ig > l,n (p) = eβp 0 ig < l,n (p), i > φ (p) = eβp 0 i < φ (p) Hold for (thermal) self energies as well: iσ > l,n (p) = eβp 0 iσ < l,n (p), iπ> φ (p) = eβp 0 iπ < φ (p) KMS relations imply the vanishing of the collision term in thermal equilibrium: iσ > (k)ig < (k) iσ < (k)ig > (k) = 0 }{{} ( e βp 0 iσ > (p))( e βp 0 ig < (p)) Within the CTP formalism, we get the vanishing of the asymmetry in equilibrium for free M. Herranen (RWTH Aachen) Bielefeld, 06.05.2010 15 / 22

Wave-function Contribution Orange cut Interference between two s-channel scatterings Blue cut Interference between loop and tree-level decays Z d 3 k (2π) 3 Cwf l (k) = 4 Im[Y1 2 Y2 2 ] Z M 1M 2 M1 2 M2 2 d 3 k q (2π) 3 2 k 2 + M1 2 δf N(k ) ΣNµ(k )Σ µ N (k ) g w where the thermal decay rate is Z Σ µ d 3 p d 3 q N(k) = g w (2π) 3 2 p (2π) 3 2 q (2π)4 δ 4 (k p q) p µ 1 f eq eq l (p) + fφ (q) When neglecting quantum-statistical corrections (i.e. (1 f l,n ) 1 and (1 + f φ ) 1), we recover the usual RIS M. Herranen (RWTH Aachen) Bielefeld, 06.05.2010 16 / 22

Vertex Contribution Orange cut Interference between s- and t-channel scatterings Blue cut Interference between loop and tree-level decays Z d 3 p Z (2π) 3 Cv l(p ) = 4 Im[Y1 2 Y2 2 d 3 k ] (2π) 3 2 p δf N1(k) V(k, M 2), k 2 + M1 2 Z d 3 p d 3 p V(k, M 2) = (2π) 3 2 p (2π) 3 2 p (2π)4 δ 4 (k p p ) p µ Γ µ(k, p, M 2) ˆ1 f l (p ) + f φ (p ) Thermal vertex function: Z Γ µ(k, p d 3 k d 3 k, M 2) = (2π) 3 2 k (2π) 3 2 k (2π)4 δ 4 (k k k ) k µ M 1M 2 (k p ) 2 M2 2 ˆ1 f l (k ) + f φ (k ) M. Herranen (RWTH Aachen) Bielefeld, 06.05.2010 17 / 22

Numerical Results: Effective CP-Violating Parameter Consider limit M 1 M 2 : ε wf eff ε wf T=0 = 16π g w d k k 2 k 0 Σ µ N1 (k)σ N1 µ(k) δf N1 (k) d k k 2 k µ Σ µ N1 (k) δf N1(k) k 0 10 1 0.1 0.01 Ε eff Ε T 0 1 Expect large effect for weak washout small effect for strong washout 0.001 0.001 0.01 0.1 1 10 z M 1 T M. Herranen (RWTH Aachen) Bielefeld, 06.05.2010 18 / 22

Lepton Asymmetry: Y l = n l n l s, Strong Washout 10 8 10 9 Y l 10 10 10 11 0.1 1 10 z M 1 T blue: thermal initial f N1 solid: full solution red: zero initial f N1 dashed: no thermal corrections in loops M 1 = 10 13 GeV, M 2 = 10 15 GeV, Y 1 = 5 10 2, Y 2 = 10 1, Im[Y 1Y 2 ] = Y 1Y 2 M. Herranen (RWTH Aachen) Bielefeld, 06.05.2010 19 / 22

Lepton Asymmetry: Y l = n l n l s, Moderate Washout 10 8 10 9 Y l 10 10 10 11 0.1 1 10 z M 1 T blue: thermal initial f N1 solid: full solution red: zero initial f N1 dashed: no thermal corrections in loops M 1 = 10 13 GeV, M 2 = 10 15 GeV, Y 1 = 2 10 2, Y 2 = 10 1, Im[Y 1Y 2 ] = Y 1Y 2 M. Herranen (RWTH Aachen) Bielefeld, 06.05.2010 20 / 22

Lepton Asymmetry: Y l = n l n l s, Weak Washout 10 8 10 9 Y l 10 10 10 11 0.1 1 10 z M 1 T blue: thermal initial f N1 solid: full solution red: zero initial f N1 dashed: no thermal corrections in loops M 1 = 10 13 GeV, M 2 = 10 15 GeV, Y 1 = 1 10 2, Y 2 = 10 1, Im[Y 1Y 2 ] = Y 1Y 2 M. Herranen (RWTH Aachen) Bielefeld, 06.05.2010 21 / 22

Conclusion and outlook Conclusions: First principle description of Leptogenesis within the CTP framework Alternative - perhaps more satisfactory - manifestation of CPT invariance in the kinetic equation when compared to the usual RIS subtraction scheme Full inclusion of quantum statistical corrections in loops and external states (contribute at the same level) M. Herranen (RWTH Aachen) Bielefeld, 06.05.2010 22 / 22

Conclusion and outlook Conclusions: First principle description of Leptogenesis within the CTP framework Alternative - perhaps more satisfactory - manifestation of CPT invariance in the kinetic equation when compared to the usual RIS subtraction scheme Full inclusion of quantum statistical corrections in loops and external states (contribute at the same level) Outlook: Flavor coherence effects, finite width effects, resonant Leptogenesis M. Herranen (RWTH Aachen) Bielefeld, 06.05.2010 22 / 22